
Package ‘mize’
October 13, 2022

Type Package

Title Unconstrained Numerical Optimization Algorithms

Version 0.2.4

Description Optimization algorithms implemented in R, including
conjugate gradient (CG), Broyden-Fletcher-Goldfarb-Shanno (BFGS) and the
limited memory BFGS (L-BFGS) methods. Most internal parameters can be set
through the call interface. The solvers hold up quite well for
higher-dimensional problems.

License BSD 2-clause License + file LICENSE

Encoding UTF-8

LazyData true

Imports methods

Suggests testthat, knitr, rmarkdown, covr

RoxygenNote 7.1.1

URL https://github.com/jlmelville/mize

BugReports https://github.com/jlmelville/mize/issues

VignetteBuilder knitr

NeedsCompilation no

Author James Melville [aut, cre]

Maintainer James Melville <jlmelville@gmail.com>

Repository CRAN

Date/Publication 2020-08-30 05:20:02 UTC

R topics documented:
check_mize_convergence . 2
make_mize . 3
mize . 7
mize_init . 19
mize_step . 21
mize_step_summary . 23

1

https://github.com/jlmelville/mize
https://github.com/jlmelville/mize/issues

2 check_mize_convergence

Index 25

check_mize_convergence

Check Optimization Convergence

Description

Updates the optimizer with information about convergence or termination, signaling if the optimiza-
tion process should stop.

Usage

check_mize_convergence(mize_step_info)

Arguments

mize_step_info Step info for this iteration, created by mize_step_summary

Details

On returning from this function, the updated value of opt will contain:

• A boolean value is_terminated which is TRUE if termination has been indicated, and FALSE
otherwise.

• A list terminate if is_terminated is TRUE. This contains two items: what, a short string
describing what caused the termination, and val, the value of the termination criterion that
caused termination. This list will not be present if is_terminated is FALSE.

Convergence criteria are only checked here. To set these criteria, use make_mize or mize_init.

Value

opt updated with convergence and termination data. See ’Details’.

Examples

rb_fg <- list(
fn = function(x) {
100 * (x[2] - x[1] * x[1])^2 + (1 - x[1])^2

},
gr = function(x) {

c(
-400 * x[1] * (x[2] - x[1] * x[1]) - 2 * (1 - x[1]),
200 * (x[2] - x[1] * x[1])

)
}

)
rb0 <- c(-1.2, 1)

make_mize 3

opt <- make_mize(method = "BFGS", par = rb0, fg = rb_fg, max_iter = 30)
mize_res <- mize_step(opt = opt, par = rb0, fg = rb_fg)
step_info <- mize_step_summary(mize_res$opt, mize_res$par, rb_fg, rb0)
check convergence by looking at opt$is_terminated
opt <- check_mize_convergence(step_info)

make_mize Create an Optimizer

Description

Factory function for creating a (possibly uninitialized) optimizer.

Usage

make_mize(
method = "L-BFGS",
norm_direction = FALSE,
scale_hess = TRUE,
memory = 5,
cg_update = "PR+",
preconditioner = "",
tn_init = 0,
tn_exit = "curvature",
nest_q = 0,
nest_convex_approx = FALSE,
nest_burn_in = 0,
step_up = 1.1,
step_up_fun = c("*", "+"),
step_down = NULL,
dbd_weight = 0.1,
line_search = "More-Thuente",
c1 = 1e-04,
c2 = NULL,
step0 = NULL,
step_next_init = NULL,
try_newton_step = NULL,
ls_max_fn = 20,
ls_max_gr = Inf,
ls_max_fg = Inf,
ls_max_alpha_mult = Inf,
ls_max_alpha = Inf,
ls_safe_cubic = FALSE,
strong_curvature = NULL,
approx_armijo = NULL,
mom_type = NULL,
mom_schedule = NULL,

4 make_mize

mom_init = NULL,
mom_final = NULL,
mom_switch_iter = NULL,
mom_linear_weight = FALSE,
use_init_mom = FALSE,
restart = NULL,
restart_wait = 10,
par = NULL,
fg = NULL,
max_iter = 100,
max_fn = Inf,
max_gr = Inf,
max_fg = Inf,
abs_tol = NULL,
rel_tol = abs_tol,
grad_tol = NULL,
ginf_tol = NULL,
step_tol = NULL

)

Arguments

method Optimization method. See ’Details’ of mize.

norm_direction If TRUE, then the steepest descent direction is normalized to unit length. Useful
for adaptive step size methods where the previous step size is used to initialize
the next iteration.

scale_hess if TRUE, the approximation to the inverse Hessian is scaled according to the
method described by Nocedal and Wright (approximating an eigenvalue). Ap-
plies only to the methods BFGS (where the scaling is applied only during the first
step) and L-BFGS (where the scaling is applied during every iteration). Ignored
otherwise.

memory The number of updates to store if using the L-BFGS method. Ignored otherwise.
Must be a positive integer.

cg_update Type of update to use for the "CG" method. For details see the "CG" subsection
of the "Optimization Methods" section. Ignored if method is not "CG".

preconditioner Type of preconditioner to use in Truncated Newton. Leave blank or set to
"L-BFGS" to use a limited memory BFGS preconditioner. Use the "memory"
parameter to control the number of updates to store. Applies only if method =
"TN", or "CG", ignored otherwise.

tn_init Type of initialization to use in inner loop of Truncated Newton. Use 0 to use the
zero vector (the usual TN initialization), or "previous" to use the final result
from the previous iteration, as suggested by Martens (2010). Applies only if
method = "TN", ignored otherwise.

tn_exit Type of exit criterion to use when terminating the inner CG loop of Truncated
Newton method. Either "curvature" to use the standard negative curvature
test, or "strong" to use the modified "strong" curvature test in TNPACK (Xie
and Schlick, 1999). Applies only if method = "TN", ignored otherwise.

make_mize 5

nest_q Strong convexity parameter for the "NAG" method’s momentum term. Must take
a value between 0 (strongly convex) and 1 (results in steepest descent).Ignored
unless the method is "NAG" and nest_convex_approx is FALSE.

nest_convex_approx

If TRUE, then use an approximation due to Sutskever for calculating the momen-
tum parameter in the NAG method. Only applies if method is "NAG".

nest_burn_in Number of iterations to wait before using a non-zero momentum. Only applies
if using the "NAG" method or setting the momentum_type to "Nesterov".

step_up Value by which to increase the step size for the "bold" step size method or the
"DBD" method.

step_up_fun Operator to use when combining the current step size with step_up. Can be one
of "*" (to multiply the current step size with step_up) or "+" (to add).

step_down Multiplier to reduce the step size by if using the "DBD" method or the "bold".
Can also be used with the "back" line search method, but is optional. Should be
a positive value less than 1.

dbd_weight Weighting parameter used by the "DBD" method only, and only if no momentum
scheme is provided. Must be an integer between 0 and 1.

line_search Type of line search to use. See ’Details’ of mize.
c1 Sufficient decrease parameter for Wolfe-type line searches. Should be a value

between 0 and 1.
c2 Sufficient curvature parameter for line search for Wolfe-type line searches. Should

be a value between c1 and 1.
step0 Initial value for the line search on the first step. See ’Details’ of mize.
step_next_init For Wolfe-type line searches only, how to initialize the line search on iterations

after the first. See ’Details’ of mize.
try_newton_step

For Wolfe-type line searches only, try the line step value of 1 as the initial step
size whenever step_next_init suggests a step size > 1. Defaults to TRUE for
quasi-Newton methods such as BFGS and L-BFGS, FALSE otherwise.

ls_max_fn Maximum number of function evaluations allowed during a line search.
ls_max_gr Maximum number of gradient evaluations allowed during a line search.
ls_max_fg Maximum number of function or gradient evaluations allowed during a line

search.
ls_max_alpha_mult

The maximum value that can be attained by the ratio of the initial guess for
alpha for the current line search, to the final value of alpha of the previous line
search. Used to stop line searches diverging due to very large initial guesses.
Only applies for Wolfe-type line searches.

ls_max_alpha Maximum value of alpha allowed during line search. Only applies for line_search
= "more-thuente".

ls_safe_cubic (Optional). If TRUE, check that cubic interpolation in the Wolfe line search does
not produce too small a value. Only applies for line_search = "more-thuente".

strong_curvature

(Optional). If TRUE use the strong curvature condition in Wolfe line search. See
the ’Line Search’ section of mize for details.

6 make_mize

approx_armijo (Optional). If TRUE use the approximate Armijo condition in Wolfe line search.
See the ’Line Search’ section of mize for details.

mom_type Momentum type, either "classical" or "nesterov".

mom_schedule Momentum schedule. See ’Details’ of mize.

mom_init Initial momentum value.

mom_final Final momentum value.
mom_switch_iter

For mom_schedule "switch" only, the iteration when mom_init is changed to
mom_final.

mom_linear_weight

If TRUE, the gradient contribution to the update is weighted using momentum
contribution.

use_init_mom If TRUE, then the momentum coefficient on the first iteration is non-zero. Other-
wise, it’s zero. Only applies if using a momentum schedule.

restart Momentum restart type. Can be one of "fn" or "gr". See ’Details’ of mize.

restart_wait Number of iterations to wait between restarts. Ignored if restart is NULL.

par (Optional) Initial values for the function to be optimized over.

fg (Optional). Function and gradient list. See ’Details’ of mize.

max_iter (Optional). Maximum number of iterations. See the ’Convergence’ section of
mize for details.

max_fn (Optional). Maximum number of function evaluations. See the ’Convergence’
section of mize for details.

max_gr (Optional). Maximum number of gradient evaluations. See the ’Convergence’
section of mize for details.

max_fg (Optional). Maximum number of function or gradient evaluations. See the ’Con-
vergence’ section of mize for details.

abs_tol (Optional). Absolute tolerance for comparing two function evaluations. See the
’Convergence’ section of mize for details.

rel_tol (Optional). Relative tolerance for comparing two function evaluations. See the
’Convergence’ section of mize for details.

grad_tol (Optional). Absolute tolerance for the length (l2-norm) of the gradient vector.
See the ’Convergence’ section of mize for details.

ginf_tol (Optional). Absolute tolerance for the infinity norm (maximum absolute compo-
nent) of the gradient vector. See the ’Convergence’ section of mize for details.

step_tol (Optional). Absolute tolerance for the size of the parameter update. See the
’Convergence’ section of mize for details.

Details

If the function to be optimized and starting point are not present at creation time, then the optimizer
should be initialized using mize_init before being used with mize_step.

See the documentation to mize for an explanation of all the parameters.

mize 7

Details of the fg list containing the function to be optimized and its gradient can be found in the
’Details’ section of mize. It is optional for this function, but if it is passed to this function, along
with the vector of initial values, par, the optimizer will be returned already initialized for this
function. Otherwise, mize_init must be called before optimization begins.

Additionally, optional convergence parameters may also be passed here, for use with check_mize_convergence.
They are optional here if you plan to call mize_init later, or if you want to do your own conver-
gence checking.

Examples

Function to optimize and starting point
rosenbrock_fg <- list(

fn = function(x) {
100 * (x[2] - x[1] * x[1])^2 + (1 - x[1])^2

},
gr = function(x) {

c(
-400 * x[1] * (x[2] - x[1] * x[1]) - 2 * (1 - x[1]),
200 * (x[2] - x[1] * x[1])

)
}

)
rb0 <- c(-1.2, 1)

Create an optimizer and initialize it for use with the Rosenbrock function
opt <- make_mize(method = "L-BFGS", par = rb0, fg = rosenbrock_fg)

Create optimizer without initialization
opt <- make_mize(method = "L-BFGS")

Need to call mize_init separately:
opt <- mize_init(opt, rb0, rosenbrock_fg)

mize Numerical Optimization

Description

Numerical optimization including conjugate gradient, Broyden-Fletcher-Goldfarb-Shanno (BFGS),
and the limited memory BFGS.

Usage

mize(
par,
fg,
method = "L-BFGS",
norm_direction = FALSE,
memory = 5,

8 mize

scale_hess = TRUE,
cg_update = "PR+",
preconditioner = "",
tn_init = 0,
tn_exit = "curvature",
nest_q = 0,
nest_convex_approx = FALSE,
nest_burn_in = 0,
step_up = 1.1,
step_up_fun = "*",
step_down = NULL,
dbd_weight = 0.1,
line_search = "More-Thuente",
c1 = 1e-04,
c2 = NULL,
step0 = NULL,
step_next_init = NULL,
try_newton_step = NULL,
ls_max_fn = 20,
ls_max_gr = Inf,
ls_max_fg = Inf,
ls_max_alpha_mult = Inf,
ls_max_alpha = Inf,
ls_safe_cubic = FALSE,
strong_curvature = NULL,
approx_armijo = NULL,
mom_type = NULL,
mom_schedule = NULL,
mom_init = NULL,
mom_final = NULL,
mom_switch_iter = NULL,
mom_linear_weight = FALSE,
use_init_mom = FALSE,
restart = NULL,
restart_wait = 10,
max_iter = 100,
max_fn = Inf,
max_gr = Inf,
max_fg = Inf,
abs_tol = sqrt(.Machine$double.eps),
rel_tol = abs_tol,
grad_tol = NULL,
ginf_tol = NULL,
step_tol = sqrt(.Machine$double.eps),
check_conv_every = 1,
log_every = check_conv_every,
verbose = FALSE,
store_progress = FALSE

mize 9

)

Arguments

par Initial values for the function to be optimized over.

fg Function and gradient list. See ’Details’.

method Optimization method. See ’Details’.

norm_direction If TRUE, then the steepest descent direction is normalized to unit length. Useful
for adaptive step size methods where the previous step size is used to initialize
the next iteration.

memory The number of updates to store if using the L-BFGS method. Ignored otherwise.
Must be a positive integer.

scale_hess if TRUE, the approximation to the inverse Hessian is scaled according to the
method described by Nocedal and Wright (approximating an eigenvalue). Ap-
plies only to the methods BFGS (where the scaling is applied only during the first
step) and L-BFGS (where the scaling is applied during every iteration). Ignored
otherwise.

cg_update Type of update to use for the "CG" method. For details see the "CG" subsection
of the "Optimization Methods" section. Ignored if method is not "CG".

preconditioner Type of preconditioner to use in Truncated Newton. Leave blank or set to
"L-BFGS" to use a limited memory BFGS preconditioner. Use the "memory"
parameter to control the number of updates to store. Applies only if method =
"TN" or "CG", ignored otherwise.

tn_init Type of initialization to use in inner loop of Truncated Newton. Use 0 to use the
zero vector (the usual TN initialization), or "previous" to use the final result
from the previous iteration, as suggested by Martens (2010). Applies only if
method = "TN", ignored otherwise.

tn_exit Type of exit criterion to use when terminating the inner CG loop of Truncated
Newton method. Either "curvature" to use the standard negative curvature
test, or "strong" to use the modified "strong" curvature test in TNPACK (Xie
and Schlick, 1999). Applies only if method = "TN", ignored otherwise.

nest_q Strong convexity parameter for the NAG momentum term. Must take a value
between 0 (strongly convex) and 1 (zero momentum). Only applies using the
NAG method or a momentum method with Nesterov momentum schedule. Also
does nothing if nest_convex_approx is TRUE.

nest_convex_approx

If TRUE, then use an approximation due to Sutskever for calculating the momen-
tum parameter in the NAG method. Only applies using the NAG method or a
momentum method with Nesterov momentum schedule.

nest_burn_in Number of iterations to wait before using a non-zero momentum. Only ap-
plies using the NAG method or a momentum method with Nesterov momentum
schedule.

step_up Value by which to increase the step size for the "bold" step size method or the
"DBD" method.

10 mize

step_up_fun Operator to use when combining the current step size with step_up. Can be one
of "*" (to multiply the current step size with step_up) or "+" (to add).

step_down Multiplier to reduce the step size by if using the "DBD" method or the "bold"
line search method. Should be a positive value less than 1. Also optional for use
with the "back" line search method.

dbd_weight Weighting parameter used by the "DBD" method only, and only if no momentum
scheme is provided. Must be an integer between 0 and 1.

line_search Type of line search to use. See ’Details’.

c1 Sufficient decrease parameter for Wolfe-type line searches. Should be a value
between 0 and 1.

c2 Sufficient curvature parameter for line search for Wolfe-type line searches. Should
be a value between c1 and 1.

step0 Initial value for the line search on the first step. See ’Details’.

step_next_init For Wolfe-type line searches only, how to initialize the line search on iterations
after the first. See ’Details’.

try_newton_step

For Wolfe-type line searches only, try the line step value of 1 as the initial step
size whenever step_next_init suggests a step size > 1. Defaults to TRUE for
quasi-Newton methods such as BFGS and L-BFGS, FALSE otherwise.

ls_max_fn Maximum number of function evaluations allowed during a line search.

ls_max_gr Maximum number of gradient evaluations allowed during a line search.

ls_max_fg Maximum number of function or gradient evaluations allowed during a line
search.

ls_max_alpha_mult

The maximum value that can be attained by the ratio of the initial guess for
alpha for the current line search, to the final value of alpha of the previous line
search. Used to stop line searches diverging due to very large initial guesses.
Only applies for Wolfe-type line searches.

ls_max_alpha Maximum value of alpha allowed during line search. Only applies for line_search
= "more-thuente".

ls_safe_cubic (Optional). If TRUE, check that cubic interpolation in the Wolfe line search does
not produce too small a value, using method of Xie and Schlick (2002). Only
applies for line_search = "more-thuente".

strong_curvature

(Optional). If TRUE use the strong curvature condition in Wolfe line search. See
the ’Line Search’ section for details.

approx_armijo (Optional). If TRUE use the approximate Armijo condition in Wolfe line search.
See the ’Line Search’ section for details.

mom_type Momentum type, either "classical" or "nesterov". See ’Details’.

mom_schedule Momentum schedule. See ’Details’.

mom_init Initial momentum value.

mom_final Final momentum value.

mize 11

mom_switch_iter

For mom_schedule "switch" only, the iteration when mom_init is changed to
mom_final.

mom_linear_weight

If TRUE, the gradient contribution to the update is weighted using momentum
contribution.

use_init_mom If TRUE, then the momentum coefficient on the first iteration is non-zero. Other-
wise, it’s zero. Only applies if using a momentum schedule.

restart Momentum restart type. Can be one of "fn", "gr" or "speed". See ’Details’.
Ignored if no momentum scheme is being used.

restart_wait Number of iterations to wait between restarts. Ignored if restart is NULL.

max_iter Maximum number of iterations to optimize for. Defaults to 100. See the ’Con-
vergence’ section for details.

max_fn Maximum number of function evaluations. See the ’Convergence’ section for
details.

max_gr Maximum number of gradient evaluations. See the ’Convergence’ section for
details.

max_fg Maximum number of function or gradient evaluations. See the ’Convergence’
section for details.

abs_tol Absolute tolerance for comparing two function evaluations. See the ’Conver-
gence’ section for details.

rel_tol Relative tolerance for comparing two function evaluations. See the ’Conver-
gence’ section for details.

grad_tol Absolute tolerance for the length (l2-norm) of the gradient vector. See the ’Con-
vergence’ section for details.

ginf_tol Absolute tolerance for the infinity norm (maximum absolute component) of the
gradient vector. See the ’Convergence’ section for details.

step_tol Absolute tolerance for the size of the parameter update. See the ’Convergence’
section for details.

check_conv_every

Positive integer indicating how often to check convergence. Default is 1, i.e.
every iteration. See the ’Convergence’ section for details.

log_every Positive integer indicating how often to log convergence results to the console.
Ignored if verbose is FALSE. If not an integer multiple of check_conv_every,
it will be set to check_conv_every.

verbose If TRUE, log information about the progress of the optimization to the console.

store_progress If TRUE store information about the progress of the optimization in a data frame,
and include it as part of the return value.

Details

The function to be optimized should be passed as a list to the fg parameter. This should consist of:

• fn. The function to be optimized. Takes a vector of parameters and returns a scalar.

12 mize

• gr. The gradient of the function. Takes a vector of parameters and returns a vector with the
same length as the input parameter vector.

• fg. (Optional) function which calculates the function and gradient in the same routine. Takes
a vector of parameters and returns a list containing the function result as fn and the gradient
result as gr.

• hs. (Optional) Hessian of the function. Takes a vector of parameters and returns a square
matrix with dimensions the same as the length of the input vector, containing the second
derivatives. Only required to be present if using the "NEWTON" method. If present, it will be
used during initialization for the "BFGS" and "SR1" quasi-Newton methods (otherwise, they
will use the identity matrix). The quasi-Newton methods are implemented using the inverse of
the Hessian, and rather than directly invert the provided Hessian matrix, will use the inverse
of the diagonal of the provided Hessian only.

The fg function is optional, but for some methods (e.g. line search methods based on the Wolfe
criteria), both the function and gradient values are needed for the same parameter value. Calculating
them in the same function can save time if there is a lot of shared work.

Value

A list with components:

• par Optimized parameters. Normally, this is the best set of parameters seen during optimiza-
tion, i.e. the set that produced the minimum function value. This requires that convergence
checking with is carried out, including function evaluation where necessary. See the ’Conver-
gence’ section for details.

• nf Total number of function evaluations carried out. This includes any extra evaluations re-
quired for convergence calculations. Also, a function evaluation may be required to calculate
the value of f returned in this list (see below). Additionally, if the verbose parameter is
TRUE, then function and gradient information for the initial value of par will be logged to the
console. These values are cached for subsequent use by the optimizer.

• ng Total number of gradient evaluations carried out. This includes any extra evaluations re-
quired for convergence calculations using grad_tol. As with nf, additional gradient calcu-
lations beyond what you’re expecting may have been needed for logging, convergence and
calculating the value of g2 or ginf (see below).

• f Value of the function, evaluated at the returned value of par.

• g2 Optional: the length (Euclidean or l2-norm) of the gradient vector, evaluated at the returned
value of par. Calculated only if grad_tol is non-null.

• ginf Optional: the infinity norm (maximum absolute component) of the gradient vector, eval-
uated at the returned value of par. Calculated only if ginf_tol is non-null.

• iter The number of iterations the optimization was carried out for.

• terminate List containing items: what, indicating what convergence criterion was met, and
val specifying the value at convergence. See the ’Convergence’ section for more details.

• progress Optional data frame containing information on the value of the function, gradient,
momentum, and step sizes evaluated at each iteration where convergence is checked. Only
present if store_progress is set to TRUE. Could get quite large if the optimization is long and
the convergence is checked regularly.

mize 13

Optimization Methods

The method specifies the optimization method:

• "SD" is plain steepest descent. Not very effective on its own, but can be combined with various
momentum approaches.

• "BFGS" is the Broyden-Fletcher-Goldfarb-Shanno quasi-Newton method. This stores an ap-
proximation to the inverse of the Hessian of the function being minimized, which requires
storage proportional to the square of the length of par, so is unsuitable for large problems.

• "SR1" is the Symmetric Rank 1 quasi-Newton method, incorporating the safeguard given by
Nocedal and Wright. Even with the safeguard, the SR1 method is not guaranteed to produce
a descent direction. If this happens, the BFGS update is used for that iteration instead. Note
that I have not done any research into the theoretical justification for combining BFGS with
SR1 like this, but empirically (comparing to BFGS results with the datasets in the funcon-
strain package https://github.com/jlmelville/funconstrain), it works competitively
with BFGS, particularly with a loose line search.

• "L-BFGS" is the Limited memory Broyden-Fletcher-Goldfarb-Shanno quasi-Newton method.
This does not store the inverse Hessian approximation directly and so can scale to larger-
sized problems than "BFGS". The amount of memory used can be controlled with the memory
parameter.

• "CG" is the conjugate gradient method. The cg_update parameter allows for different methods
for choosing the next direction:

– "FR" The method of Fletcher and Reeves.
– "PR" The method of Polak and Ribiere.
– "PR+" The method of Polak and Ribiere with a restart to steepest descent if conjugacy is

lost. The default.
– "HS" The method of Hestenes and Stiefel.
– "DY" The method of Dai and Yuan.
– "HZ" The method of Hager and Zhang.
– "HZ+" The method of Hager and Zhang with restart, as used in CG_DESCENT.
– "PRFR" The modified PR-FR method of Gilbert and Nocedal (1992).

The "PR+" and "HZ+" are likely to be most robust in practice. Other updates are available
more for curiosity purposes.

• "TN" is the Truncated Newton method, which approximately solves the Newton step without
explicitly calculating the Hessian (at the expense of extra gradient calculations).

• "NAG" is the Nesterov Accelerated Gradient method. The exact form of the momentum update
in this method can be controlled with the following parameters:

– nest_q Strong convexity parameter. Must take a value between 0 (strongly convex) and
1 (zero momentum). Ignored if nest_convex_approx is TRUE.

– nest_convex_approx If TRUE, then use an approximation due to Sutskever for calculat-
ing the momentum parameter.

– nest_burn_in Number of iterations to wait before using a non-zero momentum.
• "DBD" is the Delta-Bar-Delta method of Jacobs.
• "Momentum" is steepest descent with momentum. See below for momentum options.

For more details on gradient-based optimization in general, and the BFGS, L-BFGS and CG meth-
ods, see Nocedal and Wright.

https://github.com/jlmelville/funconstrain

14 mize

Line Search

The parameter line_search determines the line search to be carried out:

• "Rasmussen" carries out a line search using the strong Wolfe conditions as implemented by
Carl Edward Rasmussen’s minimize.m routines.

• "More-Thuente" carries out a line search using the strong Wolfe conditions and the method
of More-Thuente. Can be abbreviated to "MT".

• "Schmidt" carries out a line search using the strong Wolfe conditions as implemented in Mark
Schmidt’s minFunc routines.

• "Backtracking" carries out a back tracking line search using the sufficient decrease (Armijo)
condition. By default, cubic interpolation using function and gradient values is used to find
an acceptable step size. A constant step size reduction can be used by specifying a value for
step_down between 0 and 1 (e.g. step size will be halved if step_down is set to 0.5). If a
constant step size reduction is used then only function evaluations are carried out and no extra
gradient calculations are made.

• "Bold Driver" carries out a back tracking line search until a reduction in the function value
is found.

• "Constant" uses a constant line search, the value of which should be provided with step0.
Note that this value will be multiplied by the magnitude of the direction vector used in the
gradient descent method. For method "SD" only, setting the norm_direction parameter to
TRUE will scale the direction vector so it has unit length.

If using one of the methods: "BFGS", "L-BFGS", "CG" or "NAG", one of the Wolfe line searches:
"Rasmussen" or "More-Thuente", "Schmidt" or "Hager-Zhang" should be used, otherwise very
poor performance is likely to be encountered. The following parameters can be used to control the
line search:

• c1 The sufficient decrease condition. Normally left at its default value of 1e-4.

• c2 The sufficient curvature condition. Defaults to 0.9 if using the methods "BFGS" and
"L-BFGS", and to 0.1 for every other method, more or less in line with the recommenda-
tions given by Nocedal and Wright. The smaller the value of c2, the stricter the line search,
but it should not be set to smaller than c1.

• step0 Initial value for the line search on the first step. If a positive numeric value is passed as
an argument, that value is used as-is. Otherwise, by passing a string as an argument, a guess
is made based on values of the gradient, function or parameters, at the starting point:

– "rasmussen" As used by Rasmussen in minimize.m:

1

1 + |g|2

– "scipy" As used in optimize.py in the python library Scipy.

1

|g|

– "schmidt" As used by Schmidt in minFunc.m (the reciprocal of the l1 norm of g)

1

|g|1

mize 15

– "hz" The method suggested by Hager and Zhang (2006) for the CG_DESCENT software.

These arguments can be abbreviated.

• step_next_init How to initialize alpha value of subsequent line searches after the first, using
results from the previous line search:

– "slope ratio" Slope ratio method.
– "quadratic" Quadratic interpolation method.
– "hz" The QuadStep method of Hager and Zhang (2006) for the CG_DESCENT software.
– scalar numeric Set to a numeric value (e.g. step_next_init = 1) to explicitly set alpha

to this value initially.

These arguments can be abbreviated. Details on the first two methods are provided by Nocedal
and Wright.

• try_newton_step For quasi-Newton methods (e.g. "TN", "BFGS" and "L-BFGS"), setting this
to TRUE will try the "natural" step size of 1, whenever the step_next_init method suggests
an initial step size larger than that.

• strong_curvature If TRUE, then the strong curvature condition will be used to check termi-
nation in Wolfe line search methods. If FALSE, then the standard curvature condition will be
used. The default is NULL which lets the different Wolfe line searches choose whichever is
their default behavior. This option is ignored if not using a Wolfe line search method.

• approx_armijo If TRUE, then the approximate Armijo sufficient decrease condition (Hager
and Zhang, 2005) will be used to check termination in Wolfe line search methods. If FALSE,
then the exact curvature condition will be used. The default is NULL which lets the different
Wolfe line searches choose whichever is their default behavior. This option is ignored if not
using a Wolfe line search method.

For the Wolfe line searches, the methods of "Rasmussen", "Schmidt" and "More-Thuente" default
to using the strong curvature condition and the exact Armijo condition to terminate the line search
(i.e. Strong Wolfe conditions). The default step size initialization methods use the Rasmussen
method for the first iteration and quadratic interpolation for subsequent iterations.

The "Hager-Zhang" Wolfe line search method defaults to the standard curvature condition and the
approximate Armijo condition (i.e. approximate Wolfe conditions). The default step size initializa-
tion methods are those used by Hager and Zhang (2006) in the description of CG_DESCENT.

If the "DBD" is used for the optimization "method", then the line_search parameter is ignored,
because this method controls both the direction of the search and the step size simultaneously. The
following parameters can be used to control the step size:

• step_up The amount by which to increase the step size in a direction where the current step
size is deemed to be too short. This should be a positive scalar.

• step_down The amount by which to decrease the step size in a direction where the currents
step size is deemed to be too long. This should be a positive scalar smaller than 1. Default is
0.5.

• step_up_fun How to increase the step size: either the method of Jacobs (addition of step_up)
or Janet and co-workers (multiplication by step_up). Note that the step size decrease step_down
is always a multiplication.

16 mize

The "bold driver" line search also uses the step_up and step_down parameters with similar
meanings to their use with the "DBD" method: the backtracking portion reduces the step size by
a factor of step_down. Once a satisfactory step size has been found, the line search for the next
iteration is initialized by multiplying the previously found step size by step_up.

Momentum

For method "Momentum", momentum schemes can be accessed through the momentum arguments:

• mom_type Momentum type, either "classical" or "nesterov" (case insensitive, can be ab-
breviated). Using "nesterov" applies the momentum step before the gradient descent as
suggested by Sutskever, emulating the behavior of the Nesterov Accelerated Gradient method.

• mom_schedule How the momentum changes over the course of the optimization:
– If a numerical scalar is provided, a constant momentum will be applied throughout.
– "nsconvex" Use the momentum schedule from the Nesterov Accelerated Gradient method

suggested for non-strongly convex functions. Parameters which control the NAG momen-
tum can also be used in combination with this option.

– "switch" Switch from one momentum value (specified via mom_init) to another (mom_final)
at a a specified iteration (mom_switch_iter).

– "ramp" Linearly increase from one momentum value (mom_init) to another (mom_final).
– If a function is provided, this will be invoked to provide a momentum value. It must take

one argument (the current iteration number) and return a scalar.
String arguments are case insensitive and can be abbreviated.

The restart parameter provides a way to restart the momentum if the optimization appears to be
not be making progress, inspired by the method of O’Donoghue and Candes (2013) and Su and
co-workers (2014). There are three strategies:

• "fn" A restart is applied if the function does not decrease on consecutive iterations.
• "gr" A restart is applied if the direction of the optimization is not a descent direction.
• "speed" A restart is applied if the update vector is not longer (as measured by Euclidean

2-norm) in consecutive iterations.

The effect of the restart is to "forget" any previous momentum update vector, and, for those mo-
mentum schemes that change with iteration number, to effectively reset the iteration number back to
zero. If the mom_type is "nesterov", the gradient-based restart is not available. The restart_wait
parameter controls how many iterations to wait after a restart, before allowing another restart. Must
be a positive integer. Default is 10, as used by Su and co-workers (2014). Setting this too low could
cause premature convergence. These methods were developed specifically for the NAG method, but
can be employed with any momentum type and schedule.

If method type "momentum" is specified with no other values, the momentum scheme will default
to a constant value of 0.9.

Convergence

There are several ways for the optimization to terminate. The type of termination is communicated
by a two-item list terminate in the return value, consisting of what, a short string describing what
caused the termination, and val, the value of the termination criterion that caused termination.

The following parameters control various stopping criteria:

mize 17

• max_iter Maximum number of iterations to calculate. Reaching this limit is indicated by
terminate$what being "max_iter".

• max_fn Maximum number of function evaluations allowed. Indicated by terminate$what
being "max_fn".

• max_gr Maximum number of gradient evaluations allowed. Indicated by terminate$what
being "max_gr".

• max_fg Maximum number of gradient evaluations allowed. Indicated by terminate$what
being "max_fg".

• abs_tol Absolute tolerance of the function value. If the absolute value of the function falls
below this threshold, terminate$what will be "abs_tol". Will only be triggered if the ob-
jective function has a minimum value of zero.

• rel_tol Relative tolerance of the function value, comparing consecutive function evaluation
results. Indicated by terminate$what being "rel_tol".

• grad_tol Absolute tolerance of the l2 (Euclidean) norm of the gradient. Indicated by terminate$what
being "grad_tol". Note that the gradient norm is not a very reliable stopping criterion (see
Nocedal and co-workers 2002), but is quite commonly used, so this might be useful for com-
parison with results from other optimization software.

• ginf_tol Absolute tolerance of the infinity norm (maximum absolute component) of the gra-
dient. Indicated by terminate$what being "ginf_tol".

• step_tol Absolute tolerance of the step size, i.e. the Euclidean distance between values
of par fell below the specified value. Indicated by terminate$what being "step_tol". For
those optimization methods which allow for abandoning the result of an iteration and restarting
using the previous iteration’s value of par an iteration, step_tol will not be triggered.

Convergence is checked between specific iterations. How often is determined by the check_conv_every
parameter, which specifies the number of iterations between each check. By default, this is set for
every iteration.

Be aware that if abs_tol or rel_tol are non-NULL, this requires the function to have been evaluated
at the current position at the end of each iteration. If the function at that position has not been
calculated, it will be calculated and will contribute to the total reported in the counts list in the
return value. The calculated function value is cached for use by the optimizer in the next iteration,
so if the optimizer would have needed to calculate the function anyway (e.g. use of the strong Wolfe
line search methods), there is no significant cost accrued by calculating it earlier for convergence
calculations. However, for methods that don’t use the function value at that location, this could
represent a lot of extra function evaluations. On the other hand, not checking convergence could
result in a lot of extra unnecessary iterations. Similarly, if grad_tol or ginf_tol is non-NULL, then
the gradient will be calculated if needed.

If extra function or gradient evaluations is an issue, set check_conv_every to a higher value, but
be aware that this can cause convergence limits to be exceeded by a greater amount.

Note also that if the verbose parameter is TRUE, then a summary of the results so far will be logged
to the console whenever a convergence check is carried out. If the store_progress parameter is
TRUE, then the same information will be returned as a data frame in the return value. For a long
optimization this could be a lot of data, so by default it is not stored.

Other ways for the optimization to terminate is if an iteration generates a non-finite (i.e. Inf or
NaN) gradient or function value. Some, but not all, line-searches will try to recover from the latter,

18 mize

by reducing the step size, but a non-finite gradient calculation during the gradient descent portion
of optimization is considered catastrophic by mize, and it will give up. Termination under non-
finite gradient or function conditions will result in terminate$what being "gr_inf" or "fn_inf"
respectively. Unlike the convergence criteria, the optimization will detect these error conditions and
terminate even if a convergence check would not be carried out for this iteration.

The value of par in the return value should be the parameters which correspond to the lowest value
of the function that has been calculated during the optimization. As discussed above however,
determining which set of parameters requires a function evaluation at the end of each iteration,
which only happens if either the optimization method calculates it as part of its own operation or
if a convergence check is being carried out during this iteration. Therefore, if your method does
not carry out function evaluations and check_conv_every is set to be so large that no convergence
calculation is carried out before max_iter is reached, then the returned value of par is the last value
encountered.

References

Gilbert, J. C., & Nocedal, J. (1992). Global convergence properties of conjugate gradient methods
for optimization. SIAM Journal on optimization, 2(1), 21-42.

Hager, W. W., & Zhang, H. (2005). A new conjugate gradient method with guaranteed descent and
an efficient line search. SIAM Journal on Optimization, 16(1), 170-192.

Hager, W. W., & Zhang, H. (2006). Algorithm 851: CG_DESCENT, a conjugate gradient method
with guaranteed descent. ACM Transactions on Mathematical Software (TOMS), 32(1), 113-137.

Jacobs, R. A. (1988). Increased rates of convergence through learning rate adaptation. Neural
networks, 1(4), 295-307.

Janet, J. A., Scoggins, S. M., Schultz, S. M., Snyder, W. E., White, M. W., & Sutton, J. C. (1998,
May). Shocking: An approach to stabilize backprop training with greedy adaptive learning rates.
In 1998 IEEE International Joint Conference on Neural Networks Proceedings. (Vol. 3, pp. 2218-
2223). IEEE.

Martens, J. (2010, June). Deep learning via Hessian-free optimization. In Proceedings of the
International Conference on Machine Learning. (Vol. 27, pp. 735-742).

More’, J. J., & Thuente, D. J. (1994). Line search algorithms with guaranteed sufficient decrease.
ACM Transactions on Mathematical Software (TOMS), 20(3), 286-307.

Nocedal, J., Sartenaer, A., & Zhu, C. (2002). On the behavior of the gradient norm in the steepest
descent method. Computational Optimization and Applications, 22(1), 5-35.

Nocedal, J., & Wright, S. (2006). Numerical optimization. Springer Science & Business Media.

O’Donoghue, B., & Candes, E. (2013). Adaptive restart for accelerated gradient schemes. Founda-
tions of computational mathematics, 15(3), 715-732.

Schmidt, M. (2005). minFunc: unconstrained differentiable multivariate optimization in Matlab.
https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html

Su, W., Boyd, S., & Candes, E. (2014). A differential equation for modeling Nesterov’s accelerated
gradient method: theory and insights. In Advances in Neural Information Processing Systems (pp.
2510-2518).

Sutskever, I. (2013). Training recurrent neural networks (Doctoral dissertation, University of
Toronto).

https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html

mize_init 19

Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013). On the importance of initialization
and momentum in deep learning. In Proceedings of the 30th international conference on machine
learning (ICML-13) (pp. 1139-1147).

Xie, D., & Schlick, T. (1999). Remark on Algorithm 702 - The updated truncated Newton mini-
mization package. ACM Transactions on Mathematical Software (TOMS), 25(1), 108-122.

Xie, D., & Schlick, T. (2002). A more lenient stopping rule for line search algorithms. Optimization
Methods and Software, 17(4), 683-700.

Examples

Function to optimize and starting point defined after creating optimizer
rosenbrock_fg <- list(

fn = function(x) {
100 * (x[2] - x[1] * x[1])^2 + (1 - x[1])^2

},
gr = function(x) {

c(
-400 * x[1] * (x[2] - x[1] * x[1]) - 2 * (1 - x[1]),
200 * (x[2] - x[1] * x[1])

)
}

)
rb0 <- c(-1.2, 1)

Minimize using L-BFGS
res <- mize(rb0, rosenbrock_fg, method = "L-BFGS")

Conjugate gradient with Fletcher-Reeves update, tight Wolfe line search
res <- mize(rb0, rosenbrock_fg, method = "CG", cg_update = "FR", c2 = 0.1)

Steepest decent with constant momentum = 0.9
res <- mize(rb0, rosenbrock_fg, method = "MOM", mom_schedule = 0.9)

Steepest descent with constant momentum in the Nesterov style as described
in papers by Sutskever and Bengio
res <- mize(rb0, rosenbrock_fg,

method = "MOM", mom_type = "nesterov",
mom_schedule = 0.9

)

Nesterov momentum with adaptive restart comparing function values
res <- mize(rb0, rosenbrock_fg,

method = "MOM", mom_type = "nesterov",
mom_schedule = 0.9, restart = "fn"

)

mize_init Initialize the Optimizer.

20 mize_init

Description

Prepares the optimizer for use with a specific function and starting point.

Usage

mize_init(
opt,
par,
fg,
max_iter = Inf,
max_fn = Inf,
max_gr = Inf,
max_fg = Inf,
abs_tol = NULL,
rel_tol = abs_tol,
grad_tol = NULL,
ginf_tol = NULL,
step_tol = NULL

)

Arguments

opt Optimizer, created by make_mize.

par Vector of initial values for the function to be optimized over.

fg Function and gradient list. See the documentation of mize.

max_iter (Optional). Maximum number of iterations. See the ’Convergence’ section of
mize for details.

max_fn (Optional). Maximum number of function evaluations. See the ’Convergence’
section of mize for details.

max_gr (Optional). Maximum number of gradient evaluations. See the ’Convergence’
section of mize for details.

max_fg (Optional). Maximum number of function or gradient evaluations. See the ’Con-
vergence’ section of mize for details.

abs_tol (Optional). Absolute tolerance for comparing two function evaluations. See the
’Convergence’ section of mize for details.

rel_tol (Optional). Relative tolerance for comparing two function evaluations. See the
’Convergence’ section of mize for details.

grad_tol (Optional). Absolute tolerance for the length (l2-norm) of the gradient vector.
See the ’Convergence’ section of mize for details.

ginf_tol (Optional). Absolute tolerance for the infinity norm (maximum absolute compo-
nent) of the gradient vector. See the ’Convergence’ section of mize for details.

step_tol (Optional). Absolute tolerance for the size of the parameter update. See the
’Convergence’ section of mize for details.

mize_step 21

Details

Should be called after creating an optimizer with make_mize and before beginning any optimization
with mize_step. Note that if fg and par are available at the time mize_step is called, they can be
passed to that function and initialization will be carried out automatically, avoiding the need to call
mize_init.

Optional convergence parameters may also be passed here, for use with check_mize_convergence.
They are optional if you do your own convergence checking.

Details of the fg list can be found in the ’Details’ section of mize.

Value

Initialized optimizer.

Examples

Create an optimizer
opt <- make_mize(method = "L-BFGS")

Function to optimize and starting point defined after creating optimizer
rosenbrock_fg <- list(

fn = function(x) {
100 * (x[2] - x[1] * x[1])^2 + (1 - x[1])^2

},
gr = function(x) {

c(
-400 * x[1] * (x[2] - x[1] * x[1]) - 2 * (1 - x[1]),
200 * (x[2] - x[1] * x[1])

)
}

)
rb0 <- c(-1.2, 1)

Initialize with function and starting point before commencing optimization
opt <- mize_init(opt, rb0, rosebrock_fg)

Finally, can commence the optimization loop
par <- rb0
for (iter in 1:3) {

res <- mize_step(opt, par, rosenbrock_fg)
par <- res$par
opt <- res$opt

}

mize_step One Step of Optimization

22 mize_step

Description

Performs one iteration of optimization using a specified optimizer.

Usage

mize_step(opt, par, fg)

Arguments

opt Optimizer, created by make_mize.

par Vector of initial values for the function to be optimized over.

fg Function and gradient list. See the documentation of mize.

Details

This function returns both the (hopefully) optimized vector of parameters, and an updated version of
the optimizer itself. This is intended to be used when you want more control over the optimization
process compared to the more black box approach of the mize function. In return for having to
manually call this function every time you want the next iteration of optimization, you gain the
ability to do your own checks for convergence, logging and so on, as well as take other action
between iterations, e.g. visualization.

Normally calling this function should return a more optimized vector of parameters than the input,
or at least leave the parameters unchanged if no improvement was found, although this is determined
by how the optimizer was configured by make_mize. It is very possible to create an optimizer that
can cause a solution to diverge. It is the responsibility of the caller to check that the result of the
optimization step has actually reduced the value returned from function being optimized.

Details of the fg list can be found in the ’Details’ section of mize.

Value

Result of the current optimization step, a list with components:

• opt. Updated version of the optimizer passed to the opt argument Should be passed as the
opt argument in the next iteration.

• par. Updated version of the parameters passed to the par argument. Should be passed as the
par argument in the next iteration.

• nf. Running total number of function evaluations carried out since iteration 1.

• ng. Running total number of gradient evaluations carried out since iteration 1.

• f. Optional. The new value of the function, evaluated at the returned value of par. Only
present if calculated as part of the optimization step (e.g. during a line search calculation).

• g. Optional. The gradient vector, evaluated at the returned value of par. Only present if the
gradient was calculated as part of the optimization step (e.g. during a line search calculation.)

See Also

make_mize to create a value to pass to opt, mize_init to initialize opt before passing it to this
function for the first time. mize creates an optimizer and carries out a full optimization with it.

mize_step_summary 23

Examples

rosenbrock_fg <- list(
fn = function(x) {
100 * (x[2] - x[1] * x[1])^2 + (1 - x[1])^2

},
gr = function(x) {

c(
-400 * x[1] * (x[2] - x[1] * x[1]) - 2 * (1 - x[1]),
200 * (x[2] - x[1] * x[1])

)
}

)
rb0 <- c(-1.2, 1)

opt <- make_mize(
method = "SD", line_search = "const", step0 = 0.0001,
par = rb0, fg = rosenbrock_fg

)
par <- rb0
for (iter in 1:3) {

res <- mize_step(opt, par, rosenbrock_fg)
par <- res$par
opt <- res$opt

}

mize_step_summary Mize Step Summary

Description

Produces a result summary for an optimization iteration. Information such as function value, gradi-
ent norm and step size may be returned.

Usage

mize_step_summary(opt, par, fg, par_old = NULL, calc_fn = NULL)

Arguments

opt Optimizer to generate summary for, from return value of mize_step.

par Vector of parameters at the end of the iteration, from return value of mize_step.

fg Function and gradient list. See the documentation of mize.

par_old (Optional). Vector of parameters at the end of the previous iteration. Used to
calculate step size.

calc_fn (Optional). If TRUE, force calculation of function if not already cached in opt,
even if it would not be needed for convergence checking.

24 mize_step_summary

Details

By default, convergence tolerance parameters will be used to determine what function and gradient
data is returned. The function value will be returned if it was already calculated and cached in
the optimization iteration. Otherwise, it will be calculated only if a non-null absolute or relative
tolerance value was asked for. A gradient norm will be returned only if a non-null gradient tolerance
was specified, even if the gradient is available.

Note that if a function tolerance was specified, but was not calculated for the relevant value of par,
they will be calculated here and the calculation does contribute to the total function count (and
will be cached for potential use in the next iteration). The same applies for gradient tolerances
and gradient calculation. Function and gradient calculation can also be forced here by setting the
calc_fn and calc_gr (respectively) parameters to TRUE.

Value

A list with the following items:

• opt Optimizer with updated state (e.g. function and gradient counts).

• iter Iteration number.

• f Function value at par.

• g2n 2-norm of the gradient at par.

• ginfn Infinity-norm of the gradient at par.

• nf Number of function evaluations so far.

• ng Number of gradient evaluations so far.

• step Size of the step between par_old and par, if par_old is provided.

• alpha Step length of the gradient descent part of the step.

• mu Momentum coefficient for this iteration

Examples

rb_fg <- list(
fn = function(x) {

100 * (x[2] - x[1] * x[1])^2 + (1 - x[1])^2
},
gr = function(x) {

c(
-400 * x[1] * (x[2] - x[1] * x[1]) - 2 * (1 - x[1]),
200 * (x[2] - x[1] * x[1])

)
}

)
rb0 <- c(-1.2, 1)

opt <- make_mize(method = "BFGS", par = rb0, fg = rb_fg, max_iter = 30)
mize_res <- mize_step(opt = opt, par = rb0, fg = rb_fg)
Get info about first step, use rb0 to compare new par with initial value
step_info <- mize_step_summary(mize_res$opt, mize_res$par, rb_fg, rb0)

Index

check_mize_convergence, 2, 7, 21

make_mize, 2, 3, 20–22
mize, 4–7, 7, 20–23
mize_init, 2, 6, 7, 19, 22
mize_step, 6, 21, 21, 23
mize_step_summary, 2, 23

25

	check_mize_convergence
	make_mize
	mize
	mize_init
	mize_step
	mize_step_summary
	Index

