msPCA: Sparse Principal Component Analysis with Multiple Principal Components

Implements an algorithm for computing multiple sparse principal components of a dataset. The method is based on Cory-Wright and Pauphilet "Sparse PCA with Multiple Principal Components" (2022) <doi:10.48550/arXiv.2209.14790>. The algorithm uses an iterative deflation heuristic with a truncated power method applied at each iteration to compute sparse principal components with controlled sparsity.

Version: 0.1.0
Imports: Rcpp (≥ 1.0.11)
LinkingTo: Rcpp, RcppEigen
Published: 2025-12-09
DOI: 10.32614/CRAN.package.msPCA (may not be active yet)
Author: Ryan Cory-Wright ORCID iD [aut, cph], Jean Pauphilet ORCID iD [aut, cre, cph]
Maintainer: Jean Pauphilet <jpauphilet at london.edu>
License: MIT + file LICENSE
NeedsCompilation: yes
Materials: README, NEWS
CRAN checks: msPCA results

Documentation:

Reference manual: msPCA.html , msPCA.pdf

Downloads:

Package source: msPCA_0.1.0.tar.gz
Windows binaries: r-devel: not available, r-release: not available, r-oldrel: not available
macOS binaries: r-release (arm64): not available, r-oldrel (arm64): not available, r-release (x86_64): not available, r-oldrel (x86_64): not available

Linking:

Please use the canonical form https://CRAN.R-project.org/package=msPCA to link to this page.