Package 'mlsbm'

October 13, 2022

Title Efficient Estimation of Bayesian SBMs & MLSBMs

Version 0.99.2

Description Fit Bayesian stochastic block models (SBMs) and multi-level stochastic block models (MLSBMs) using efficient Gibbs sampling implemented in 'Rcpp'. The models assume symmetric, non-reflexive graphs (no self-loops) with unweighted, binary edges. Data are input as a symmetric binary adjacency matrix (SBMs), or list of such matrices (MLSBMs).

License GPL (>= 2)

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

LinkingTo Rcpp, RcppArmadillo

Imports Rcpp

Depends R (>= 2.10)

NeedsCompilation yes

Author Carter Allen [aut, cre] (<https://orcid.org/0000-0001-6937-7234>),

Dongjun Chung [aut]

Maintainer Carter Allen <carter.allen12@gmail.com>

Repository CRAN

Date/Publication 2021-02-07 10:50:02 UTC

R topics documented:

AL	2
col_summarize	2
fit_mlsbm	3
fit_sbm	4
mean_CRI	5
mlsbm	5
sample_mlsbm	6
sample_sbm	6

8

Index

Description

A data set containing 3 layers of undirected, symmetric adjacency matrices simulated from an SBM with 3 true clusters

Usage

AL

Format

A list of length 3

col_summarize

The col_summarize function

Description

Function to quickly return credible intervals

Usage

col_summarize(MAT, dig = 2, level = 0.95)

Arguments

MAT	A matrix
dig	Number of digits to round estimates and CrIs to
level	Confidence level

Value

A character vector of posterior estimates and intervals

Examples

M <- matrix(rnorm(1000),ncol = 4)
col_summarize(M)</pre>

AL

fit_mlsbm

Description

This function allows you to fit multilevel stochastic block models.

Usage

```
fit_mlsbm(
    A,
    K,
    a0 = 0.5,
    b10 = 0.5,
    b20 = 0.5,
    n_iter = 1000,
    burn = 100,
    verbose = TRUE
)
```

Arguments

A	An adjacency list of length L, the number of levels. Each level contains an n x n symmetric adjacency matrix.
К	The number of clusters specified a priori.
a0	Dirichlet prior parameter for cluster sizes for clusters 1,,K.
b10	Beta distribution prior paramter for community connectivity.
b20	Beta distribution prior parameter for community connectivity.
n_iter	The number of total MCMC iterations to run.
burn	The number of burn-in MCMC iterations to discard. The number of saved iter- ations will be n_iter - burn.
verbose	Whether to print a progress bar to track MCMC progress. Defaults to true.

Value

A list of MCMC samples, including the MAP estimate of cluster indicators (z)

Examples

```
data(AL)
# increase n_iter in practice
fit <- fit_mlsbm(AL,3,n_iter = 100)</pre>
```

fit_sbm

Description

This function allows you to fit single level stochastic block models.

Usage

```
fit_sbm(
    A,
    K,
    a0 = 0.5,
    b10 = 0.5,
    b20 = 0.5,
    n_iter = 1000,
    burn = 100,
    verbose = TRUE
)
```

Arguments

А	An n x n symmetric adjacency matrix.
К	The number of clusters specified a priori.
a0	Dirichlet prior parameter for cluster sizes for clusters 1,,K.
b10	Beta distribution prior paramter for community connectivity.
b20	Beta distribution prior parameter for community connectivity.
n_iter	The number of total MCMC iterations to run.
burn	The number of burn-in MCMC iterations to discard. The number of saved iterations will be n_iter - burn.
verbose	Whether to print a progress bar to track MCMC progress. Defaults to true.

Value

A list of MCMC samples, including the MAP estimate of cluster indicators (z)

Examples

```
data(AL)
fit <- fit_sbm(AL[[1]],3)</pre>
```

mean_CRI

Description

Simple function to return the mean (95% CrI) for a vector

Usage

mean_CRI(y, dig = 2)

Arguments

У	A numeric vector
dig	The number of digits to round to

Value

A string of mean and 95% quantile interval rounded to 'dig'

Examples

mean_CRI(rnorm(1000))

mlsbm

mypackage: A package for fitting single and multilevel SBMs.

Description

This package fits Bayesian stochastic block models (SBMs)

mlsbm functions

The mlsbm functions ...

sample_mlsbm

Description

This function allows you to sample a multilevel stochastic block model.

Usage

sample_mlsbm(z, P, L)

Arguments

Z	An n x 1 vector of community labels for each node
Ρ	A K x K symmetric matrix of community connectivity probabilities
L	The number of levels to sample

Value

A list of adjecency matrices - one for each level of the MLSBM

Examples

```
n = 100
K = 3
L = 2
pi = rep(1/K,K)
z = sample(1:K, size = n, replace = TRUE, prob = pi)
p_in = 0.50
p_out = 0.05
P = matrix(p_out, nrow = K, ncol = K)
diag(P) = p_in
AL = sample_mlsbm(z,P,L)
```

<pre>sample_sbm</pre>	R/Rcpp function for sampling from a single level stochastic block
	model

Description

This function allows you to sample a single level stochastic block model.

Usage

sample_sbm(z, P)

sample_sbm

Arguments

Z	An n x 1 vector of community labels for each node
Р	A K x K symmetric matrix of community connectivity probabilities

Value

An adjacency matrix

Examples

```
n = 100
K = 3
pi = rep(1/K,K)
z = sample(1:K, size = n, replace = TRUE, prob = pi)
p_in = 0.50
p_out = 0.05
P = matrix(p_out, nrow = K, ncol = K)
diag(P) = p_in
A = sample_sbm(z,P)
```

Index

* Bayesian fit_mlsbm, 3 fit_sbm,4 * Credible col_summarize, 2 * Gibbs fit_mlsbm, 3 $\texttt{fit_sbm}, \texttt{4}$ * MCMC $mean_CRI, 5$ * MLSBM fit_mlsbm, 3 fit_sbm,4 * SBM fit_mlsbm, 3 fit_sbm, 4 sample_mlsbm, 6 sample_sbm, 6 * datasets AL, 2 * intervals col_summarize, 2 * networks fit_mlsbm, 3 fit_sbm,4 AL, 2

```
col_summarize, 2
fit_mlsbm, 3
fit_sbm, 4
mean_CRI, 5
mlsbm, 5
sample_mlsbm, 6
sample_sbm, 6
```