Package ‘modelStudio’

February 21, 2023

Title Interactive Studio for Explanatory Model Analysis
Version 3.1.2

Description Automate the explanatory analysis of machine learning predictive
models. Generate advanced interactive model explanations in the form of
a serverless HTML site with only one line of code. This tool is
model-agnostic, therefore compatible with most of the black-box predictive
models and frameworks. The main function computes various (instance and
model-level) explanations and produces a customisable dashboard, which
consists of multiple panels for plots with their short descriptions. It is
possible to easily save the dashboard and share it with others. modelStudio
facilitates the process of Interactive Explanatory Model Analysis introduced
in Baniecki et al. (2023) <doi:10.1007/s10618-023-00924-w>.

Depends R (>=3.6)
License GPL-3
Encoding UTF-8
RoxygenNote 7.1.2

Imports DALEX (>=2.2.1), ingredients (>= 2.2.0), iBreakDown (>=
2.0.1), r2d3, jsonlite, progress, digest

Suggests parallelMap, ranger, xgboost, knitr, rmarkdown, testthat,
spelling

VignetteBuilder knitr

URL https://modelstudio.drwhy.ai,
https://github.com/ModelOriented/modelStudio

BugReports https://github.com/ModelOriented/modelStudio/issues
Language en-US

LazyData true

NeedsCompilation no

Author Hubert Baniecki [aut, cre] (<https://orcid.org/0000-0001-6661-5364>),
Przemyslaw Biecek [aut] (<https://orcid.org/0000-0001-8423-1823>),
Piotr Piatyszek [ctb]

https://doi.org/10.1007/s10618-023-00924-w
https://modelstudio.drwhy.ai
https://github.com/ModelOriented/modelStudio
https://github.com/ModelOriented/modelStudio/issues
https://orcid.org/0000-0001-6661-5364
https://orcid.org/0000-0001-8423-1823

2 happiness_train

Maintainer Hubert Baniecki <hbaniecki@gmail.com>
Repository CRAN
Date/Publication 2023-02-20 23:20:02 UTC

R topics documented:

happiness_train 2
modelStudio L e e 3
MS_MErge_observations v v it e e e e e 7
MS_OPHONS ottt e e e e e e e e e e e 8
ms_update_observations e 10
ms_update_Options e e e e 12

Index 15

happiness_train World Happiness Report
Description

Datasets happiness_train and happiness_test are real data from the World Happiness Reports.
Happiness is scored according to economic production, social support, etc. happiness_train
accumulates the data from years 2015-2018, while happiness_test is the data from the year 2019,
which imitates the out-of-time validation.

Usage

data(happiness_train); data(happiness_test)

Format

happiness_train: a data frame with 625 rows and 7 columns, happiness_test: a data frame
with 156 rows and 7 columns

Details

Source: World Happiness Report at Kaggle.com

The following columns: GDP per Capita, Social Support, Life Expectancy, Freedom, Generosity,
Corruption describe the extent to which these factors contribute in evaluating the happiness in each
country. Variables:

* score - target variable, continuous value between 0 and 10 (regression)
* gdp_per_capita

* social_support

* healthy_life_expectancy

¢ freedom_life_choices

https://www.kaggle.com/unsdsn/world-happiness

modelStudio 3

* generosity

* perceptions_of_corruption

modelStudio Interactive Studio for Explanatory Model Analysis

Description

This function computes various (instance and dataset level) model explanations and produces a
customisable dashboard, which consists of multiple panels for plots with their short descriptions.
Easily save the dashboard and share it with others. Tools for Explanatory Model Analysis unite
with tools for Exploratory Data Analysis to give a broad overview of the model behavior.

The extensive documentation covers:

* Function parameters description - perks and features
* Framework and model compatibility - R & Python examples

» Theoretical introduction to the plots - Explanatory Model Analysis: Explore, Explain, and
Examine Predictive Models

Displayed variable can be changed by clicking on the bars of plots or with the first dropdown list,
and observation can be changed with the second dropdown list. The dashboard gathers useful, but
not sensitive, information about how it is being used (e.g. computation length, package version,
dashboard dimensions). This is for the development purposes only and can be blocked by setting
telemetry to FALSE.

Usage

modelStudio(explainer, ...)

S3 method for class 'explainer'
modelStudio(
explainer,
new_observation = NULL,
new_observation_y = NULL,
new_observation_n = 3,
facet_dim = c(2, 2),
time = 500,
max_features = 10,
max_features_fi = NULL,

N = 300,

N_fi = N % 10,
N_sv = N x 3,
B =10,

B_fi = B,

eda = TRUE,

open_plots = c("fi"),

https://ema.drwhy.ai/
https://modelstudio.drwhy.ai/articles/ms-perks-features.html
https://modelstudio.drwhy.ai/articles/ms-r-python-examples.html
https://ema.drwhy.ai/
https://ema.drwhy.ai/

4 modelStudio

show_info = TRUE,
parallel = FALSE,
options = ms_options(),
viewer = "external”,
widget_id = NULL,
license = NULL,
telemetry = TRUE,
max_vars = NULL,
verbose = NULL,

Arguments

explainer An explainer created with DALEX: :explain().

Other parameters.
new_observation
New observations with columns that correspond to variables used in the model.
new_observation_y
True label for new_observation (optional).
new_observation_n
Number of observations to be taken from the explainer$dataif new_observation
= NULL. See vignette
facet_dim Dimensions of the grid. Default is c(2,2).
time Time in ms. Set the animation length. Default is 500.

max_features Maximum number of features to be included in BD, SV, and FI plots. Default is
10.

max_features_fi
Maximum number of features to be included in FI plot. Default is max_features.

N Number of observations used for the calculation of PD and AD. Default is 300.
See vignette

N_fi Number of observations used for the calculation of FI. Default is 10*N.

N_sv Number of observations used for the calculation of SV. Default is 3*N.

B Number of permutation rounds used for calculation of SV. Default is 10. See
vignette

B_fi Number of permutation rounds used for calculation of FI. Default is B.

eda Compute EDA plots and Residuals vs Feature plot, which adds the data to the
dashboard. Default is TRUE.

open_plots A vector listing plots to be initially opened (and on which positions). Default is
c("fi").

show_info Verbose a progress on the console. Default is TRUE.

parallel Speed up the computation using parallelMap: :parallelMap(). See vignette.

This might interfere with showing progress using show_info.

options Customize modelStudio. See ms_options and vignette.

https://modelstudio.drwhy.ai/articles/ms-perks-features.html#instance-explanations
https://modelstudio.drwhy.ai/articles/ms-perks-features.html#more-calculations-means-more-time
https://modelstudio.drwhy.ai/articles/ms-perks-features.html#more-calculations-means-more-time
https://modelstudio.drwhy.ai/articles/ms-perks-features.html#parallel-computation
https://modelstudio.drwhy.ai/articles/ms-perks-features.html#additional-options-1

modelStudio

viewer

widget_id

license

telemetry

max_vars

verbose

Value

Default is external to display in an external RStudio window. Use browser to
display in an external browser or internal to use the RStudio internal viewer
pane for output.

Use an explicit element ID for the widget (rather than an automatically generated
one). Useful e.g. when using modelStudio with Shiny. See vignette.

Path to the file containing the license (con parameter passed to readLines()).
It can be used e.g. to include the license for explainer$data as a comment in
the source of . html output file.

The dashboard gathers useful, but not sensitive, information about how it is
being used (e.g. computation length, package version, dashboard dimensions).
This is for the development purposes only and can be blocked by setting telemetry
to FALSE.

An alias for max_features. If provided, it will override the value.

An alias for show_info. If provided, it will override the value.

An object of the r2d3, htmlwidget, modelStudio class.

References

* The input object is implemented in DALEX

* Feature Importance, Ceteris Paribus, Partial Dependence and Accumulated Dependence ex-
planations are implemented in ingredients

* Break Down and Shapley Values explanations are implemented in iBreakDown

See Also

Vignettes: modelStudio - R & Python examples and modelStudio - perks and features

Examples

library("DALEX")

library("modelStudio™)

#:# ex1 classification on 'titanic' data

fit a model

model_titanic <- glm(survived ~., data = titanic_imputed, family = "binomial")

create an explainer for the model
explainer_titanic <- explain(model_titanic,

data = titanic_imputed,
y = titanic_imputed$survived,
label = "Titanic GLM")

pick observations
new_observations <- titanic_imputed[1:2,]
rownames (new_observations) <- c("Lucas”,"James")

https://modelstudio.drwhy.ai/articles/ms-perks-features.html#shiny-1
https://modeloriented.github.io/DALEX/
https://modeloriented.github.io/ingredients/
https://modeloriented.github.io/iBreakDown/
https://modelstudio.drwhy.ai/articles/ms-r-python-examples.html
https://modelstudio.drwhy.ai/articles/ms-perks-features.html

modelStudio

make a studio for the model
modelStudio(explainer_titanic,
new_observations,
N = 200, B = 5) # faster example

#:# ex2 regression on 'apartments' data

if (requireNamespace("ranger"”, quietly=TRUE)) {
library("ranger™)
model_apartments <- ranger(m2.price ~. ,data = apartments)

explainer_apartments <- explain(model_apartments,
data = apartments,
y = apartments$m2.price)

new_apartments <- apartments[1:2,]
rownames (new_apartments) <- c("ap1”,"ap2")

change dashboard dimensions and animation length
modelStudio(explainer_apartments,

new_apartments,

facet_dim = c(2, 3),

time = 800)

add information about true labels
modelStudio(explainer_apartments,

new_apartments,

new_observation_y = new_apartments$m2.price)

don't compute EDA plots
modelStudio(explainer_apartments,
eda = FALSE)

#:# ex3 xgboost model on 'HR' dataset

if (requireNamespace("xgboost”, quietly=TRUE)) {
library("xgboost")
HR_matrix <- model.matrix(status == "fired” ~ . -1, HR)

fit a model

xgb_matrix <- xgb.DMatrix(HR_matrix, label = HR$status == "fired")

params <- list(max_depth = 3, objective = "binary:logistic”, eval_metric = "auc")
model_HR <- xgb.train(params, xgb_matrix, nrounds = 300)

create an explainer for the model

explainer_HR <- explain(model_HR,
data = HR_matrix,
y = HR$status == "fired"”,
type = "classification”,
label = "xgboost")

ms_merge_observations 7

pick observations
new_observation <- HR_matrix[1:2, , drop=FALSE]
rownames(new_observation) <- c("id1"”, "id2")

make a studio for the model
modelStudio(explainer_HR,
new_observation)

ms_merge_observations Merge the observations of modelStudio objects

Description

This function merges local explanations from multiple modelStudio objects into one.

Usage

ms_merge_observations(...)

Arguments

modelStudio objects created with modelStudio().

Value

An object of the r2d3, htmlwidget, modelStudio class.

References

* The input object is implemented in DALEX

* Feature Importance, Ceteris Paribus, Partial Dependence and Accumulated Dependence ex-
planations are implemented in ingredients

* Break Down and Shapley Values explanations are implemented in iBreakDown

See Also

Vignettes: modelStudio - R & Python examples and modelStudio - perks and features

https://modeloriented.github.io/DALEX/
https://modeloriented.github.io/ingredients/
https://modeloriented.github.io/iBreakDown/
https://modelstudio.drwhy.ai/articles/ms-r-python-examples.html
https://modelstudio.drwhy.ai/articles/ms-perks-features.html

8 ms_options

Examples

library("DALEX")
library("modelStudio™)

fit a model
model_happiness <- glm(score ~., data = happiness_train)

create an explainer for the model
explainer_happiness <- explain(model_happiness,
data = happiness_test,
y = happiness_test$score)

make studios for the model
ms1 <- modelStudio(explainer_happiness,
N = 200, B =5)

ms2 <- modelStudio(explainer_happiness,
new_observation = head(happiness_test, 3),
N = 200, B =5)

merge
ms <- ms_merge_observations(ms1, ms2)
ms
ms_options Modify default options and pass them to modelStudio
Description

This function returns default options for modelStudio. It is possible to modify values of this list
and pass it to the options parameter in the main function. WARNING: Editing default options
may cause unintended behavior.

Usage

ms_options(...)

Arguments

Options to change in the form option_name = value.

Value

list of options for modelStudio.

ms_options 9

Options
Main options::
scale_plot TRUE Makes every plot the same height, ignores bar_width.
show_boxplot TRUE Display boxplots in Feature Importance and Shapley Values plots.
show_subtitle TRUE Should the subtitle be displayed?
subtitle label parameter from explainer.
ms_title Title of the dashboard.
ms_subtitle Subtitle of the dashboard (makes space between the title and line).
ms_margin_* Dashboard margins. Change margin_top for more ms_subtitle space.
margin_* Plot margins. Change margin_left for longer/shorter axis labels.
W 420 in px. Inner plot width.
h 280 in px. Inner plot height.
bar_width 16 in px. Default width of bars for all plots, ignored when scale_plot = TRUE.
line_size 2 in px. Default width of lines for all plots.
point_size 3 in px. Default point radius for all plots.
[bar,line,point _color] [#46bac2,#46bac2,#371ea3]
positive_color #8bdcbe for Break Down and Shapley Values bars.
negative_color #f05a71 for Break Down and Shapley Values bars.
default_color #371ea3 for Break Down bar and highlighted line.

Plot-specific options:: *x* is a two letter code unique to each plot, might be one of [bd, sv,cp,fi,pd,ad,rv,fd, tv,at].

**_title Plot-specific title. Default varies.
**_subtitle Plot-specific subtitle. Default is subtitle.
**_axis_title Plot-specific axis title. Default varies.

** bar_width Plot-specific width of bars. Default is bar_width, ignored when scale_plot =
TRUE.

**_line_size Plot-specific width of lines. Default is line_size.
**_point_size Plot-specific point radius. Default is point_size.

**_*_color Plot-specific [bar,line,point] color. Default is [bar,line,point]_color.

References

* The input object is implemented in DALEX

 Feature Importance, Ceteris Paribus, Partial Dependence and Accumulated Dependence ex-
planations are implemented in ingredients

* Break Down and Shapley Values explanations are implemented in iBreakDown

See Also

Vignettes: modelStudio - R & Python examples and modelStudio - perks and features

https://modeloriented.github.io/DALEX/
https://modeloriented.github.io/ingredients/
https://modeloriented.github.io/iBreakDown/
https://modelstudio.drwhy.ai/articles/ms-r-python-examples.html
https://modelstudio.drwhy.ai/articles/ms-perks-features.html

10 ms_update_observations

Examples

library("DALEX")
library("modelStudio™)

fit a model
model_apartments <- glm(m2.price ~. , data = apartments)

create an explainer for the model
explainer_apartments <- explain(model_apartments,
data = apartments,
y = apartments$m2.price)

pick observations
new_observation <- apartments[1:2,]
rownames (new_observation) <- c("ap1”,"ap2")

modify default options
new_options <- ms_options(
show_subtitle = TRUE,
bd_subtitle = "Hello World"”,
line_size = 5,
point_size = 9,

line_color = "pink",
point_color = "purple”,
bd_positive_color = "yellow”,
bd_negative_color = "orange”

make a studio for the model
modelStudio(explainer_apartments,
new_observation,
options = new_options,
N = 200, B = 5) # faster example

ms_update_observations
Update the observations of a modelStudio object

Description

This function calculates local explanations on new observations and adds them to the modelStudio
object.

Usage

ms_update_observations(
object,
explainer,

ms_update_observations 11

new_observation = NULL,
new_observation_y = NULL,
max_features = 10,

B =10,

show_info = TRUE,
parallel = FALSE,
widget_id = NULL,
overwrite = FALSE,

)

Arguments
object A modelStudio created with modelStudio().
explainer An explainer created with DALEX: :explain().

new_observation

New observations with columns that correspond to variables used in the model.
new_observation_y

True label for new_observation (optional).

max_features Maximum number of features to be included in BD and SV plots. Default is 10.

B Number of permutation rounds used for calculation of SV and FI. Default is 10.
See vignette

show_info Verbose a progress on the console. Default is TRUE.

parallel Speed up the computation using parallelMap: :parallelMap(). See vignette.

This might interfere with showing progress using show_info.

widget_id Use an explicit element ID for the widget (rather than an automatically generated
one). Useful e.g. when using modelStudio with Shiny. See vignette.

overwrite Overwrite existing observations and their explanations. Default is FALSE which
means add new observations to the existing ones.

Other parameters.

Value

An object of the r2d3, htmlwidget, modelStudio class.

References

* The input object is implemented in DALEX

 Feature Importance, Ceteris Paribus, Partial Dependence and Accumulated Dependence ex-
planations are implemented in ingredients

* Break Down and Shapley Values explanations are implemented in iBreakDown

See Also

Vignettes: modelStudio - R & Python examples and modelStudio - perks and features

https://modelstudio.drwhy.ai/articles/ms-perks-features.html#more-calculations-means-more-time
https://modelstudio.drwhy.ai/articles/ms-perks-features.html#parallel-computation
https://modelstudio.drwhy.ai/articles/ms-perks-features.html#shiny-1
https://modeloriented.github.io/DALEX/
https://modeloriented.github.io/ingredients/
https://modeloriented.github.io/iBreakDown/
https://modelstudio.drwhy.ai/articles/ms-r-python-examples.html
https://modelstudio.drwhy.ai/articles/ms-perks-features.html

12 ms_update_options

Examples

library("DALEX")
library("modelStudio™)

fit a model
model_titanic <- glm(survived ~., data = titanic_imputed, family = "binomial")

create an explainer for the model
explainer_titanic <- explain(model_titanic,
data = titanic_imputed,
y = titanic_imputed$survived)

make a studio for the model
ms <- modelStudio(explainer_titanic,
N = 200, B = 5) # faster example

add new observations
ms <- ms_update_observations(ms,
explainer_titanic,
new_observation = titanic_imputed[100:101,1],
new_observation_y = titanic_imputed$survived[100:101])
ms

overwrite the observations with new ones

ms <- ms_update_observations(ms,
explainer_titanic,
new_observation = titanic_imputed[100:101,],
overwrite = TRUE)

ms

ms_update_options Update the options of a modelStudio object

Description

This function updates the options of a modelStudio object. WARNING: Editing default options
may cause unintended behavior.

Usage

ms_update_options(object, ...)

ms_update_options 13

Arguments
object A modelStudio created with modelStudio().
Options to change in the form option_name = value, e.g. time = @, facet_dim
=c(1,2).
Value

An object of the r2d3, htmlwidget, modelStudio class.

Options
Main options::
scale_plot TRUE Makes every plot the same height, ignores bar_width.
show_boxplot TRUE Display boxplots in Feature Importance and Shapley Values plots.
show_subtitle TRUE Should the subtitle be displayed?
subtitle label parameter from explainer.
ms_title Title of the dashboard.
ms_subtitle Subtitle of the dashboard (makes space between the title and line).
ms_margin_* Dashboard margins. Change margin_top for more ms_subtitle space.
margin_* Plot margins. Change margin_left for longer/shorter axis labels.
W 420 in px. Inner plot width.
h 280 in px. Inner plot height.
bar_width 16 in px. Default width of bars for all plots, ignored when scale_plot = TRUE.
line_size 2 in px. Default width of lines for all plots.
point_size 3 in px. Default point radius for all plots.
[bar,line,point _color] [#46bac2,#46bac2,#371ea3]
positive_color #8bdcbe for Break Down and Shapley Values bars.
negative_color #f@5a71 for Break Down and Shapley Values bars.
default_color #371ea3 for Break Down bar and highlighted line.

Plot-specific options:: *x* is a two letter code unique to each plot, might be one of [bd, sv,cp, fi,pd,ad,rv,fd, tv,at].

**_title Plot-specific title. Default varies.
**_subtitle Plot-specific subtitle. Default is subtitle.
**_axis_title Plot-specific axis title. Default varies.

**_bar_width Plot-specific width of bars. Default is bar_width, ignored when scale_plot =
TRUE.

**_line_size Plot-specific width of lines. Default is line_size.
**_point_size Plot-specific point radius. Default is point_size.

**_*_color Plot-specific [bar,line,point] color. Default is [bar,line,point]_color.

14 ms_update_options

References

* The input object is implemented in DALEX

 Feature Importance, Ceteris Paribus, Partial Dependence and Accumulated Dependence ex-
planations are implemented in ingredients

* Break Down and Shapley Values explanations are implemented in iBreakDown

See Also

Vignettes: modelStudio - R & Python examples and modelStudio - perks and features

Examples

library("DALEX")
library("modelStudio™)

fit a model
model_titanic <- glm(survived ~., data = titanic_imputed, family = "binomial")

create an explainer for the model
explainer_titanic <- explain(model_titanic,
data = titanic_imputed,
y = titanic_imputed$survived)

make a studio for the model
ms <- modelStudio(explainer_titanic,
N = 200, B = 5) # faster example

update the options
new_ms <- ms_update_options(ms,
time = 0,
facet_dim = c(1,2),
margin_left = 150)
new_ms

https://modeloriented.github.io/DALEX/
https://modeloriented.github.io/ingredients/
https://modeloriented.github.io/iBreakDown/
https://modelstudio.drwhy.ai/articles/ms-r-python-examples.html
https://modelstudio.drwhy.ai/articles/ms-perks-features.html

Index

happiness_test (happiness_train), 2
happiness_train, 2

modelStudio, 3, 8, 12
ms_merge_observations, 7
ms_options, 4, 8
ms_update_observations, 10
ms_update_options, 12

15

	happiness_train
	modelStudio
	ms_merge_observations
	ms_options
	ms_update_observations
	ms_update_options
	Index

