
Package ‘modMax’
October 13, 2022

Type Package

Title Community Structure Detection via Modularity Maximization

Version 1.1

Date 2015-07-24

Author Maria Schelling, Cang Hui

Maintainer Maria Schelling <schelling.rmaintainer@vodafone.de>

Depends gtools, igraph

Description
The algorithms implemented here are used to detect the community structure of a network.
These algorithms follow different approaches, but are all based on the concept of modular-
ity maximization.

License GPL-2

NeedsCompilation no

Repository CRAN

Date/Publication 2015-07-24 18:21:32

R topics documented:

modMax-package . 2
extremalOptimization . 2
geneticAlgorithm . 4
greedy . 6
localModularity . 10
simulatedAnnealing . 12
spectralOptimization . 14

Index 17

1

2 extremalOptimization

modMax-package Calculate network modularity via maximization algorithms

Description

Calcuation of modularity and detection of the community strcture of a given network depicted by
an (nonnegative symmetric) adjacency matrix using different modularity maximization algorithms

Details

Package: modMax
Type: Package
Version: 1.0
Date: 2015-02-09
License: GPL-2

The modMax package implements 38 algorithms of 6 major categories maximizing modularity, in-
cluding the greedy approach, simulated annealing, extremal optimization, genetic algorithm, math-
ematical programming and the usage of local modularity.

All algorithms work on connected (consisting of only one connected component), undirected graphs
given by their adjacency matrix.

Most algorithms also provide the possibility to compare the estimated modularity of the identified
community structure with the modularity for random networks generated by null models with the
number of vertices and edges conserved.

Author(s)

Maria Schelling, Cang Hui

Maintainer: Maria Schelling <schelling.rmaintainer@vodafone.de>

extremalOptimization Extremal optimization (EO) algorithms

Description

extremalOptimization is a function executing the extremal optimization approach and its modi-
fications for calculating modularity and detecting communities (modules of nodes) of a network via
modularity maximization

pcseoss is a function which uses extremal optimization, but also considers pairwise constraints
when calculating the fitness function and the modularity. The violation of constraints is punished,
leading to smaller fitness and modularity values for community structures that violate many pairwise
constraints. The constraints are predefined as two matrices separately for must-links and cannot-
links with punishment for violation.

extremalOptimization 3

Usage

extremalOptimization(adjacency, numRandom = 0,
refine = c("none", "agents"),
tau = FALSE, alpha_max = length(adjacency[1,]), steps = 3)

pcseoss(adjacency,constraints_ml,constraints_cl)

Arguments

adjacency A nonnegative symmetric adjacency matrix of the network whose community
structur will be analyzed

numRandom The number of random networks with which the modularity of the resulting
community structure should be compared (default: no comparison). see details
below for further explanation of the used null model.

refine Specify whether or not a refinement step is needed, the default option is none.
See details below.

tau If TRUE, τ -EO is executed where the vertices are ranked according to their fitness
values and chosen by a probability depending on this ranking.

alpha_max It gives the maximum number of iteration steps. If the community structure
could not be improved for this number of steps, the algorithm terminates. It is
1 for the normal EO-algorithm and n for the τ -EO where n is the number of
vertices in the network

steps The number of iteration steps for the random local search agent algorithm. The
algorithm terminates, if the clusters have not changed for this number of steps.
Ignored if refine is none.

constraints_ml The matrix where each column is a must-link constraint given by two vertices
in the first two rows which have to be in the same community and a punishment
for the violation of the constraint in the third row

constraints_cl The matrix where each column is a cannot-link constraint given by two vertices
in the first two rows which cannot be in the same community and a punishment
for the violation of the constraint in the third row

Details

The used random networks have the same number of vertices and the same degree distribution as
the original network.

The EO algorithm can be run with a certain refinement step, the local random search agent algo-
rithm, applied at the end of one round of extremal where all communities have been split once.

This refinement algorithm is executed if refine equals agent, otherwise the generic EO algorithm
is executed.

Value

The result of the extremal optimization algorithms is a list with the following components

number of communities

The number of communities detected by the algorithm

4 geneticAlgorithm

modularity The modularity of the detected community structure

mean The mean of the modularity values for random networks, only computed if
numRandom>0

standard deviation

The standard deviation of the modularity values for random networks, only com-
puted if numRandom>0

community structure

The community structure of the examined network given by a vector assigning
each vertex its community number

random modularity values

The list of the modularity values for random networks, only computed if
numRandom>0

Author(s)

Maria Schelling, Cang Hui

References

Duch, J. and Arenas, A. Community detection in complex networks using extremal optimization.
Phys. Rev. E, 72:027104, Aug 2005.

Azizifard, N., Mahdavi, M. and Nasersharif, B. Modularity optimization for clustering in social
networks. 2011.

Li, L., Du, M., Liu, G., Hu, X. and Wu, G. Extremal optimization-based semi-supervised algorithm
with conflict pairwise constraints for community detection. In Advances in Social Network Analysis
and Mining (ASONAM), 2014 IEEE/ACM International Conference on, 2014.

Examples

#weighted network
randomgraph <- erdos.renyi.game(10, 0.3, type="gnp",directed = FALSE, loops = FALSE)

#to ensure that the graph is connected
vertices <- which(clusters(randomgraph)$membership==1)
graph <- induced.subgraph(randomgraph,vertices)
graph <- set.edge.attribute(graph, "weight", value=runif(ecount(graph),0,1))

adj <- get.adjacency(graph, attr="weight")
result <- extremalOptimization(adj)

geneticAlgorithm Genetic algorithm

Description

geneticAlgorithm is a function executing the genetic algorithm and its modifications for identify-
ing the community structure of a network via modularity maximization

geneticAlgorithm 5

Usage

geneticAlgorithm(adjacency, numRandom = 0,
initial = c("general", "cluster", "own"), p, g,
mutRat = 0.5, crossOver = 0.2, beta = 0.1, alpha = 0.4,
n_l = 4, local = FALSE)

Arguments

adjacency A nonnegative symmetric adjacency matrix of the network whose community
structur will be analyzed

numRandom The number of random networks with which the modularity of the resulting
community structure should be compared (default: no comparison). see details
below for further explanation of the used null model

initial Specify the community structure to use as initial partition in the algorithm. See
details below.

p Population size

g Number of generations

mutRat Mutation rate. Default is 0.5

crossOver Crossing over rate. Default is 0.2

beta The fraction of chromosomes to save. The top βp chromosomes are saved in
each generation to ensure that the fitness scores of the top βp chromosomes of
the child generation are at least as good as the parent population. Default is
0.1

alpha The fraction of repetitions for the identification of an initial partition according
to cluster. Default is 0.4. Ignored if initial is not cluster.

n_l The number of copies of a chromosome made by the local search operator.
Default is 4. Ignored if local is FALSE

local If TRUE, local search operator is applied at the end of each iteration in the genetic
algorithm.

Details

The used random networks have the same number of vertices and the same degree distribution as
the original network.

The initial partition used in the genetic algorithm can either be the generic one where all vertices
are put in their own community (initial=general) or the initial partition can be identified by ran-
domly picking a vertex αn times and assigning its cluster to all its neighbours (initial=cluster)
or the initial partition can be given by the user (initial=own). In this case, the user needs to add a
last column to the adjacency matrix indicating the initial partition. Hence, the adjacency matrix has
to have one column more than the network has vertices.

Value

The result of the genetic algorithm is a list with the following components

6 greedy

number of communities

The number of communities detected by the algorithm

modularity The modularity of the detected community structure

mean The mean of the modularity values for random networks, only computed if
numRandom>0

standard deviation

The standard deviation of the modularity values for random networks, only com-
puted if numRandom>0

community structure

The community structure of the examined network given by a vector assigning
each vertex its community number

random modularity values

The list of the modularity values for random networks, only computed if
numRandom>0

Author(s)

Maria Schelling, Cang Hui

References

Tasgin, M., Herdagdelen, A., and Bingol, H. Community detection in complex networks using
genetic algorithms. arXiv preprint arXiv:0711.0491, 2007.

Li, S., Chen, Y., Du, H., and Feldman, M. W. A genetic algorithm with local search strategy for
improved detection of community structure. Complexity, 15(4):53-60, 2010.

Examples

#unweighted network
randomgraph <- erdos.renyi.game(10, 0.3, type="gnp",directed = FALSE, loops = FALSE)

#to ensure that the graph is connected
vertices <- which(clusters(randomgraph)$membership==1)
graph <- induced.subgraph(randomgraph,vertices)

adj <- get.adjacency(graph)
result <- geneticAlgorithm(adj, p=4, g=6)

greedy Greedy algorithms

greedy 7

Description

greedy executes the general CNM algorithm and its modifications for modularity maximization.

rgplus uses the randomized greedy approach to identify core groups (vertices which are always
placed into the same community) and uses these core groups as initial partition for the randomized
greedy approach to identify the community structure and maximize the modularity.

msgvm is a greedy algorithm which performs more than one merge at one step and applies fast
greedy refinement at the end of the algorithm to improve the modularity value.

cd iteratively performs complete greedy refinement on a certain partition and then, moves vertices
with a probability p to another community to avoid the greedy algorithm getting trapped in a local
optimum.

louvain performs fast greedy refinement and uses the resulting community structure to build a new
network where vertices in the new network are the communities in the original network. For this
new network, all vertices are assigned to their own community, and the fast greedy refinement is
applied again.

vertexSim uses a vertex similarity measure to identify the initial partition and further improves this
community structure by merging neighbouring communities.

mome consists of the two phases of coarsening and uncoarsening with refinement. In the coarsening
phase, two vertices are collapsed into one vertex for which the increase in modularity is maximal.
In the uncoarsening phase, each intermediate graph of the coarsening phase is revisited and its
community structure is refined by applying fast greedy refinement. After revisiting the different
steps, the community structure for the original graph can be reconstructed from different coarsening
levels.

Usage

greedy(adjacency, numRandom = 0,
q = c("general", "danon", "wakita1", "wakita2", "wakita3"),

initial = c("general", "prior", "walkers", "subgraph", "adclust", "own"),
randomized = 0, refine = c("none", "complete", "fast", "kernighan"),
coarse = 0)

rgplus(adjacency,numRandom=0,z,randomized)
msgvm(adjacency,numRandom=0,initial=c("general","own"), parL)
cd(adjacency, numRandom=0,initial=c("general","own"),maxC=length(adjacency[,1]),
iter,p)

louvain(adjacency, numRandom=0, initial=c("general","own"))
vertexSim(adjacency, numRandom=0, frac=0.5)
mome(adjacency, numRandom=0)

Arguments

adjacency A nonnegative symmetric adjacency matrix of the network whose community
structur will be analyzed

numRandom The number of random networks with which the modularity of the resulting
community structure should be compared (default: no comparison). see details
below for further explanation of the used null model.

8 greedy

q Specify whether the general ∆Q value or a modification should be used. See
details below.

initial Specify the community structure to be used as initial partition in the algorithm.
See details below.

z The number of executions of the randomized greedy approach to identify the
core groups.

randomized The number of rows to use for the randomized greedy approach. Ignored when
set to 0 (default)

refine specifies which refinement algorithm should be used. See details below.

coarse Define the percentage by which the number of communities has to be decreased
since the last coarsening level to consider the current clustering as a new coars-
ening level and apply refinement on this clustering

parL The number of merges at one step in the msgvm algorithm

maxC The maximum number of communities for the initial partition used in the cd
algorithm

iter The number of iterations in the cd algorithm

p The probability with which a vertex is moved into another community in the
dilation step of the cd algorithm

frac The fraction of iteration steps for which "pairwise" merging is performed in the
vertexSim algorithm. Remaining iteration steps are "single neighbour" merges.

Details

The used random networks have the same number of vertices and the same degree distribution as
the original network.

For the identification of the best merging event leading to a maximum increase in modularity, dif-
ferent values of the modularity were proposed. Which modularity value to use is specified by the
parameter q. The options are general where the normal value for ∆Q is used, danon where ∆Q is
normalized by the number of overall edges of vertices in a community and wakita1, wakita2 and
wakita3 where ∆Q is multiplied by the consolidation ratio.

The greedy algorithms can be run on different initial partitions. The used initial partition is speci-
fied by parameter initial. The options are general where all vertices are assigned to their own
community, prior where the initial community structure is identified by using prior knowledge,
walkers where the initial community structure is identified by using random walkers, subgraph
where the initial community structure is identified by using subgraph similarity, adclust where the
general initial partition is refined using fast greedy refinement and own where the user can specify
an initial partition to use with the greedy approach. In this case, the user needs to add a last column
to the adjacency matrix indicating the initial partition. Hence, the adjacency matrix has to have one
column more than the network has vertices.

The community structure identified by the CNM algorithm can be refined by applying a refinement
step at the end of the algorithm. The used refinement algorithm is specified by the parameter
refine. The options are none where no refinement algorithm is applied, complete where the
complete greedy refinement is applied, fast where the fast greedy refinement is applied, kernighan
where the adapted Kernighan-Lin refinement is applied. Besides, if initial is set to adclust, fast
greedy refinement is applied to the community structure after each merging event. If coarse != 0,

greedy 9

the refinement algorithm specified by refine is not only applied at the end of the algorithm, but at
each coarsening level where coarsening levels are defined according to coarse.

Value

The result of the greedy algorithms is a list with the following components

number of communities

The number of communities detected by the algorithm

modularity The modularity of the detected community structure

mean The mean of the modularity values for random networks, only computed if
numRandom>0

standard deviation

The standard deviation of the modularity values for random networks, only com-
puted if numRandom>0

community structure

The community structure of the examined network given by a vector assigning
each vertex its community number

random modularity values

The list of the modularity values for random networks, only computed if
numRandom>0

Author(s)

Maria Schelling, Cang Hui

References

Clauset, A., Newman, M. and Moore, C. Finding community structure in very large networks. Phys.
Rev. E, 70:066111, Dec 2004.

Danon, L., Daz-Guilera, A. and Arenas, A. The effect of size heterogeneity on community identifca-
tion in complex networks. Journal of Statistical Mechanics: Theory and Experiment, 2006(11):P11010,
2006.

Wakita, K. and Tsurumi, T. Finding community structure in mega-scale social networks: [extended
abstract]. In Proceedings of the 16th International Conference on World Wide Web, WWW ’07,
pages 1275- 1276, New York, NY, USA, 2007. ACM.

Ovelgonne, M. and Geyer-Schulz, A. Cluster cores and modularity maximization. In Data Mining
Workshops (ICDMW), 2010 IEEE International Conference on, pages 1204-1213, Dec 2010.

Du, H., Feldman, M. W., Li, S. and Jin, X. An algorithm for detecting community structure of social
networks based on prior knowledge and modularity. Complexity, 12(3):53-60, 2007.

Pujol, J., Bejar, J. and Delgado, J. Clustering algorithm for determining community structure in
large networks. Phys. Rev. E, 74:016107, Jul 2006.

Xiang, B., Chen, E.-H. and Zhou, T. Finding community structure based on subgraph similarity. In
Santo Fortunato, Giuseppe Mangioni, Ronaldo Menezes, and Vincenzo Nicosia, editors, Complex
Networks, volume 207 of Studies in Computational Intelligence, pages 73-81. Springer Berlin
Heidelberg, 2009.

10 localModularity

Noack, A. and Rotta, R. Multi-level algorithms for modularity clustering. Technical report, 2008.

Ye, Z., Hu, S. and Yu, J. Adaptive clustering algorithm for community detection in complex net-
works. Phys. Rev. E, 78:046115, Oct 2008.

Schuetz, P. and Caflisch, A. Efficient modularity optimization by multistep greedy algorithm and
vertex mover refinement. Phys. Rev. E, 77:046112, Apr 2008.

Mei, J., He, S., Shi, G., Wang, Z., and Li, W. Revealing network communities through modularity
maximization by a contractiondilation method. New Journal of Physics, 11(4):043025, 2009.

Blondel, V. D., Guillaume. J.-L., Lambiotte, R. and Lefebvre, E. Fast unfolding of communities in
large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10):P10008, 2008.

Arab, M. and Afsharchi, M. A modularity maximization algorithm for community detection in so-
cial networks with low time complexity. In Web Intelligence and Intelligent Agent Technology (WI-
IAT), 2012 IEEE/WIC/ACM International Conferences on, volume 1, pages 480-487, Dec 2012.

Zhu, Z., Wang, C., Ma, L., Pan, Y. and Ding, Z. Scalable community discovery of large networks.
In Web-Age Information Management, 2008. WAIM ’08. The Ninth International Conference on,
pages 381-388, July 2008.

Examples

#unweighted network
randomgraph1 <- erdos.renyi.game(10, 0.3, type="gnp",directed = FALSE, loops = FALSE)

#to ensure that the graph is connected
vertices1 <- which(clusters(randomgraph1)$membership==1)
graph1 <- induced.subgraph(randomgraph1,vertices1)

adj1 <- get.adjacency(graph1)
result1 <- greedy(adj1, refine = "fast")

#weighted network
randomgraph2 <- erdos.renyi.game(10, 0.3, type="gnp",directed = FALSE, loops = FALSE)

#to ensure that the graph is connected
vertices2 <- which(clusters(randomgraph2)$membership==1)
graph2 <- induced.subgraph(randomgraph2,vertices2)
graph2 <- set.edge.attribute(graph2, "weight", value=runif(ecount(graph2),0,1))

adj2 <- get.adjacency(graph2, attr="weight")
result2 <- louvain(adj2)

localModularity Algorithms using local modularity

Description

localModularity uses the local modularity to identify the local community structure around a
certain vertex

localModularityWang uses the local modularity to identify the community structure of the entire
network

localModularity 11

Usage

localModularity(adjacency, srcV, k)
localModularityWang(adjacency,numRandom=0)

Arguments

adjacency A nonnegative symmetric adjacency matrix of the network whose community
structur will be analyzed

srcV A given vertex whose local community structure should be determined by
localModularity

k The maximum number of vertices to add to the local community of srcV

numRandom The number of random networks with which the modularity of the resulting
community structure should be compared (default: no comparison). see details
below for further explanation of the used null model.

Details

The used random networks have the same number of vertices and the same degree distribution as
the original network.

Value

The result for localModularity is returned as a list with the following components

local community structure

Vertices assigned to the same community as the source vertex srcV

local modularity

The local modularity value for the determined local community

The result for localModularityWang is returned as a list with the following components

number of communities

The number of communities detected by the algorithm

modularity The modularity of the detected community structure

mean The mean of the modularity values for random networks, only computed if
numRandom>0

standard deviation

The standard deviation of the modularity values for random networks, only com-
puted if numRandom>0

community structure

The community structure of the examined network given by a vector assigning
each vertex its community number

random modularity values

The list of the modularity values for random networks, only computed if
numRandom>0

12 simulatedAnnealing

Author(s)

Maria Schelling, Cang Hui

References

Clauset, A. Finding local community structure in networks. Phys. Rev. E, 72:026132, Aug 2005.

Wang, X., Chen, G. and Lu, H. A very fast algorithm for detecting community structures in complex
networks. Physica A: Statistical Mechanics and its Applications, 384(2):667-674, 2007.

Examples

#unweighted network
randomgraph1 <- erdos.renyi.game(10, 0.3, type="gnp",directed = FALSE, loops = FALSE)

#to ensure that the graph is connected
vertices1 <- which(clusters(randomgraph1)$membership==1)
graph1 <- induced.subgraph(randomgraph1,vertices1)

adj1 <- get.adjacency(graph1)
result1 <- localModularity(adj1, srcV=1, k=4)

#weighted network
randomgraph2 <- erdos.renyi.game(10, 0.3, type="gnp",directed = FALSE, loops = FALSE)

#to ensure that the graph is connected
vertices2 <- which(clusters(randomgraph2)$membership==1)
graph2 <- induced.subgraph(randomgraph2,vertices2)
graph2 <- set.edge.attribute(graph2, "weight", value=runif(ecount(graph2),0,1))

adj2 <- get.adjacency(graph2, attr="weight")
result2 <- localModularityWang(adj2)

simulatedAnnealing Simulated annealing algorithms

Description

The functions presented here are based on simulated annealing and identify the community struc-
ture and maximize the modularity. simulatedAnnealing is only based on moving a single vertex
from one community to another, while saIndividualCollectiveMoves considers movements of
vertices, merging of communities and splitting of communities as alternatives to increase the mod-
ularity.

Usage

simulatedAnnealing(adjacency, numRandom = 0,
initial = c("general", "random","greedy", "own"),
beta = length(adjacency[1,])/2, alpha = 1.005, fixed)

simulatedAnnealing 13

saIndividualCollectiveMoves(adjacency,numRandom=0,initial=c("general","own"),
beta=length(adjacency[1,])/2,alpha=1.005,
fixed=25,numIter=1.0)

Arguments

adjacency A nonnegative symmetric adjacency matrix of the network whose community
structur will be analyzed

numRandom The number of random networks with which the modularity of the resulting
community structure should be compared (default: no comparison). see details
below for further explanation of the used null model.

initial Specify the community structure to use as the initial partition in the algorithm.
See details below.

beta Define the initial inverse temperature. Default is (network size)/2

alpha Define the cooling parameter. Default is 1.005

fixed If the community structure has not changed for this specified number of steps,
the algorithm is terminated.

numIter Define the iteration factor. At each temperature, the algorithm performs fn2

individual moves (movement of a single vertex) and fn collective moves (merge
or split of a community) where n is the number of vertices in the network.

Details

The used random networks have the same number of vertices and the same degree distribution as
the original network.

The initial partition used in the simulated annealing algorithms can either be the generic one where
all vertices are put in their own community (initial=general) or the initial partition can be identi-
fied by randomly identifying the initial number of communities and randomly assigning the vertices
to one of these communities (initial=random) or the initial partition can be the community struc-
ture identified by the greedy algorithm (initial=greedy) or the initial partition can be given by
the user (initial=own). In this case, the user needs to add a last column to the adjacency matrix
indicating the initial partition. Hence, the adjacency matrix has to have one column more than the
network has vertices.

Value

The result of the simulated annealing algorithms is a list with the following components

number of communities

The number of communities detected by the algorithm

modularity The modularity of the detected community structure

mean The mean of the modularity values for random networks, only computed if
numRandom>0

standard deviation

The standard deviation of the modularity values for random networks, only com-
puted if numRandom>0

14 spectralOptimization

community structure

The community structure of the examined network given by a vector assigning
each vertex its community number

random modularity values

The list of the modularity values for random networks, only computed if
numRandom>0

Author(s)

Maria Schelling, Cang Hui

References

Medus, A., Acua, G. and Dorso, C.O. Detection of community structures in networks via global
optimization. Physica A: Statistical Mechanics and its Applications, 358(24):593-604, 2005.

Massen, C. and Doye, J. Identifying communities within energy landscapes. Phys. Rev. E,
71:046101, Apr 2005.

Guimera, R. and Amaral, L. A. N. Nunes amaral. Functional cartography of complex metabolic
networks. Nature, 2005.

Examples

#unweighted network
randomgraph <- erdos.renyi.game(10, 0.3, type="gnp",directed = FALSE, loops = FALSE)

#to ensure that the graph is connected
vertices <- which(clusters(randomgraph)$membership==1)
graph <- induced.subgraph(randomgraph,vertices)

adj <- get.adjacency(graph)
result <- simulatedAnnealing(adj, fixed=10)

spectralOptimization Spectral optimization algorithms

Description

spectralOptimization uses the leading eigenvector to recursively split the communities of a net-
work into two until no further improvement of modularity is possible.

multiWay, spectral1 and spectral2 use k − 1 leading eigenvectors to split the network into k
communities. The value for k leading to the best community structure is chosen as the final number
of communities and the resulting split of the network into k communities as the final community
structure. The 3 functions implement slightly different approaches leading to possibly different
results.

spectralOptimization 15

Usage

spectralOptimization(adjacency, numRandom = 0, initial = c("general", "own"),
refine = FALSE)

multiWay(adjacency, numRandom=0, maxComm=length(adjacency[1,]))
spectral1(adjacency, numRandom=0, maxComm=(length(adjacency[1,])-1))
spectral2(adjacency, numRandom=0, maxComm=(length(adjacency[1,])-1))

Arguments

adjacency A nonnegative symmetric adjacency matrix of the network whose community
structur will be analyzed

numRandom The number of random networks with which the modularity of the resulting
community structure should be compared (default: no comparison). see details
below for further explanation of the used null model.

initial Specify the community structure to use as initial partition in the algorithm. See
details below.

refine If TRUE, Kernighan-Lin refinement is applied after splitting a community into
two communities only on this part of the network.

maxComm THe maximum number of communities that the network allows

Details

The used random networks have the same number of vertices and the same degree distribution as
the original network.

The initial partition used in the spectral optimization algorithm can either be the generic one where
all vertices are put in their own community (initial=general) or the initial partition can be given
by the user (initial=own). In this case, the user needs to add a last column to the adjacency matrix
indicating the initial partition. Hence, the adjacency matrix has to have one column more than the
network has vertices.

Value

The result of the spectral optimization algorithms is a list with the following components

number of communities

The number of communities detected by the algorithm
modularity The modularity of the detected community structure
mean The mean of the modularity values for random networks, only computed if

numRandom>0
standard deviation

The standard deviation of the modularity values for random networks, only com-
puted if numRandom>0

community structure

The community structure of the examined network given by a vector assigning
each vertex its community number

random modularity values

The list of the modularity values for random networks, only computed if
numRandom>0

16 spectralOptimization

Author(s)

Maria Schelling, Cang Hui

References

Newman, M. Finding community structure in networks using the eigenvectors of matrices. Phys.
Rev. E, 74:036104, Sep 2006.

Newman, M. E. J. Modularity and community structure in networks. Proceedings of the National
Academy of Sciences, 103(23):8577-8582, 2006.

Wang, G., Shen, Y., and Ouyang, M. A vector partitioning approach to detecting community struc-
ture in complex networks. Computers and Mathematics with Applications, 55(12):2746-2752,
2008.

White, S. and Smyth, P. A spectral clustering approach to finding communities in graphs. In In
SIAM International Conference on Data Mining, 2005.

Examples

#unweighted network
randomgraph1 <- erdos.renyi.game(10, 0.3, type="gnp",directed = FALSE, loops = FALSE)

#to ensure that the graph is connected
vertices1 <- which(clusters(randomgraph1)$membership==1)
graph1 <- induced.subgraph(randomgraph1,vertices1)

adj1 <- get.adjacency(graph1)
result1 <- spectralOptimization(adj1, refine = TRUE)

#weighted network
randomgraph2 <- erdos.renyi.game(10, 0.3, type="gnp",directed = FALSE, loops = FALSE)

#to ensure that the graph is connected
vertices2 <- which(clusters(randomgraph2)$membership==1)
graph2 <- induced.subgraph(randomgraph2,vertices2)
graph2 <- set.edge.attribute(graph2, "weight", value=runif(ecount(graph2),0,1))

adj2 <- get.adjacency(graph2, attr="weight")
result2 <- multiWay(adj2, maxComm=3)

Index

∗ Analysis of algorithms
greedy, 6

∗ Betweenness
simulatedAnnealing, 12

∗ Cache
localModularity, 10

∗ Clustering
greedy, 6
modMax-package, 2
spectralOptimization, 14

∗ Communality
simulatedAnnealing, 12

∗ Community analysis
greedy, 6

∗ Community detection
greedy, 6
modMax-package, 2

∗ Community discovery
greedy, 6

∗ Community structure
extremalOptimization, 2
greedy, 6
localModularity, 10
spectralOptimization, 14

∗ Community
extremalOptimization, 2

∗ Compartmentalization
modMax-package, 2

∗ Complex networks
spectralOptimization, 14

∗ Complex network
localModularity, 10

∗ Conflict pairwise constraints
extremalOptimization, 2

∗ Critical phenomena of socio-economic
systems

greedy, 6
∗ Eigenspectrum

spectralOptimization, 14

∗ Extremal Optimization
extremalOptimization, 2

∗ Genetic algorithm
geneticAlgorithm, 4

∗ Graph clustering
greedy, 6

∗ Graph
modMax-package, 2

∗ Local information
localModularity, 10

∗ Metabolic network
spectralOptimization, 14

∗ Modularity matrix
spectralOptimization, 14

∗ Modularity maximization
modMax-package, 2

∗ Modularity
extremalOptimization, 2
geneticAlgorithm, 4
greedy, 6

∗ Modules
spectralOptimization, 14

∗ Multilevel
greedy, 6

∗ Network dynamics
greedy, 6

∗ Network structure
geneticAlgorithm, 4

∗ Network theory
greedy, 6

∗ Networks
greedy, 6
simulatedAnnealing, 12

∗ Network
modMax-package, 2

∗ PCSEO-SS algorithm
extremalOptimization, 2

∗ Partitioning
spectralOptimization, 14

17

18 INDEX

∗ Random Local Search Agent
extremalOptimization, 2

∗ Random graphs
greedy, 6

∗ Randomized algorithm
greedy, 6

∗ Relative table
localModularity, 10

∗ Small-world phenomena
geneticAlgorithm, 4

∗ Social Networks
extremalOptimization, 2

∗ Social networking service
greedy, 6

∗ Social network
greedy, 6
spectralOptimization, 14

∗ Socio-economic networks
greedy, 6

∗ Vector partition approach
spectralOptimization, 14

∗ large-scale network
extremalOptimization, 2

∗ rural-urban migration
greedy, 6

cd (greedy), 6

extremalOptimization, 2

geneticAlgorithm, 4
greedy, 6

localModularity, 10
localModularityWang (localModularity),

10
louvain (greedy), 6

modMax (modMax-package), 2
modMax-package, 2
mome (greedy), 6
msgvm (greedy), 6
multiWay (spectralOptimization), 14

pcseoss (extremalOptimization), 2

rgplus (greedy), 6

saIndividualCollectiveMoves
(simulatedAnnealing), 12

simulatedAnnealing, 12
spectral1 (spectralOptimization), 14
spectral2 (spectralOptimization), 14
spectralOptimization, 14

vertexSim (greedy), 6

	modMax-package
	extremalOptimization
	geneticAlgorithm
	greedy
	localModularity
	simulatedAnnealing
	spectralOptimization
	Index

