Package ‘mousetRajectory’

September 8, 2023
Type Package

Title Mouse Trajectory Analyses for Behavioural Scientists
Version 0.2.1

Description Helping psychologists and other behavioural scientists
to analyze mouse movement (and other 2-D trajectory) data. Bundles
together several functions that compute spatial measures (e.g., maximum
absolute deviation, area under the curve, sample entropy) or provide a
shorthand for procedures that are frequently used (e.g., time
normalization, linear interpolation, extracting initiation and movement
times). For more information on these dependent measures, see Wirth et al.
(2020) <doi:10.3758/s13428-020-01409-0>.

License GPL (>=3)

URL https://github.com/mc-schaaf/mousetRajectory,
https://mc-schaaf.github.io/mousetRajectory/

BugReports https://github.com/mc-schaaf/mousetRajectory/issues
Depends R (>=3.5.0)

Imports lifecycle, methods, signal (>= 0.7), utils

Suggests dplyr, ggplot2, knitr, rmarkdown, testthat (>= 3.0.0), V8
VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

Language en-US

RoxygenNote 7.2.3

NeedsCompilation no

Author Roland Pfister [aut, cre, cph]
(<https://orcid.org/0000-0002-4429-1052>),
Solveig Tonn [aut] (<https://orcid.org/0000-0001-5254-8391>),
Moritz Schaaf [aut] (<https://orcid.org/0000-0002-9959-2928>),
Robert Wirth [aut] (<https://orcid.org/0000-0001-8446-1880>)

Maintainer Roland Pfister <mail@roland-pfister.net>

1

https://doi.org/10.3758/s13428-020-01409-0
https://github.com/mc-schaaf/mousetRajectory
https://mc-schaaf.github.io/mousetRajectory/
https://github.com/mc-schaaf/mousetRajectory/issues
https://orcid.org/0000-0002-4429-1052
https://orcid.org/0000-0001-5254-8391
https://orcid.org/0000-0002-9959-2928
https://orcid.org/0000-0001-8446-1880

2 auc

Repository CRAN
Date/Publication 2023-09-08 06:50:02 UTC

R topics documented:

AUC . . o o v e e e e e e e 2
CUIVALUIC . . . v v v v e 4
direction_changes 5
index_max_acceleration e e e e e e e e 6
index_max_velocity e e 7
INTEIP2 e 8
IS _MONOLONIC . . v v v v o e e e e e e e e e e 8
is_monotonic_along_ideal 9
max_ad e e e e 11
POINE_CTOSSES . . v v v v v e e e et e e e e e e e e e e e e e e 13
T 1101 0) o 14
starting_angle L L 15
time_circle_entered L e e 16
time_circle_left e 17

Index 19

auc Area Under the Curve
Description

Computes the (signed) Area Under the Curve (AUC) of a path, defined by vectors of x and y
coordinates, as compared to an ideal line passing through the start and end points.

Usage

auc(x_vector, y_vector, x_start, y_start, x_end, y_end, geometric = FALSE)

Arguments

x_vector x-coordinates of the executed path.

y_vector y-coordinates of the executed path.

x_start x-coordinate of the start point of the ideal line. Defaults to the first value in
x_vector.

y_start y-coordinate of the start point of the ideal line. Defaults to the first value in
y_vector.

x_end x-coordinate of the end point of the ideal line. Defaults to the last value in
x_vector.

y_end y-coordinate of the end point of the ideal line. Defaults to the last value in

y_vector.

auc 3

geometric Whether the sign of areas that stem from a movement in the reverse direction of
the ideal line should be reversed. Defaults to FALSE, indicating an time-based
instead of geometric interpretation. Only impacts the AUC if the trajectory is
not monotonically increasing relative to the ideal line.

Details

The ideal line is a line, not a line segment, i.e., it has infinite length. The supplied vectors are
assumed to be ordered by time. Counterclockwise deviations from the ideal line are considered
positive, clockwise deviations as negative for the computation of the AUC. Thus, negative AUCs
are possible.

Value

AUC as single number (-Inf to +Inf).

References

Wirth, R., Foerster, A., Kunde, W., & Pfister, R. (2020). Design choices: Empirical recommenda-
tions for designing two-dimensional finger tracking experiments. Behavior Research Methods, 52,
2394 - 2416. doi:10.3758/s13428020014090

Examples

x_vals <- c(0, 0, 0, 1, 2)

y_vals <- c(o, 1, 2, 2, 2)

plot(x_vals, y_vals, type = "1")

lines(c(@, 2), c(0, 2), 1ty = "dashed”, lwd = 2) # ideal
auc(x_vals, y_vals) # counterclockwise deviation: positive

x_vals <- c(o, 1, 2, 2, 2)

y_vals <- c(0, 0, 0, 1, 2)

auc(x_vals, y_vals) # clockwise deviation: negative
plot(x_vals, y_vals, type = "1")

lines(c(@, 2), c(@, 2), 1ty = "dashed”, lwd = 2) # ideal
x_vals <- -x_vals

auc(x_vals, y_vals) # now it is counterclockwise again

x_vals <- c(o, 0, 1, 2, 2)

y_vals <- c(0, 1, 1, 1, 2)

plot(x_vals, y_vals, type = "1")

lines(c(@, 2), c(@, 2), 1ty = "dashed”, lwd = 2) # ideal

auc(x_vals, y_vals) # might create small rounding errors; this should be @
all.equal(@, auc(x_vals, y_vals)) # indeed interpreted by R as basically 0@

x_vals <- c(o, 1, 2, 1)

y_vals <- c(0, 1, 1, @)

plot(x_vals, y_vals, type = "1")

lines(c(@, 1), c(0, @), 1ty = "dashed”, lwd = 2) # ideal
auc(x_vals, y_vals)

auc(x_vals, y_vals, geometric = TRUE) # note the difference

https://doi.org/10.3758/s13428-020-01409-0

4 curvature

curvature Curvature

Description
Computes the curvature of a path, defined by vectors of x and y coordinates, as compared to an
ideal path, as defined by the start and end points of the path.

Usage

curvature(x_vector, y_vector)

Arguments
x_vector x-coordinates of the executed path.
y_vector y-coordinates of the executed path.
Details

The supplied vectors are assumed to be ordered by time.

Value

Single number indicating the curvature (1 to +Inf).

References

Wirth, R., Foerster, A., Kunde, W., & Pfister, R. (2020). Design choices: Empirical recommenda-
tions for designing two-dimensional finger tracking experiments. Behavior Research Methods, 52,
2394 - 2416. doi:10.3758/s13428020014090

Examples

x_vals <- c(0, 0, 0, 1, 2)

y_vals <- c(0, 1, 2, 2, 2)

plot(x_vals, y_vals, type = "1")

lines(c(@, 2), c(0, 2), 1ty = "dashed”, lwd = 2) # ideal
curvature(x_vals, y_vals)

x_vals <- c(o, 1, 2, 2, 2)

y_vals <- c(0, 0, 0, 1, 2)

plot(x_vals, y_vals, type = "1")

lines(c(@, 2), c(0, 2), 1ty = "dashed”, lwd
curvature(x_vals, y_vals)

2) # ideal

x_vals <- c(0, 0, 1, 2, 2)

y_vals <- c(0, 1, 1, 1, 2)

plot(x_vals, y_vals, type = "1")

lines(c(@, 2), c(0, 2), 1ty = "dashed”, lwd = 2) # ideal

https://doi.org/10.3758/s13428-020-01409-0

direction_changes 5

curvature(x_vals, y_vals)

direction_changes xFlips

Description

Checks how often a number sequence changes from decreasing monotonically to increasing mono-
tonically (or vice versa).

Usage

direction_changes(numeric_vector)

Arguments

numeric_vector Numbers, ordered by their time of appearance.

Details

The supplied vectors are assumed to be ordered by time. Values do not have to be strictly mono-
tonically in-/decreasing. l.e., c(@, 1, 1, 2) would return 0, as x,, >= x, — 1 is satisfied for
2 <=n <=length(c(0,1,1,2)).

Value

Single number indicating how often numeric_vector changes direction (0 to +Inf).

References

Wirth, R., Foerster, A., Kunde, W., & Pfister, R. (2020). Design choices: Empirical recommenda-
tions for designing two-dimensional finger tracking experiments. Behavior Research Methods, 52,
2394 - 2416. doi:10.3758/s13428020014090

Examples

direction_changes(c(@, 1, 1, 2))
direction_changes(c(@, 1, 1, 0))
direction_changes(c(@, 1, 0, 1))

https://doi.org/10.3758/s13428-020-01409-0

6 index_max_acceleration

index_max_acceleration
Time point of maximum acceleration

Description

Computes the index of the peak acceleration of a trajectory, defined by vectors of x and y coordi-
nates, and assumed to be equidistant in time.

Usage

index_max_acceleration(x_vector, y_vector, absolute = FALSE)

Arguments

x_vector x-coordinates of the executed path.

y_vector y-coordinates of the executed path.

absolute Should negative accelerations (i.e., deceleration) be included? Defaults to FALSE.
Details

The supplied vectors are assumed to be ordered by time with equal time differences.

Value

Single number indicating the index of peak acceleration (1 to +Inf).

References

Wirth, R., Foerster, A., Kunde, W., & Pfister, R. (2020). Design choices: Empirical recommenda-
tions for designing two-dimensional finger tracking experiments. Behavior Research Methods, 52,
2394 - 2416. doi:10.3758/s13428020014090

Examples

x_vals <- c(o0, 1, 2, 3, 6, 10, 12, 14, 15)

y_vals <- c(o0, 0, 0, o0, 0, 0, 0, @, Q)
index_max_acceleration(x_vals, y_vals)

acceleration maximal between x_vals[4] and x_vals[5]

https://doi.org/10.3758/s13428-020-01409-0

index_max_velocity 7

index_max_velocity Time point of maximum velocity

Description

Computes the index of the peak velocity of a trajectory, defined by vectors of x and y coordinates,
and assumed to be equidistant in time.

Usage

index_max_velocity(x_vector, y_vector)

Arguments
x_vector x-coordinates of the executed path.
y_vector y-coordinates of the executed path.
Details

The supplied vectors are assumed to be ordered by time with equal time differences.

Value

Single number indicating the index of peak velocity (1 to +Inf).

References

Wirth, R., Foerster, A., Kunde, W., & Pfister, R. (2020). Design choices: Empirical recommenda-
tions for designing two-dimensional finger tracking experiments. Behavior Research Methods, 52,
2394 - 2416. doi:10.3758/s13428020014090

Examples

x_vals <- c(o, 1, 2, 3, 6, 10, 12, 14, 15)

y_vals <- c(0, o0, o0, @0, @, 0, 9, 0, @)
index_max_velocity(x_vals, y_vals)

velocity maximal between x_vals[5] and x_vals[6]

numbers <- seq(-(3 / 4) * pi, (3 / 4) *x pi, by = 0.001)

y_vector <- sin(numbers)

plot(numbers, y_vector)

index_max_velocity(rep(@, length(numbers)), y_vector)

abline(v = numbers[index_max_velocity(rep(@, length(numbers)), y_vector)])
which.max(cos(numbers)) # first derivative of sin, max at @ degrees

https://doi.org/10.3758/s13428-020-01409-0

8 is_monotonic

interp2 Interpolation aka Time-Normalization

Description

Convenient wrapper to signal::interp1() for linear interpolation. Assumes that you want inter-
polated values of xy_old at n_xy_new equidistant data points.

Usage

interp2(time_old, xy_old, n_xy_new = 101)

Arguments

time_old Timestamps of the xy_old coordinates.

xy_old To-be normalized x or y coordinates.

n_xy_new Number of equidistant timepoints that should be generated. Defaults to 101.
Value

Vector of length n_xy_new with interpolated x or y values.

References

Wirth, R., Foerster, A., Kunde, W., & Pfister, R. (2020). Design choices: Empirical recommenda-
tions for designing two-dimensional finger tracking experiments. Behavior Research Methods, 52,
2394 - 2416. doi:10.3758/s13428020014090

Examples

plot(interp2(0:10, (0:10)*2))

is_monotonic Test if vector is monotonically in-/decreasing

Description

Checks if a numeric_vector is monotonically in-/decreasing. In particular, it always a good idea
to check the time stamps of trajectory data and verify that the logging worked properly.

Usage

is_monotonic(numeric_vector, decreasing = FALSE, strict = TRUE, warn = TRUE)

https://doi.org/10.3758/s13428-020-01409-0

is_monotonic_along_ideal 9

Arguments

numeric_vector Number sequence to-be checked.
decreasing Should the numeric_vector be increasing or decreasing? Defaults to FALSE.

strict Must the values in-/decrease strictly? Defaults to TRUE, indicating that a strict,
not a weak definition of monotony is applied.

warn Will a warning be issued if the numeric_vector is not monotonic? Defaults to
TRUE.

Details

All objects of length 0 or 1 are monotonic. Data with missing values will not pass the check.

Value

A length-one logical, indicating whether the vector is monotonic.

References

Wirth, R., Foerster, A., Kunde, W., & Pfister, R. (2020). Design choices: Empirical recommenda-
tions for designing two-dimensional finger tracking experiments. Behavior Research Methods, 52,
2394 - 2416. doi:10.3758/s13428020014090

Examples

is_monotonic(c(1, 2, 3, 4), warn = FALSE)
is_monotonic(c(1, 2, 2, 3), warn = FALSE)
is_monotonic(c(1, 2, 2, 3), strict = FALSE, warn = FALSE)
is_monotonic(c(4, @, -1, -1, -5),

decreasing = TRUE,

strict = FALSE, warn = FALSE
)

is_monotonic_along_ideal
Test if vector is monotonically increasing along the ideal trajectory

Description

[Experimental] Checks if a trajectory, defined by vectors of x and y coordinates, is monotonically
increasing relative to an ideal line passing through the start and end points.

https://doi.org/10.3758/s13428-020-01409-0

10

Usage

is_monotonic_along_ideal

is_monotonic_along_ideal(

x_vector,
y_vector,
x_start,
y_start,
x_end,
y_end,

strict = TRUE,

warn = TRUE

Arguments

X_vector
y_vector

X_start

y_start

x_end

y_end

strict

warn

Details

x-coordinates of the executed path.
y-coordinates of the executed path.

x-coordinate of the start point of the ideal line. Defaults to the first value in
x_vector.

y-coordinate of the start point of the ideal line. Defaults to the first value in
y_vector.

x-coordinate of the end point of the ideal line. Defaults to the last value in
x_vector.

y-coordinate of the end point of the ideal line. Defaults to the last value in
y_vector.

Must the values increase strictly? Defaults to FALSE, indicating that a weak, not
a strict definition of monotony is applied.

Will a warning be issued if the trajectory is not monotonic (relative to the ideal
line)? Defaults to TRUE.

Computes the orthogonal projection of the trajectory points onto the ideal line and checks whether
the distances of this projection to the start point are monotonic. All objects of length O or 1 are
monotonic. Data with missing values will not pass the check.

Value

A length-one logical, indicating whether the trajectory is monotonic.

References

Wirth, R., Foerster, A., Kunde, W., & Pfister, R. (2020). Design choices: Empirical recommenda-
tions for designing two-dimensional finger tracking experiments. Behavior Research Methods, 52,
2394 - 2416. doi:10.3758/s13428020014090

https://doi.org/10.3758/s13428-020-01409-0

max_ad 11

Examples

common use-case: exclude movements that miss the target area and to go back
movement 1:

x_valsl <- c(@, 0.95, 1)

y_valsl <- c(0, 1.3, 1)

movement 2:

x_vals2 <- y_valsl

y_vals2 <- x_valsi

movement 3:

x_vals3 <- c(@, -0.1, 9.5, 1)

y_vals3 <- c(0, 0.5, o, 1)

note that the first two movements are symmetric to the ideal line:
plot(x_valsl, y_valsl, type = "1", xlim = c(-0.1, 1.3), ylim = c(-0.1, 1.3))
lines(x_vals2, y_vals2, type = "1")

lines(x_vals3, y_vals3, type = "1")

lines(c(@, 1), c(@, 1), 1ty = "dashed”, lwd = 2) # ideal
is_monotonic_along_ideal(x_vals1, y_valsl, warn = FALSE)
is_monotonic_along_ideal(x_vals2, y_vals2, warn = FALSE)
is_monotonic_along_ideal(x_vals3, y_vals3, warn = FALSE)

Note that the third movement is regarded as monotonic although both

x and y coordinates are not.

In contrast, excluding movements based on monotony of the y-coordinate
would exclude the first and third movement:

is_monotonic(y_vals1, warn = FALSE)

is_monotonic(y_vals2, warn = FALSE)

is_monotonic(y_vals3, warn = FALSE)

Also works if movements go into negative direction:
movement 1:

x_valsl <- c(0, -0.95, -1)

y_valsl <- c(0, 1.3, 1)

movement 3:

x_vals3 <- c(@, 0.1, -0.5, -1)

y_vals3 <- c(@, 0.5, 0, 1)

plot(x_valsl, y_valsl, type = "1", xlim = c(-1.3, 0.1), ylim = c(-0.1, 1.3))
lines(x_vals3, y_vals3, type = "1")

lines(-c(@, 1), c(@, 1), lty = "dashed”, lwd = 2) # ideal
is_monotonic_along_ideal(x_vals1, y_valsl, warn = FALSE)
is_monotonic_along_ideal(x_vals3, y_vals3, warn = FALSE)

max_ad (signed) Maximum Absolute Deviation

Description

Computes the (signed) Maximum Absolute Deviation (MAD) of a path, defined by vectors of x and
y coordinates, as compared to an ideal line passing through the start and end points.

12 max_ad

Usage

max_ad(x_vector, y_vector, x_start, y_start, x_end, y_end)

Arguments
x_vector x-coordinates of the executed path.
y_vector y-coordinates of the executed path.
x_start x-coordinate of the start point of the ideal line. Defaults to the first value in
x_vector.
y_start y-coordinate of the start point of the ideal line. Defaults to the first value in
y_vector.
x_end x-coordinate of the end point of the ideal line. Defaults to the last value in
X_vector.
y_end y-coordinate of the end point of the ideal line. Defaults to the last value in
y_vector.
Details

The ideal line is a line, not a line segment, i.e., it has infinite length. The supplied vectors are
assumed to be ordered by time. Counterclockwise deviations from the ideal line are considered
positive, clockwise deviations as negative for the computation of the MAD. Thus, negative MADs
are possible. If more than one value is considered maximal, the first maximal value is returned.

Value

(signed) MAD as single number (-Inf to +Inf).

References

Wirth, R., Foerster, A., Kunde, W., & Pfister, R. (2020). Design choices: Empirical recommenda-
tions for designing two-dimensional finger tracking experiments. Behavior Research Methods, 52,
2394 - 2416. doi:10.3758/s13428020014090

Examples

x_vals <- c(0, 0, 0, 1, 2)

y_vals <- c(0, 1, 2, 2, 2)

plot(x_vals, y_vals, type = "1")

lines(c(@, 2), c(@, 2), 1ty = "dashed”, lwd = 2) # ideal
max_ad(x_vals, y_vals) # counterclockwise deviation: positive

x_vals <- c(o, 1, 2, 2, 2)

y_vals <- c(0, 0, 0, 1, 2)

plot(x_vals, y_vals, type = "1")

lines(c(@, 2), c(@, 2), 1ty = "dashed”, lwd = 2) # ideal
max_ad(x_vals, y_vals) # clockwise deviation: negative
x_vals <- -x_vals

max_ad(x_vals, y_vals) # now it is counterclockwise again

https://doi.org/10.3758/s13428-020-01409-0

point_crosses 13

x_vals <- c(o, o0, 1, 2, 3, 6, 3)

y_vals <- c(0, 2, 2, 2, 2, 1, @)

plot(x_vals, y_vals, type = "1")

lines(c(@, 3), c(@, @), 1ty = "dashed”, lwd = 2) # ideal
max_ad(x_vals, y_vals) # the ideal trajectory has infinite length

x_vals <- c(0, 1, 2, 3)

y_vals <- c(0, 1, -1, @)

plot(x_vals, y_vals, type = "1")

lines(x_vals, -y_vals, col = "red")

lines(c(@, 3), c(@, @), 1ty = "dashed”, lwd = 2) # ideal
max_ad(x_vals, y_vals)

max_ad(x_vals, -y_vals) # the "first” maximal value is returned

point_crosses Number of times a point is crossed

Description

Checks how often a number (relevant_point) is being crossed by an number sequence (numeric_vector).

Usage

point_crosses(numeric_vector, relevant_point = 0)

Arguments

numeric_vector Numbers, ordered by their time of appearance.

relevant_point Number which has to be crossed.

Details

The supplied vectors are assumed to be ordered by time.

Value

Number of times that numeric_vector crosses the relevant_point (0 to +Inf).

References

Wirth, R., Foerster, A., Kunde, W., & Pfister, R. (2020). Design choices: Empirical recommenda-
tions for designing two-dimensional finger tracking experiments. Behavior Research Methods, 52,
2394 - 2416. doi:10.3758/s13428020014090

https://doi.org/10.3758/s13428-020-01409-0

14 sampen

Examples

x_vals <- c(-1, 1, -1, 1, -1, 1)
point_crosses(x_vals, 0)
point_crosses(x_vals, 1)
point_crosses(x_vals, -1)

sampen Sample entropy

Description

Computes the sample entropy (sampen), as given by Richman & Moorman (2000), doi:10.1152/
ajpheart.2000.278.6.H2039.

Usage

sampen
timeseries_array,
dimensions = 2,
tolerance = 0.2,
standardize = TRUE,
use_diff = FALSE

Arguments

timeseries_array
Array of numbers over which the sampen is to be computed.

dimensions Number of embedding dimensions for which to compute the sampen. Some-
times also called "template length".
tolerance Tolerance for the comparisons of two number sequences.
standardize Whether to standardize the timeseries_array.
use_diff Whether to use the differences between adjacent points.
Details

As suggested by Richman & Moorman (2000), doi:10.1152/ajpheart.2000.278.6.H2039, the last
possible vector of length dimensions is not considered because it has no corresponding vector of
length dimensions + 1, ensuring a sampen estimation with a low bias introduced by the length of
the timeseries_array. The function was deliberately implemented in R with C-style code. While
this makes the function rather slow for large timeseries_arrays, it enables maximal transparency.
For an overview over faster sampen functions in R that, however, are distributed in binary or need
source compilation, see Chen et al. (2019), doi: 10.1093/biomethods/bpz016.

https://doi.org/10.1152/ajpheart.2000.278.6.H2039
https://doi.org/10.1152/ajpheart.2000.278.6.H2039
https://doi.org/10.1152/ajpheart.2000.278.6.H2039
https://doi.org/10.1093/biomethods/bpz016

starting_angle 15

Value

Single number indicating the sampen for the given parameters (0 to +Inf).

References

Wirth, R., Foerster, A., Kunde, W., & Pfister, R. (2020). Design choices: Empirical recommenda-
tions for designing two-dimensional finger tracking experiments. Behavior Research Methods, 52,
2394 - 2416. doi:10.3758/s13428020014090

Examples

x_vals <- rep(c(0, 0, 0, 0, 0, 1), 20)
sampen(x_vals, dimensions = 1, tolerance
sampen(x_vals, dimensions = 3, tolerance
sampen(x_vals,
dimensions = 3, tolerance = 1 / 2, standardize = FALSE,
use_diff = TRUE
)

sampen(x_vals, dimensions = 3, tolerance = 1, standardize = FALSE)

FALSE)
FALSE)

2, standardize
2, standardize

1l
—_

starting_angle Starting angle

Description

Computes the angle (in degrees) between a line, defined by two points with coordinates (x@, y@)
and (x1, y1), and the specified axis.

Usage
starting_angle(x@, x1, y@, yl1, swap_x_y = TRUE)

Arguments
X0 x-value of the first point.
x1 x-value of the second point.
yo y-value of the first point.
y1 y-value of the second point.
swap_x_y Whether to compute the angle relative to the x or y axis. Defaults to TRUE,
indicating that the angle is relative to the y axis.
Details

If the angle is computed relative to the x axis, counterclockwise changes are counted as positive. If
the angle is computed relative to the y axis, clockwise changes are counted as positive.

https://doi.org/10.3758/s13428-020-01409-0

16 time_circle_entered

Value

Angle in degrees with —180 <= angle <= 180.

References

Wirth, R., Foerster, A., Kunde, W., & Pfister, R. (2020). Design choices: Empirical recommenda-
tions for designing two-dimensional finger tracking experiments. Behavior Research Methods, 52,
2394 - 2416. doi:10.3758/s13428020014090

Examples

Note that not the mathematical definition of angle is used by default:
starting_angle(0, 1, 0, @)

starting_angle(@, 1, @, @, swap_x_y = FALSE)

angles are clockwise and relative to the y-axis.

Note that return values are in the range [-180, 180], not [0, 360]:
starting_angle(o, -1, 0, -1)
starting_angle(@, 1, @, -1, swap_x_y = FALSE)

time_circle_entered Completion Time

Description

[Experimental] Checks when the specified circle was first entered by a trajectory.

Usage

time_circle_entered(

x_vector,

y_vector,

t_vector,

x_mid = 0,

y_mid = @,

radius = 1,
include_radius = TRUE,
warn = TRUE

Arguments

x_vector x-coordinates of the executed path.
y_vector y-coordinates of the executed path.
t_vector Timestamps of the executed trajectory.

x_mid x-coordinate of the center of the circle.

https://doi.org/10.3758/s13428-020-01409-0

time_circle_left 17

y_mid y-coordinate of the center of the circle.
radius radius of the center of the circle.

include_radius Whether points lying exactly on the radius should be included in the circle.
Defaults to TRUE.

warn whether a warning should be thrown if the first entry of t_vector is returned.
Defaults to TRUE.

Value

Value of t_vector at the first time at which the trajectory is in the circle.

References

Wirth, R., Foerster, A., Kunde, W., & Pfister, R. (2020). Design choices: Empirical recommenda-
tions for designing two-dimensional finger tracking experiments. Behavior Research Methods, 52,
2394 - 2416. doi:10.3758/s13428020014090

Examples

time_circle_entered(0:10, rep(@, 11), 0:10,
x_mid = 10, y_mid = @, radius =1

)

time_circle_entered(0:10, rep(@, 11), 0:10,
x_mid = 10, y_mid = @, radius = 1,
include_radius = FALSE

)

time_circle_left Initiation Time

Description

[Experimental] Checks when the specified circle was first left by a trajectory.

Usage

time_circle_left(

x_vector,

y_vector,

t_vector,

x_mid = 0,

y_mid = @,

radius = 1,
include_radius = TRUE,
warn = TRUE

https://doi.org/10.3758/s13428-020-01409-0

18 time_circle_left

Arguments
x_vector x-coordinates of the executed path.
y_vector y-coordinates of the executed path.
t_vector Timestamps of the executed trajectory.
x_mid x-coordinate of the center of the circle.
y_mid y-coordinate of the center of the circle.
radius radius of the center of the circle.

include_radius Whether points lying exactly on the radius should be included in the circle.
Defaults to TRUE.

warn whether a warning should be thrown if the first entry of t_vector is returned.
Defaults to TRUE.
Value

Value of t_vector at the first time at which the trajectory is out of the circle.

References

Wirth, R., Foerster, A., Kunde, W., & Pfister, R. (2020). Design choices: Empirical recommenda-
tions for designing two-dimensional finger tracking experiments. Behavior Research Methods, 52,
2394 - 2416. doi:10.3758/s13428020014090

Examples

time_circle_left(0:10, rep(@, 11), 0:10)
time_circle_left(0:10, rep(@, 11), 0:10, include_radius = FALSE)

https://doi.org/10.3758/s13428-020-01409-0

Index

auc, 2
curvature, 4
direction_changes, 5

index_max_acceleration, 6
index_max_velocity, 7
interp2, 8

is_monotonic, 8
is_monotonic_along_ideal, 9

max_ad, 11
point_crosses, 13
sampen, 14
signal::interpl1(), 8

starting_angle, 15

time_circle_entered, 16
time_circle_left, 17

19

	auc
	curvature
	direction_changes
	index_max_acceleration
	index_max_velocity
	interp2
	is_monotonic
	is_monotonic_along_ideal
	max_ad
	point_crosses
	sampen
	starting_angle
	time_circle_entered
	time_circle_left
	Index

