
Package ‘mixtools’
March 8, 2025

Version 2.0.0.1

Date 2022-12-04

Title Tools for Analyzing Finite Mixture Models

Depends R (>= 4.0.0)

Imports kernlab, MASS, plotly, scales, segmented, stats, survival

URL https://github.com/dsy109/mixtools

Description Analyzes finite mixture models for various parametric and semiparametric set-
tings. This includes mixtures of parametric distributions (normal, multivariate normal, multino-
mial, gamma), various Reliability Mixture Models (RMMs), mixtures-of-regressions set-
tings (linear regression, logistic regression, Poisson regression, linear regression with change-
points, predictor-dependent mixing proportions, random effects regressions, hierarchical mix-
tures-of-experts), and tools for selecting the number of components (bootstrapping the likeli-
hood ratio test statistic, mixturegrams, and model selection criteria). Bayesian estimation of mix-
tures-of-linear-regressions models is available as well as a novel data depth method for obtain-
ing credible bands. This package is based upon work supported by the National Science Founda-
tion under Grant No. SES-0518772 and the Chan Zuckerberg Initiative: Essen-
tial Open Source Software for Science (Grant No. 2020-255193).

License GPL (>= 2)

NeedsCompilation yes

Author Derek Young [aut, cre] (<https://orcid.org/0000-0002-3048-3803>),
Tatiana Benaglia [aut],
Didier Chauveau [aut],
David Hunter [aut],
Kedai Cheng [aut],
Ryan Elmore [ctb],
Thomas Hettmansperger [ctb],
Hoben Thomas [ctb],
Fengjuan Xuan [ctb]

Maintainer Derek Young <derek.young@uky.edu>

Repository CRAN

Date/Publication 2025-03-08 08:58:50 UTC

1

https://github.com/dsy109/mixtools
https://orcid.org/0000-0002-3048-3803

2 Contents

Contents
boot.comp . 4
boot.se . 6
CO2data . 7
compCDF . 7
density.npEM . 9
density.spEM . 10
depth . 11
dmvnorm . 12
ellipse . 13
expRMM_EM . 14
flaremixEM . 16
gammamixEM . 17
Habituationdata . 19
hmeEM . 20
ise.npEM . 22
logisregmixEM . 24
makemultdata . 26
mixturegram . 27
multmixEM . 29
multmixmodel.sel . 31
mvnormalmixEM . 32
mvnpEM . 33
NOdata . 36
normalmixEM . 36
normalmixEM2comp . 39
normalmixMMlc . 41
npEM . 44
npMSL . 46
plot.mixEM . 49
plot.mixMCMC . 51
plot.mvnpEM . 52
plot.npEM . 53
plot.spEMN01 . 55
plotexpRMM . 56
plotFDR . 57
plotly_compCDF . 58
plotly_ellipse . 60
plotly_expRMM . 61
plotly_FDR . 63
plotly_ise.npEM . 65
plotly_mixEM . 67
plotly_mixMCMC . 70
plotly_mixturegram . 72
plotly_npEM . 75
plotly_seq.npEM . 77
plotly_spEMN01 . 78

Contents 3

plotly_spRMM . 80
plotly_weibullRMM . 82
plotseq.npEM . 83
plotspRMM . 84
plotweibullRMM . 85
poisregmixEM . 87
post.beta . 88
print.mvnpEM . 90
print.npEM . 91
RanEffdata . 92
regcr . 92
regmixEM . 94
regmixEM.lambda . 96
regmixEM.loc . 97
regmixEM.mixed . 99
regmixMH . 102
regmixmodel.sel . 104
repnormmixEM . 105
repnormmixmodel.sel . 106
rexpmix . 107
rmvnorm . 108
rmvnormmix . 109
rnormmix . 110
RodFramedata . 111
RTdata . 112
RTdata2 . 112
rweibullmix . 113
segregmixEM . 114
spEM . 117
spEMsymloc . 120
spEMsymlocN01 . 122
spregmix . 124
spRMM_SEM . 126
summary.mixEM . 128
summary.mvnpEM . 130
summary.npEM . 131
summary.spRMM . 133
tauequivnormalmixEM . 134
test.equality . 137
test.equality.mixed . 138
tonedata . 140
Waterdata . 141
weibullRMM_SEM . 142
wkde . 144
wquantile . 145

Index 147

4 boot.comp

boot.comp Performs Parametric Bootstrap for Sequentially Testing the Number of
Components in Various Mixture Models

Description

Performs a parametric bootstrap by producing B bootstrap realizations of the likelihood ratio statis-
tic for testing the null hypothesis of a k-component fit versus the alternative hypothesis of a (k+1)-
component fit to various mixture models. This is performed for up to a specified number of maxi-
mum components, k. A p-value is calculated for each test and once the p-value is above a specified
significance level, the testing terminates. An optional histogram showing the distribution of the
likelihood ratio statistic along with the observed statistic can also be produced.

Usage

boot.comp(y, x = NULL, N = NULL, max.comp = 2, B = 100,
sig = 0.05, arbmean = TRUE, arbvar = TRUE,
mix.type = c("logisregmix", "multmix", "mvnormalmix",
"normalmix", "poisregmix", "regmix", "regmix.mixed",
"repnormmix"), hist = TRUE, ...)

Arguments

y The raw data for multmix, mvnormalmix, normalmix, and repnormmix and the
response values for logisregmix, poisregmix, and regmix. See the documen-
tation concerning their respective EM algorithms for specific structure of the
raw data.

x The predictor values required only for the regression mixtures logisregmix,
poisregmix, and regmix. A column of 1s for the intercept term must not be
included! See the documentation concerning their respective EM algorithms for
specific structure of the predictor values.

N An n-vector of number of trials for the logistic regression type logisregmix. If
NULL, then N is an n-vector of 1s for binary logistic regression.

max.comp The maximum number of components to test for. The default is 2. This func-
tion will perform a test of k-components versus (k+1)-components sequentially
until we fail to reject the null hypothesis. This decision rule is governed by the
calculated p-value and sig.

B The number of bootstrap realizations of the likelihood ratio statistic to produce.
The default is 100, but ideally, values of 1000 or more would be more accept-
able.

sig The significance level for which to compare the p-value against when perform-
ing the test of k-components versus (k+1)-components.

arbmean If FALSE, then a scale mixture analysis can be performed for mvnormalmix,
normalmix, regmix, or repnormmix. The default is TRUE.

boot.comp 5

arbvar If FALSE, then a location mixture analysis can be performed for mvnormalmix,
normalmix, regmix, or repnormmix. The default is TRUE.

mix.type The type of mixture analysis you wish to perform. The data inputted for y and
x depend on which type of mixture is selected. logisregmix corresponds to a
mixture of logistic regressions. multmix corresponds to a mixture of multino-
mials with data determined by the cut-point method. mvnormalmix corresponds
to a mixture of multivariate normals. normalmix corresponds to a mixture of
univariate normals. poisregmix corresponds to a mixture of Poisson regres-
sions. regmix corresponds to a mixture of regressions with normal components.
regmix.mixed corresponds to a mixture of regressions with random or mixed
effects. repnormmix corresponds to a mixture of normals with repeated mea-
surements.

hist An argument to provide a matrix plot of histograms for the boostrapped likeli-
hood ratio statistic.

... Additional arguments passed to the various EM algorithms for the mixture of
interest.

Value

boot.comp returns a list with items:

p.values The p-values for each test of k-components versus (k+1)-components.

log.lik The B bootstrap realizations of the likelihood ratio statistic.

obs.log.lik The observed likelihood ratio statistic for each test which is used in determining
the p-values.

References

McLachlan, G. J. and Peel, D. (2000) Finite Mixture Models, John Wiley and Sons, Inc.

See Also

logisregmixEM, multmixEM, mvnormalmixEM, normalmixEM, poisregmixEM, regmixEM, regmixEM.mixed,
repnormmixEM

Examples

Bootstrapping to test the number of components on the RTdata.

data(RTdata)
set.seed(100)
x <- as.matrix(RTdata[, 1:3])
y <- makemultdata(x, cuts = quantile(x, (1:9)/10))$y
a <- boot.comp(y = y, max.comp = 1, B = 5, mix.type = "multmix",

epsilon = 1e-3)
a$p.values

6 boot.se

boot.se Performs Parametric Bootstrap for Standard Error Approximation

Description

Performs a parametric bootstrap by producing B bootstrap samples for the parameters in the speci-
fied mixture model.

Usage

boot.se(em.fit, B = 100, arbmean = TRUE, arbvar = TRUE,
N = NULL, ...)

Arguments

em.fit An object of class mixEM. The estimates produced in em.fit will be used as the
parameters for the distribution from which we generate the bootstrap data.

B The number of bootstrap samples to produce. The default is 100, but ideally,
values of 1000 or more would be more acceptable.

arbmean If FALSE, then a scale mixture analysis can be performed for mvnormalmix,
normalmix, regmix, or repnormmix. The default is TRUE.

arbvar If FALSE, then a location mixture analysis can be performed for mvnormalmix,
normalmix, regmix, or repnormmix. The default is TRUE.

N An n-vector of number of trials for the logistic regression type logisregmix. If
NULL, then N is an n-vector of 1s for binary logistic regression.

... Additional arguments passed to the various EM algorithms for the mixture of
interest.

Value

boot.se returns a list with the bootstrap samples and standard errors for the mixture of interest.

References

McLachlan, G. J. and Peel, D. (2000) Finite Mixture Models, John Wiley and Sons, Inc.

Examples

Bootstrapping standard errors for a regression mixture case.

data(NOdata)
attach(NOdata)
set.seed(100)
em.out <- regmixEM(Equivalence, NO, arbvar = FALSE)
out.bs <- boot.se(em.out, B = 10, arbvar = FALSE)
out.bs

CO2data 7

CO2data GNP and CO2 Data Set

Description

This data set gives the gross national product (GNP) per capita in 1996 for various countries as well
as their estimated carbon dioxide (CO2) emission per capita for the same year.

Usage

data(CO2data)

Format

This data frame consists of 28 countries and the following columns:

GNP The gross national product per capita in 1996.

CO2 The estimated carbon dioxide emission per capita in 1996.

country An abbreviation pertaining to the country measured (e.g., "GRC" = Greece and "CH" =
Switzerland).

References

Hurn, M., Justel, A. and Robert, C. P. (2003) Estimating Mixtures of Regressions, Journal of Com-
putational and Graphical Statistics 12(1), 55–79.

compCDF Plot the Component CDF

Description

Plot the components’ CDF via the posterior probabilities.

Usage

compCDF(data, weights,
x=seq(min(data, na.rm=TRUE), max(data, na.rm=TRUE), len=250),
comp=1:NCOL(weights), makeplot=TRUE, ...)

8 compCDF

Arguments

data A matrix containing the raw data. Rows are subjects and columns are repeated
measurements.

weights The weights to compute the empirical CDF; however, most of time they are the
posterior probabilities.

x The points at which the CDFs are to be evaluated.

comp The mixture components for which CDFs are desired.

makeplot Logical: Should a plot be produced as a side effect?

... Additional arguments (other than lty and type, which are already used) to be
passed directly to plot and lines functions.

Details

When makeplot is TRUE, a line plot is produced of the CDFs evaluated at x. The plot is not a step
function plot; the points (x,CDF (x)) are simply joined by line segments.

Value

A matrix with length(comp) rows and length(x) columns in which each row gives the CDF
evaluated at each point of x.

References

McLachlan, G. J. and Peel, D. (2000) Finite Mixture Models, John Wiley and Sons, Inc.

Elmore, R. T., Hettmansperger, T. P. and Xuan, F. (2004) The Sign Statistic, One-Way Layouts and
Mixture Models, Statistical Science 19(4), 579–587.

See Also

makemultdata, multmixmodel.sel, multmixEM.

Examples

The sulfur content of the coal seams in Texas

set.seed(100)

A <- c(1.51, 1.92, 1.08, 2.04, 2.14, 1.76, 1.17)
B <- c(1.69, 0.64, .9, 1.41, 1.01, .84, 1.28, 1.59)
C <- c(1.56, 1.22, 1.32, 1.39, 1.33, 1.54, 1.04, 2.25, 1.49)
D <- c(1.3, .75, 1.26, .69, .62, .9, 1.2, .32)
E <- c(.73, .8, .9, 1.24, .82, .72, .57, 1.18, .54, 1.3)

dis.coal <- makemultdata(A, B, C, D, E,
cuts = median(c(A, B, C, D, E)))

temp <- multmixEM(dis.coal)

Now plot the components' CDF via the posterior probabilities

density.npEM 9

compCDF(dis.coal$x, temp$posterior, xlab="Sulfur", ylab="", main="empirical CDFs")

density.npEM Normal kernel density estimate for nonparametric EM output

Description

Takes an object of class npEM and returns an object of class density giving the kernel density
estimate for the selected component and, if applicable, the selected block.

Usage

S3 method for class 'npEM'
density(x, u=NULL, component=1, block=1, scale=FALSE, ...)

Arguments

x An object of class npEM such as the output of the npEM or spEMsymloc functions.

u Vector of points at which the density is to be evaluated

component Mixture component number; should be an integer from 1 to the number of
columns of x$posteriors.

block Block of repeated measures. Only applicable in repeated measures case, for
which x$blockid exists; should be an integer from 1 to max(x$blockid).

scale Logical: If TRUE, multiply the density values by the corresponding mixing
proportions found in x$lambdahat

... Additional arguments; not used by this method.

Details

The bandwidth is taken to be the same as that used to produce the npEM object, which is given by
x$bandwidth.

Value

density.npEM returns a list of type "density". See density for details. In particular, the output
of density.npEM may be used directly by functions such as plot or lines.

See Also

npEM, spEMsymloc, plot.npEM

10 density.spEM

Examples

Look at histogram of Old Faithful waiting times
data(faithful)
Minutes <- faithful$waiting
hist(Minutes, freq=FALSE)

Superimpose equal-variance normal mixture fit:
set.seed(100)
nm <- normalmixEM(Minutes, mu=c(50,80), sigma=5, arbvar=FALSE, fast=TRUE)
x <- seq(min(Minutes), max(Minutes), len=200)
for (j in 1:2)

lines(x, nm$lambda[j]*dnorm(x, mean=nm$mu[j], sd=nm$sigma), lwd=3, lty=2)

Superimpose several semiparametric fits with different bandwidths:
bw <- c(1, 3, 5)
for (i in 1:3) {

sp <- spEMsymloc(Minutes, c(50,80), bw=bw[i], eps=1e-3)
for (j in 1:2)
lines(density(sp, component=j, scale=TRUE), col=1+i, lwd=2)

}
legend("topleft", legend=paste("Bandwidth =",bw), fill=2:4)

density.spEM Normal kernel density estimate for semiparametric EM output

Description

Takes an object of class spEM and returns an object of class density giving the kernel density
estimate.

Usage

S3 method for class 'spEM'
density(x, u=NULL, component=1, block=1, scale=FALSE, ...)

Arguments

x An object of class npEM such as the output of the npEM or spEMsymloc functions.

u Vector of points at which the density is to be evaluated

component Mixture component number; should be an integer from 1 to the number of
columns of x$posteriors.

block Block of repeated measures. Only applicable in repeated measures case, for
which x$blockid exists; should be an integer from 1 to max(x$blockid).

scale Logical: If TRUE, multiply the density values by the corresponding mixing
proportions found in x$lambdahat

... Additional arguments; not used by this method.

depth 11

Details

The bandwidth is taken to be the same as that used to produce the npEM object, which is given by
x$bandwidth.

Value

density.spEM returns a list of type "density". See density for details. In particular, the output
of density.spEM may be used directly by functions such as plot or lines.

See Also

spEM, spEMsymloc, plot.spEM

Examples

set.seed(100)
mu <- matrix(c(0, 15), 2, 3)
sigma <- matrix(c(1, 5), 2, 3)
x <- rmvnormmix(300, lambda = c(.4,.6), mu = mu, sigma = sigma)

d <- spEM(x, mu0 = 2, blockid = rep(1,3), constbw = TRUE)
plot(d, xlim=c(-10, 40), ylim = c(0, .16), xlab = "", breaks = 30,

cex.lab=1.5, cex.axis=1.5) # plot.spEM calls density.spEM here

depth Elliptical and Spherical Depth

Description

Computation of spherical or elliptical depth.

Usage

depth(pts, x, Cx = var(x))

Arguments

pts A kxd matrix containing the k points that one wants to compute the depth. Each
row is a point.

x A nxd matrix containing the reference data. Each row is an observation.

Cx A dxd scatter matrix for the data x where the default is var(x). When Cx = I(d),
it returns the sphercial depth.

Value

depth returns a k-vector where each entry is the elliptical depth of a point in pts.

12 dmvnorm

Note

depth is used in regcr.

References

Elmore, R. T., Hettmansperger, T. P. and Xuan, F. (2000) Spherical Data Depth and a Multivari-
ate Median, Proceedings of Data Depth: Robust Multivariate Statistical Analysis, Computational
Geometry and Applications.

See Also

regcr

Examples

set.seed(100)
x <- matrix(rnorm(200),nc = 2)
depth(x[1:3,], x)

dmvnorm The Multivariate Normal Density

Description

Density and log-density for the multivariate normal distribution with mean equal to mu and variance
matrix equal to sigma.

Usage

dmvnorm(y, mu=NULL, sigma=NULL)
logdmvnorm(y, mu=NULL, sigma=NULL)

Arguments

y Either a d - vector or an n × d matrix, where d is the dimension of the normal
distribution and n is the number of points at which the density is to be evaluated.

mu d - vector: Mean of the normal distribution (or NULL uses the origin as default)

sigma This d × d matrix is the variance matrix of the normal distribution (or NULL
uses the identity matrix as default)

Details

This code is written to be efficient, using the qr-decomposition of the covariance matrix (and using
it only once, rather than recalculating it for both the determinant and the inverse of sigma).

Value

dmvnorm gives the densities, while logdmvnorm gives the logarithm of the densities.

ellipse 13

See Also

qr, qr.solve, dnorm, rmvnorm

ellipse Draw Two-Dimensional Ellipse Based on Mean and Covariance

Description

Draw a two-dimensional ellipse that traces a bivariate normal density contour for a given mean
vector, covariance matrix, and probability content.

Usage

ellipse(mu, sigma, alpha = .05, npoints = 250, newplot = FALSE,
draw = TRUE, ...)

Arguments

mu A 2-vector giving the mean.

sigma A 2x2 matrix giving the covariance matrix.

alpha Probability to be excluded from the ellipse. The default value is alpha = .05,
which results in a 95% ellipse.

npoints Number of points comprising the border of the ellipse.

newplot If newplot = TRUE and draw = TRUE, plot the ellipse on a new plot. If newplot
= FALSE and draw = TRUE, add the ellipse to an existing plot.

draw If TRUE, draw the ellipse.

... Graphical parameters passed to lines or plot command.

Value

ellipse returns an npointsx2 matrix of the points forming the border of the ellipse.

References

Johnson, R. A. and Wichern, D. W. (2002) Applied Multivariate Statistical Analysis, Fifth Edition,
Prentice Hall.

See Also

regcr

14 expRMM_EM

Examples

Produce a 95% ellipse with the specified mean and covariance structure.

mu <- c(1, 3)
sigma <- matrix(c(1, .3, .3, 1.5), 2, 2)

ellipse(mu, sigma, npoints = 200, newplot = TRUE)

expRMM_EM EM algorithm for Reliability Mixture Models (RMM) with right Cen-
soring

Description

Parametric EM algorithm for univariate finite mixture of exponentials distributions with randomly
right censored data.

Usage

expRMM_EM(x, d=NULL, lambda = NULL, rate = NULL, k = 2,
complete = "tdz", epsilon = 1e-08, maxit = 1000, verb = FALSE)

Arguments

x A vector of n real positive lifetime (possibly censored) durations. If d is not NULL
then a vector of random censoring times c occurred, so that x = min(x, c) and
d = I(x <= c).

d The vector of censoring indication, where 1 means observed lifetime data, and
0 means censored lifetime data.

lambda Initial value of mixing proportions. If NULL, then lambda is set to rep(1/k,k).

rate Initial value of component exponential rates, all set to 1 if NULL.

k Number of components of the mixture.

complete Nature of complete data involved within the EM machinery, can be "tdz" for
(t,d,z) (the default), or "xz" for (x,z) (see Bordes L. and Chauveau D. (2016)
reference below).

epsilon Tolerance limit for declaring algorithm convergence based on the change be-
tween two consecutive iterations.

maxit The maximum number of iterations allowed, convergence may be declared be-
fore maxit iterations (see epsilon above).

verb If TRUE, print updates for every iteration of the algorithm as it runs

expRMM_EM 15

Value

expRMM_EM returns a list of class "mixEM" with the following items:

x The input data.

d The input censoring indicator.

lambda The estimates for the mixing proportions.

rate The estimates for the component rates.

loglik The log-likelihood value at convergence of the algorithm.

posterior An n× k matrix of posterior probabilities for observation, after convergence of
the algorithm.

all.loglik The sequence of log-likelihoods over iterations.

all.lambda The sequence of mixing proportions over iterations.

all.rate The sequence of component rates over iterations.

ft A character vector giving the name of the function.

Author(s)

Didier Chauveau

References

• Bordes, L., and Chauveau, D. (2016), Stochastic EM algorithms for parametric and semipara-
metric mixture models for right-censored lifetime data, Computational Statistics, Volume 31,
Issue 4, pages 1513-1538. https://link.springer.com/article/10.1007/s00180-016-0661-7

See Also

Related functions: plotexpRMM, summary.mixEM.

Other models and algorithms for censored lifetime data: weibullRMM_SEM, spRMM_SEM.

Examples

n <- 300 # sample size
m <- 2 # number of mixture components
lambda <- c(1/3,1-1/3); rate <- c(1,1/10) # mixture parameters
set.seed(1234)
x <- rexpmix(n, lambda, rate) # iid ~ exponential mixture
cs <- runif(n,0,max(x)) # Censoring (uniform) and incomplete data
t <- apply(cbind(x,cs),1,min) # observed or censored data
d <- 1*(x <= cs) # censoring indicator

EM for RMM, exponential lifetimes
l0 <- rep(1/m,m); r0 <- c(1, 0.5) # "arbitrary" initial values
a <- expRMM_EM(t, d, lambda = l0, rate = r0, k = m)
summary(a) # EM estimates etc
plotexpRMM(a, lwd=2) # default plot of EM sequences
plot(a, which=2) # or equivalently, S3 method for "mixEM" object

https://link.springer.com/article/10.1007/s00180-016-0661-7

16 flaremixEM

flaremixEM EM Algorithm for Mixtures of Regressions with Flare

Description

Returns output for 2-component mixture of regressions with flaring using an EM algorithm with
one step of Newton-Raphson requiring an adaptive barrier for maximization of the objective func-
tion. A mixture of regressions with flare occurs when there appears to be a common regression
relationship for the data, but the error terms have a mixture structure of one normal component and
one exponential component.

Usage

flaremixEM(y, x, lambda = NULL, beta = NULL, sigma = NULL,
alpha = NULL, nu = NULL, epsilon = 1e-04,
maxit = 10000, verb = FALSE, restart = 50)

Arguments

y An n-vector of response values.

x An n-vector of predictor values. An intercept term will be added by default.

lambda Initial value of mixing proportions. Entries should sum to 1.

beta Initial value of beta parameters. Should be a 2x2 matrix where the columns
correspond to the component.

sigma A vector of standard deviations.

alpha A scalar for the exponential component’s rate.

nu A vector specifying the barrier constants to use. The first barrier constant where
the algorithm converges is used.

epsilon The convergence criterion.

maxit The maximum number of iterations.

verb If TRUE, then various updates are printed during each iteration of the algorithm.

restart The number of times to restart the algorithm in case convergence is not attained.
The default is 50.

Value

flaremixEM returns a list of class mixEM with items:

x The set of predictors (which includes a column of 1’s).

y The response values.

posterior An nx2 matrix of posterior probabilities for observations.

lambda The final mixing proportions.

beta The final regression coefficients.

gammamixEM 17

sigma The final standard deviations.

alpha The final exponential rate.

loglik The final log-likelihood.

all.loglik A vector of each iteration’s log-likelihood.

ft A character vector giving the name of the function.

See Also

regmixEM

Examples

Simulation output.

set.seed(100)
j=1
while(j == 1){

x1 <- runif(30, 0, 10)
x2 <- runif(20, 10, 20)
x3 <- runif(30, 20, 30)
y1 <- 3+4*x1+rnorm(30, sd = 1)
y2 <- 3+4*x2+rexp(20, rate = .05)
y3 <- 3+4*x3+rnorm(30, sd = 1)
x <- c(x1, x2, x3)
y <- c(y1, y2, y3)
nu <- (1:30)/2

out <- try(flaremixEM(y, x, beta = c(3, 4), nu = nu,
lambda = c(.75, .25), sigma = 1), silent = TRUE)

if(any(class(out) == "try-error")){
j <- 1

} else j <- 2
}

out[4:7]
plot(x, y, pch = 19)
abline(out$beta)

gammamixEM EM Algorithm for Mixtures of Gamma Distributions

Description

Return EM algorithm output for mixtures of gamma distributions.

18 gammamixEM

Usage

gammamixEM(x, lambda = NULL, alpha = NULL, beta = NULL, k = 2,
mom.start = TRUE, fix.alpha = FALSE, epsilon = 1e-08,
maxit = 1000, maxrestarts = 20, verb = FALSE)

Arguments

x A vector of length n consisting of the data.
lambda Initial value of mixing proportions. If NULL, then lambda is random from a

uniform Dirichlet distribution (i.e., its entries are uniform random and then it is
normalized to sum to 1).

alpha Starting value of vector of component shape parameters. If non-NULL, alpha
must be of length k if allowing different component shape parameters, or a sin-
gle value if fix.alpha = TRUE. If NULL, then the initial value is estimated by
partitioning the data into k regions (with lambda determining the proportion of
values in each region) and then calculating the method of moments estimates.

beta Starting value of vector of component scale parameters. If non-NULL and a
vector, k is set to length(beta). If NULL, then the initial value is estimated
the same method described for alpha.

k Number of components. Initial value ignored unless alpha and beta are both
NULL.

mom.start Logical to indicate if a method of moments starting value strategy should be
implemented. If TRUE, then only unspecified starting values will be generated
according to this strategy.

epsilon The convergence criterion. Convergence is declared when the change in the
observed data log-likelihood increases by less than epsilon.

fix.alpha Logical to indicate if the components should have a common shape parameter
alpha estimated. The default is FALSE.

maxit The maximum number of iterations.
maxrestarts The maximum number of restarts allowed in case of a problem with the partic-

ular starting values chosen (each restart uses randomly chosen starting values).
verb If TRUE, then various updates are printed during each iteration of the algorithm.

Value

gammamixEM returns a list of class mixEM with items:

x The raw data.
lambda The final mixing proportions.
gamma.pars A 2xk matrix where each column provides the component estimates of alpha

and beta.
loglik The final log-likelihood.
posterior An nxk matrix of posterior probabilities for observations.
all.loglik A vector of each iteration’s log-likelihood. This vector includes both the initial

and the final values; thus, the number of iterations is one less than its length.
ft A character vector giving the name of the function.

Habituationdata 19

References

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977) Maximum Likelihood From Incomplete
Data Via the EM Algorithm, Journal of the Royal Statistical Society, Series B, 39(1), 1–38.

Young, D. S., Chen, X., Hewage, D., and Nilo-Poyanco, R. (2019) Finite Mixture-of-Gamma Dis-
tributions: Estimation, Inference, and Model-Based Clustering, Advances in Data Analysis and
Classification, 13(4), 1053–1082.

Examples

##Analyzing a 3-component mixture of gammas.

set.seed(100)
x <- c(rgamma(200, shape = 0.2, scale = 14), rgamma(200,

shape = 32, scale = 10), rgamma(200, shape = 5, scale = 6))
out <- gammamixEM(x, lambda = c(1, 1, 1)/3, verb = TRUE)
out[2:4]

Habituationdata Infant habituation data

Description

From Thomas et al (2011):

"Habituation is a standard method of studying infant behaviors. Indeed, much of what is known
about infant memory and perception rests on habituation methods. Six-month infants (n = 51) were
habituated to a checker-board pattern on two occasions, one week apart. On each occasion, the
infant was presented with the checkerboard pattern and the length of time the infant viewed the
pattern before disengaging was recorded; this denoted the end of a trial. After disengagement,
another trial was presented. The procedure was implemented for eleven trials. The conventional
index of habituation performance is the summed observed fixation to the checkerboard pattern over
the eleven trials. Thus, an index of reliability focuses on how these fixation times, in seconds, on
the two assessment occasions correlate: r = .29."

Usage

data(Habituationdata)

Format

A data frame with two variables, m1 and m2, and 51 cases. The two variables are the summed
observations times for the two occasions described above.

Author(s)

Hoben Thomas

20 hmeEM

Source

Original source: Thomas et al. (2011). See references section.

References

Thomas, H., Lohaus, A., and Domsch, H. (2011), Extensions of Reliability Theory, in Nonparamet-
ric Statistics and Mixture Models: A Festschrift in Honor of Thomas Hettmansperger (Singapore:
World Scientific), pp. 309-316.

hmeEM EM Algorithm for Mixtures-of-Experts

Description

Returns EM algorithm output for a mixture-of-experts model. Currently, this code only handles
a 2-component mixture-of-experts, but will be extended to the general k-component hierarchical
mixture-of-experts.

Usage

hmeEM(y, x, lambda = NULL, beta = NULL, sigma = NULL, w = NULL,
k = 2, addintercept = TRUE, epsilon = 1e-08,
maxit = 10000, verb = FALSE)

Arguments

y An n-vector of response values.

x An nxp matrix of predictors. See addintercept below.

lambda Initial value of mixing proportions, which are modeled as an inverse logit func-
tion of the predictors. Entries should sum to 1. If NULL, then lambda is taken
as 1/k for each x.

beta Initial value of beta parameters. Should be a pxk matrix, where p is the num-
ber of columns of x and k is number of components. If NULL, then beta has
standard normal entries according to a binning method done on the data.

sigma A vector of standard deviations. If NULL, then 1/sigma2 has random standard
exponential entries according to a binning method done on the data.

w A p-vector of coefficients for the way the mixing proportions are modeled. See
lambda.

k Number of components. Currently, only k=2 is accepted.

addintercept If TRUE, a column of ones is appended to the x matrix before the value of p is
calculated.

epsilon The convergence criterion.

maxit The maximum number of iterations.

verb If TRUE, then various updates are printed during each iteration of the algorithm.

hmeEM 21

Value

hmeEM returns a list of class mixEM with items:

x The set of predictors (which includes a column of 1’s if addintercept = TRUE).

y The response values.

w The final coefficients for the functional form of the mixing proportions.

lambda An nxk matrix of the final mixing proportions.

beta The final regression coefficients.

sigma The final standard deviations. If arbmean = FALSE, then only the smallest stan-
dard deviation is returned. See scale below.

loglik The final log-likelihood.

posterior An nxk matrix of posterior probabilities for observations.

all.loglik A vector of each iteration’s log-likelihood.

restarts The number of times the algorithm restarted due to unacceptable choice of initial
values.

ft A character vector giving the name of the function.

References

Jacobs, R. A., Jordan, M. I., Nowlan, S. J. and Hinton, G. E. (1991) Adaptive Mixtures of Local
Experts, Neural Computation 3(1), 79–87.

McLachlan, G. J. and Peel, D. (2000) Finite Mixture Models, John Wiley and Sons, Inc.

See Also

regmixEM

Examples

EM output for NOdata.

data(NOdata)
attach(NOdata)
set.seed(100)
em.out <- regmixEM(Equivalence, NO)
hme.out <- hmeEM(Equivalence, NO, beta = em.out$beta)
hme.out[3:7]

22 ise.npEM

ise.npEM Integrated Squared Error for a selected density from npEM output

Description

Computes the integrated squared error for a selected estimated density from npEM output (selected
by specifying the component and block number), relative to a true pdf that must be specified by
the user. The range for the numerical integration must be specified. This function also returns (by
default) a plot of the true and estimated densities.

Usage

ise.npEM(npEMout, component=1, block=1, truepdf, lower=-Inf,
upper=Inf, plots = TRUE, ...)

Arguments

npEMout An object of class npEM such as the output of the npEM function

component, block
Component and block of particular density to analyze from npEMout.

truepdf an R function taking a numeric first argument and returning a numeric vector of
the same length. Returning a non-finite element will generate an error.

lower, upper the limits of integration. Can be infinite.

plots logical: Should plots be produced?

... additional arguments to be passed to truepdf (and that may be mandatory like,
e.g., the df = argument of dt). Remember to use argument names not matching
those of ise.npRM.

Details

This function calls the wkde (weighted kernel density estimate) function.

Value

Just as for the integrate function, a list of class "integrate" with components

value the final estimate of the integral.

abs.error estimate of the modulus of the absolute error.

subdivisions the number of subintervals produced in the subdivision process.

message "OK" or a character string giving the error message.

call the matched call.

ise.npEM 23

References

• Benaglia, T., Chauveau, D., and Hunter, D. R. (2009), An EM-like algorithm for semi- and
non-parametric estimation in multivariate mixtures, Journal of Computational and Graphical
Statistics, 18, 505-526.

• Benaglia, T., Chauveau, D., Hunter, D. R., and Young, D. (2009), mixtools: An R package for
analyzing finite mixture models. Journal of Statistical Software, 32(6):1-29.

See Also

npEM, wkde, integrate

Examples

Mixture with mv gaussian model
set.seed(100)
m <- 2 # no. of components
r <- 3 # no. of repeated measures (coordinates)
lambda <- c(0.4, 0.6)
Note: Need first 2 coordinates conditionally iid due to block structure
mu <- matrix(c(0, 0, 0, 3, 3, 5), m, r, byrow=TRUE) # means
sigma <- matrix(rep(1, 6), m, r, byrow=TRUE) # stdevs
blockid = c(1,1,2) # block structure of coordinates
n <- 200
x <- rmvnormmix(n, lambda, mu, sigma) # simulated data

fit the model with "arbitrary" initial centers
centers <- matrix(c(0, 0, 0, 4, 4, 4), 2, 3, byrow=TRUE)
a <- npEM(x, centers, blockid, eps=1e-8, verb=FALSE)

Calculate integrated squared error for j=2, b=1:
j <- 2 # component
b <- 1 # block
coords <- a$blockid == b
ise.npEM(a, j, b, dnorm, lower=0, upper=10, plots=TRUE,

mean=mu[j,coords][1], sd=sigma[j, coords][1])

The following (lengthy) example recreates the normal multivariate
mixture model simulation from Benaglia et al (2009).
mu <- matrix(c(0, 0, 0, 3, 4, 5), m, r, byrow=TRUE)
nbrep <- 5 # Benaglia et al use 300 replications

matrix for storing sums of Integrated Squared Errors
ISE <- matrix(0,m,r,dimnames=list(Components=1:m, Blocks=1:r))

nblabsw <- 0 # no. of label switches
for (mc in 1:nbrep) {

print(paste("REPETITION", mc))
x <- rmvnormmix(n,lambda,mu,sigma) # simulated data

a <- npEM(x, centers, verb=FALSE) #default:
if (a$lambda[1] > a$lambda[2]) nblabsw <- nblabsw + 1

24 logisregmixEM

for (j in 1:m) { # for each component
for (k in 1:r) { # for each coordinate; not assuming iid!

dnorm with correct mean, sd is the true density:
ISE[j,k] <- ISE[j,k] + ise.npEM(a, j, k, dnorm, lower=mu[j,k]-5,

upper=mu[j,k]+5, plots=FALSE, mean=mu[j,k],
sd=sigma[j,k])$value

}
}

MISE <- ISE/nbrep # Mean ISE
sqMISE <- sqrt(MISE) # root-mean-integrated-squared error
}
sqMISE

logisregmixEM EM Algorithm for Mixtures of Logistic Regressions

Description

Returns EM algorithm output for mixtures of logistic regressions with arbitrarily many components.

Usage

logisregmixEM(y, x, N = NULL, lambda = NULL, beta = NULL, k = 2,
addintercept = TRUE, epsilon = 1e-08,
maxit = 10000, verb = FALSE)

Arguments

y An n-vector of successes out of N trials.

x An nxp matrix of predictors. See addintercept below.

N An n-vector of number of trials for the logistic regression. If NULL, then N is
an n-vector of 1s for binary logistic regression.

lambda Initial value of mixing proportions. Entries should sum to 1. This determines
number of components. If NULL, then lambda is random from uniform Dirich-
let and number of components is determined by beta.

beta Initial value of beta parameters. Should be a pxk matrix, where p is the num-
ber of columns of x and k is number of components. If NULL, then beta is
generated by binning the data into k bins and using glm on the values in each
of the bins. If both lambda and beta are NULL, then number of components is
determined by k.

k Number of components. Ignored unless lambda and beta are both NULL.

addintercept If TRUE, a column of ones is appended to the x matrix before the value of p is
calculated.

epsilon The convergence criterion.

maxit The maximum number of iterations.

verb If TRUE, then various updates are printed during each iteration of the algorithm.

logisregmixEM 25

Value

logisregmixEM returns a list of class mixEM with items:

x The predictor values.

y The response values.

lambda The final mixing proportions.

beta The final logistic regression coefficients.

loglik The final log-likelihood.

posterior An nxk matrix of posterior probabilities for observations.

all.loglik A vector of each iteration’s log-likelihood.

restarts The number of times the algorithm restarted due to unacceptable choice of initial
values.

ft A character vector giving the name of the function.

References

McLachlan, G. J. and Peel, D. (2000) Finite Mixture Models, John Wiley and Sons, Inc.

See Also

poisregmixEM

Examples

EM output for data generated from a 2-component logistic regression model.

set.seed(100)
beta <- matrix(c(1, .5, 2, -.8), 2, 2)
x <- runif(50, 0, 10)
x1 <- cbind(1, x)
xbeta <- x1%*%beta
N <- ceiling(runif(50, 50, 75))
w <- rbinom(50, 1, .3)
y <- w*rbinom(50, size = N, prob = (1/(1+exp(-xbeta[, 1]))))+

(1-w)*rbinom(50, size = N, prob =
(1/(1+exp(-xbeta[, 2]))))

out.1 <- logisregmixEM(y, x, N, verb = TRUE, epsilon = 1e-01)
out.1

EM output for data generated from a 2-component binary logistic regression model.

beta <- matrix(c(-10, .1, 20, -.1), 2, 2)
x <- runif(500, 50, 250)
x1 <- cbind(1, x)
xbeta <- x1%*%beta
w <- rbinom(500, 1, .3)
y <- w*rbinom(500, size = 1, prob = (1/(1+exp(-xbeta[, 1]))))+

(1-w)*rbinom(500, size = 1, prob =

26 makemultdata

(1/(1+exp(-xbeta[, 2]))))
out.2 <- logisregmixEM(y, x, beta = beta, lambda = c(.3, .7),

verb = TRUE, epsilon = 1e-01)
out.2

makemultdata Produce Cutpoint Multinomial Data

Description

Change data into a matrix of multinomial counts using the cutpoint method and generate EM algo-
rithm starting values for a k-component mixture of multinomials.

Usage

makemultdata(..., cuts)

Arguments

... Either vectors (possibly of different lengths) of raw data or an nxm matrix (or
data frame) of data. If ... are vectors of varying length, then makemultdata
will create a matrix of size nxm where n is the sample size and m is the length
of the vector with maximum length. Those vectors with length less than m will
have NAs to make the corresponding row in the matrix of length m. If ... is
a matrix (or data frame), then the rows must correspond to the sample and the
columns the repeated measures.

cuts A vector of cutpoints. This vector is sorted by the algorithm.

Details

The (i, j)th entry of the matrix y (for j < p) is equal to the number of entries in the ith column of x
that are less than or equal to cuts[j]. The (i, p)th entry is equal to the number of entries greater than
cuts[j].

Value

makemultdata returns an object which is a list with components:

x An nxm matrix of the raw data.

y An nxp matrix of the discretized data where p is one more than the number of
cutpoints. Each row is a multinomial vector of counts. In particular, each row
should sum to the number of repeated measures for that sample.

References

Elmore, R. T., Hettmansperger, T. P. and Xuan, F. (2004) The Sign Statistic, One-Way Layouts and
Mixture Models, Statistical Science 19(4), 579–587.

mixturegram 27

See Also

compCDF, multmixmodel.sel, multmixEM

Examples

Randomly generated data.

set.seed(100)
y <- matrix(rpois(70, 6), 10, 7)
cuts <- c(2, 5, 7)
out1 <- makemultdata(y, cuts = cuts)
out1

The sulfur content of the coal seams in Texas.

A <- c(1.51, 1.92, 1.08, 2.04, 2.14, 1.76, 1.17)
B <- c(1.69, 0.64, .9, 1.41, 1.01, .84, 1.28, 1.59)
C <- c(1.56, 1.22, 1.32, 1.39, 1.33, 1.54, 1.04, 2.25, 1.49)
D <- c(1.3, .75, 1.26, .69, .62, .9, 1.2, .32)
E <- c(.73, .8, .9, 1.24, .82, .72, .57, 1.18, .54, 1.3)

out2 <- makemultdata(A, B, C, D, E,
cuts = median(c(A, B, C, D, E)))

out2

The reaction time data.

data(RTdata)
out3 <- makemultdata(RTdata, cuts =

100*c(5, 10, 12, 14, 16, 20, 25, 30, 40, 50))
dim(out3$y)
out3$y[1:10,]

mixturegram Mixturegrams

Description

Construct a mixturegram for determining an apporpriate number of components.

Usage

mixturegram(data, pmbs, method = c("pca", "kpca", "lda"), all.n = FALSE,
id.con = NULL, score = 1, iter.max = 50, nstart = 25, ...)

Arguments

data The data, which must either be a vector or a matrix. If a matrix, then the rows
correspond to the observations.

28 mixturegram

pmbs A list of length (K-1) such that each element is an nxk matrix of the posterior
membership probabilities. These are obtained from each of the "best" estimated
k-component mixture models, k = 2,...,K.

method The dimension reduction method used. method = "pca" implements principal
components analysis. method = "kpca" implements kernel principal compo-
nents analysis. method = "lda" implements reduced rank linear discriminant
analysis.

all.n A logical specifying whether the mixturegram should plot the profiles of all ob-
servations (TRUE) or just the K-profile summaries (FALSE). The default is FALSE.

id.con An argument that allows one to impose some sort of (meaningful) identifiabil-
ity constraint so that the mixture components are in some sort of comparable
order between mixture models with different numbers of components. If NULL,
then the components are ordered by the component means for univariate data or
ordered by the first dimension of the component means for multivariate data.

score The value for the specified dimension reduction technique’s score, which is used
for constructing the mixturegram. By default, this value is 1, which is the value
that will typically be used. Larger values will result in more variability displayed
on the mixturegram. Note that the largest value that can be calculated at each
value of k>1 on the mixturegram is p+k-1, where p is the number of columns of
data.

iter.max The maximum number of iterations allowed for the k-means clustering algo-
rithm, which is passed to the kmeans function. The default is 50.

nstart The number of random sets chosen based on k centers, which is passed to the
kmeans function. The default is 25.

... Additional arguments that can be passed to the underlying plot function.

Value

mixturegram returns a mixturegram where the profiles are plotted over component values of k =
1,...,K.

References

Young, D. S., Ke, C., and Zeng, X. (2018) The Mixturegram: A Visualization Tool for Assessing
the Number of Components in Finite Mixture Models, Journal of Computational and Graphical
Statistics, 27(3), 564–575.

See Also

boot.comp

Examples

##Data generated from a 2-component mixture of normals.

set.seed(100)
n <- 100

multmixEM 29

w <- rmultinom(n,1,c(.3,.7))
y <- sapply(1:n,function(i) w[1,i]*rnorm(1,-6,1) +

w[2,i]*rnorm(1,0,1))

selection <- function(i,data,rep=30){
out <- replicate(rep,normalmixEM(data,epsilon=1e-06,

k=i,maxit=5000),simplify=FALSE)
counts <- lapply(1:rep,function(j)

table(apply(out[[j]]$posterior,1,
which.max)))

counts.length <- sapply(counts, length)
counts.min <- sapply(counts, min)
counts.test <- (counts.length != i)|(counts.min < 5)
if(sum(counts.test) > 0 & sum(counts.test) < rep)
out <- out[!counts.test]
l <- unlist(lapply(out, function(x) x$loglik))
tmp <- out[[which.max(l)]]

}

all.out <- lapply(2:5, selection, data = y, rep = 2)
pmbs <- lapply(1:length(all.out), function(i)

all.out[[i]]$post)
mixturegram(y, pmbs, method = "pca", all.n = FALSE,

id.con = NULL, score = 1,
main = "Mixturegram (Well-Separated Data)")

multmixEM EM Algorithm for Mixtures of Multinomials

Description

Return EM algorithm output for mixtures of multinomial distributions.

Usage

multmixEM(y, lambda = NULL, theta = NULL, k = 2,
maxit = 10000, epsilon = 1e-08, verb = FALSE)

Arguments

y Either An nxp matrix of data (multinomial counts), where n is the sample size
and p is the number of multinomial bins, or the output of the makemultdata
function. It is not necessary that all of the rows contain the same number of
multinomial trials (i.e., the row sums of y need not be identical).

lambda Initial value of mixing proportions. Entries should sum to 1. This determines
number of components. If NULL, then lambda is random from uniform Dirich-
let and number of components is determined by theta.

30 multmixEM

theta Initial value of theta parameters. Should be a kxp matrix, where p is the number
of columns of y and k is number of components. Each row of theta should sum
to 1. If NULL, then each row is random from uniform Dirichlet. If both lambda
and theta are NULL, then number of components is determined by k.

k Number of components. Ignored unless lambda and theta are NULL.
epsilon The convergence criterion.
maxit The maximum number of iterations.
verb If TRUE, then various updates are printed during each iteration of the algorithm.

Value

multmixEM returns a list of class mixEM with items:

y The raw data.
lambda The final mixing proportions.
theta The final multinomial parameters.
loglik The final log-likelihood.
posterior An nxk matrix of posterior probabilities for observations.
all.loglik A vector of each iteration’s log-likelihood.
restarts The number of times the algorithm restarted due to unacceptable choice of initial

values.
ft A character vector giving the name of the function.

References

• McLachlan, G. J. and Peel, D. (2000) Finite Mixture Models, John Wiley and Sons, Inc.
• Elmore, R. T., Hettmansperger, T. P. and Xuan, F. (2004) The Sign Statistic, One-Way Layouts

and Mixture Models, Statistical Science 19(4), 579–587.

See Also

compCDF, makemultdata, multmixmodel.sel

Examples

The sulfur content of the coal seams in Texas

set.seed(100)
A <- c(1.51, 1.92, 1.08, 2.04, 2.14, 1.76, 1.17)
B <- c(1.69, 0.64, .9, 1.41, 1.01, .84, 1.28, 1.59)
C <- c(1.56, 1.22, 1.32, 1.39, 1.33, 1.54, 1.04, 2.25, 1.49)
D <- c(1.3, .75, 1.26, .69, .62, .9, 1.2, .32)
E <- c(.73, .8, .9, 1.24, .82, .72, .57, 1.18, .54, 1.3)

dis.coal <- makemultdata(A, B, C, D, E,
cuts = median(c(A, B, C, D, E)))

em.out <- multmixEM(dis.coal)
em.out[1:4]

multmixmodel.sel 31

multmixmodel.sel Model Selection Mixtures of Multinomials

Description

Assess the number of components in a mixture of multinomials model using the Akaike’s informa-
tion criterion (AIC), Schwartz’s Bayesian information criterion (BIC), Bozdogan’s consistent AIC
(CAIC), and Integrated Completed Likelihood (ICL).

Usage

multmixmodel.sel(y, comps = NULL, ...)

Arguments

y Either An nxp matrix of data (multinomial counts), where n is the sample size
and p is the number of multinomial bins, or the output of the makemultdata
function. It is not necessary that all of the rows contain the same number of
multinomial trials (i.e., the row sums of y need not be identical).

comps Vector containing the numbers of components to consider. If NULL, this is set
to be 1:(max possible), where (max possible) is floor((m+1)/2) and m is the
minimum row sum of y.

... Arguments passed to multmixEM that control convergence of the underlying EM
algorithm.

Value

multmixmodel.sel returns a table summarizing the AIC, BIC, CAIC, ICL, and log-likelihood val-
ues along with the winner (the number with the lowest aforementioned values).

See Also

compCDF, makemultdata, multmixEM

Examples

##Data generated using the multinomial cutpoint method.

set.seed(100)
x <- matrix(rpois(70, 6), 10, 7)
x.new <- makemultdata(x, cuts = 5)
multmixmodel.sel(x.new$y, comps = c(1,2), epsilon = 1e-03)

32 mvnormalmixEM

mvnormalmixEM EM Algorithm for Mixtures of Multivariate Normals

Description

Return EM algorithm output for mixtures of multivariate normal distributions.

Usage

mvnormalmixEM(x, lambda = NULL, mu = NULL, sigma = NULL, k = 2,
arbmean = TRUE, arbvar = TRUE, epsilon = 1e-08,
maxit = 10000, verb = FALSE)

Arguments

x A matrix of size nxp consisting of the data.

lambda Initial value of mixing proportions. Entries should sum to 1. This determines
number of components. If NULL, then lambda is random from uniform Dirich-
let and number of components is determined by mu.

mu A list of size k consisting of initial values for the p-vector mean parameters.
If NULL, then the vectors are generated from a normal distribution with mean
and standard deviation according to a binning method done on the data. If both
lambda and mu are NULL, then number of components is determined by sigma.

sigma A list of size k consisting of initial values for the pxp variance-covariance matri-
ces. If NULL, then sigma is generated using the data. If lambda, mu, and sigma
are NULL, then number of components is determined by k.

k Number of components. Ignored unless lambda, mu, and sigma are all NULL.

arbmean If TRUE, then the component densities are allowed to have different mus. If
FALSE, then a scale mixture will be fit.

arbvar If TRUE, then the component densities are allowed to have different sigmas. If
FALSE, then a location mixture will be fit.

epsilon The convergence criterion.

maxit The maximum number of iterations.

verb If TRUE, then various updates are printed during each iteration of the algorithm.

Value

normalmixEM returns a list of class mixEM with items:

x The raw data.

lambda The final mixing proportions.

mu A list of with the final mean vectors.

sigma A list with the final variance-covariance matrices.

mvnpEM 33

loglik The final log-likelihood.

posterior An nxk matrix of posterior probabilities for observations.

all.loglik A vector of each iteration’s log-likelihood.

restarts The number of times the algorithm restarted due to unacceptable choice of initial
values.

ft A character vector giving the name of the function.

References

McLachlan, G. J. and Peel, D. (2000) Finite Mixture Models, John Wiley and Sons, Inc.

See Also

normalmixEM

Examples

##Fitting randomly generated data with a 2-component location mixture of bivariate normals.

set.seed(100)
x.1 <- rmvnorm(40, c(0, 0))
x.2 <- rmvnorm(60, c(3, 4))
X.1 <- rbind(x.1, x.2)
mu <- list(c(0, 0), c(3, 4))

out.1 <- mvnormalmixEM(X.1, arbvar = FALSE, mu = mu,
epsilon = 1e-02)

out.1[2:5]

##Fitting randomly generated data with a 2-component scale mixture of bivariate normals.

x.3 <- rmvnorm(40, c(0, 0), sigma =
matrix(c(200, 1, 1, 150), 2, 2))

x.4 <- rmvnorm(60, c(0, 0))
X.2 <- rbind(x.3, x.4)
lambda <- c(0.40, 0.60)
sigma <- list(diag(1, 2), matrix(c(200, 1, 1, 150), 2, 2))

out.2 <- mvnormalmixEM(X.2, arbmean = FALSE,
sigma = sigma, lambda = lambda,
epsilon = 1e-02)

out.2[2:5]

mvnpEM EM-like Algorithm for Nonparametric Mixture Models with Condi-
tionally Independent Multivariate Component Densities

34 mvnpEM

Description

An extension of the original npEM algorithm, for mixtures of multivariate data where the coordinates
of a row (case) in the data matrix are assumed to be made of independent but multivariate blocks
(instead of just coordinates), conditional on the mixture component (subpopulation) from which
they are drawn (Chauveau and Hoang 2015).

Usage

mvnpEM(x, mu0, blockid = 1:ncol(x), samebw = TRUE,
bwdefault = apply(x,2,bw.nrd0), init = NULL,
eps = 1e-8, maxiter = 500, verb = TRUE)

Arguments

x An n × r matrix of data. Each of the n rows is a case, and each case has r
repeated measurements. These measurements are assumed to be conditionally
independent, conditional on the mixture component (subpopulation) from which
the case is drawn.

mu0 Either an m × r matrix specifying the initial centers for the kmeans function,
or an integer m specifying the number of initial centers, which are then chosen
randomly in kmeans

blockid A vector of length r identifying coordinates (columns of x) that are in the same
block. The default has all distinct elements, indicating that the model has r
blocks of dimension 1, in which case the model is handled directly by the npEM
algorithm. See example below for actual multivariate blocks example.

samebw Logical: If TRUE, use the same bandwidth per coordinate for all iteration and
all components. If FALSE, use a separate bandwidth for each component and
coordinate, and update this bandwidth at each iteration of the algorithm using
a suitably modified bw.nrd0 method as described in Benaglia et al (2011) and
Chauveau and Hoang (2015).

bwdefault Bandwidth default for density estimation,a simplistic application of the default
bw.nrd0 for each coordinate (column) of the data.

init Initialization method, based on an initial n × m matrix for the posterior prob-
abilities. If NULL, a kmeans clustering with mu0 initial centers is applied to the
data and the initial matrix of posteriors is built from the result.

eps Tolerance limit for declaring algorithm convergence. Convergence is declared
whenever the maximum change in any coordinate of the lambda vector (of mix-
ing proportion estimates) does not exceed eps.

maxiter The maximum number of iterations allowed; convergence may be declared be-
fore maxiter iterations (see eps above).

verb Verbose mode; if TRUE, print updates for every iteration of the algorithm as it
runs

Value

mvnpEM returns a list of class mvnpEM with the following items:

mvnpEM 35

data The raw data (an n× r matrix).

posteriors An n×m matrix of posterior probabilities for each observation (row).

lambda The sequence of mixing proportions over iterations.

blockid The blockid input argument. Needed by any method that produces density
estimates from the output, like plot.mvnpEM.

samebw The samebw input argument. Needed by any method that produces density esti-
mates from the output, like plot.mvnpEM.

bandwidth The final bandwidth matrix after convergence of the algorithm. Its shape de-
pends on the samebw input argument. If samebw = TRUE, a vectors with the
bandwidth value for each of the r coordinates (same for all components and
iterations). If samebw = FALSE, a m × r matrix, where each row is associated
to one component and gives the r bandwidth values, one for each coordinate.
Needed by any method that produces density estimates from the output, like
plot.mvnpEM.

lambdahat The final mixing proportions.

loglik The sequence of pseudo log-likelihood values over iterations.

References

• Benaglia, T., Chauveau, D., and Hunter, D. R. (2009), An EM-like algorithm for semi- and
non-parametric estimation in multivariate mixtures, Journal of Computational and Graphical
Statistics, 18, 505-526.

• Benaglia, T., Chauveau, D. and Hunter, D.R. (2011), Bandwidth Selection in an EM-like algo-
rithm for nonparametric multivariate mixtures. Nonparametric Statistics and Mixture Models:
A Festschrift in Honor of Thomas P. Hettmansperger. World Scientific Publishing Co., pages
15-27.

• Chauveau, D., and Hoang, V. T. L. (2015), Nonparametric mixture models with condition-
ally independent multivariate component densities, Preprint under revision. https://hal.
science/hal-01094837

See Also

plot.mvnpEM, npEM

Examples

Example as in Chauveau and Hoang (2015) with 6 coordinates
Not run:
m=2; r=6; blockid <-c(1,1,2,2,3,3) # 3 bivariate blocks
generate some data x ...
a <- mvnpEM(x, mu0=2, blockid, samebw=F) # adaptive bandwidth
plot(a) # this S3 method produces 6 plots of univariate marginals
summary(a)
End(Not run)

https://hal.science/hal-01094837
https://hal.science/hal-01094837

36 normalmixEM

NOdata Ethanol Fuel Data Set

Description

This data set gives the equivalence ratios and peak nitrogen oxide emissions in a study using pure
ethanol as a spark-ignition engine fuel.

Usage

data(NOdata)

Format

This data frame consists of:

NO The peak nitrogen oxide emission levels.

Equivalence The equivalence ratios for the engine at compression ratios from 7.5 to 18.

Source

Brinkman, N. D. (1981) Ethanol Fuel – A Single-Cylinder Engine Study of Efficiency and Exhaust
Emissions, S.A.E. Transactions, 68.

References

Hurn, M., Justel, A. and Robert, C. P. (2003) Estimating Mixtures of Regressions, Journal of Com-
putational and Graphical Statistics 12(1), 55–79.

normalmixEM EM Algorithm for Mixtures of Univariate Normals

Description

Return EM algorithm output for mixtures of normal distributions.

Usage

normalmixEM(x, lambda = NULL, mu = NULL, sigma = NULL, k = 2,
mean.constr = NULL, sd.constr = NULL,
epsilon = 1e-08, maxit = 1000, maxrestarts = 20,
verb = FALSE, fast = FALSE, ECM = FALSE,
arbmean = TRUE, arbvar = TRUE)

normalmixEM 37

Arguments

x A vector of length n consisting of the data.

lambda Initial value of mixing proportions. Automatically repeated as necessary to pro-
duce a vector of length k, then normalized to sum to 1. If NULL, then lambda is
random from a uniform Dirichlet distribution (i.e., its entries are uniform ran-
dom and then it is normalized to sum to 1).

mu Starting value of vector of component means. If non-NULL and a scalar, arbmean
is set to FALSE. If non-NULL and a vector, k is set to length(mu). If NULL,
then the initial value is randomly generated from a normal distribution with cen-
ter(s) determined by binning the data.

sigma Starting value of vector of component standard deviations for algorithm. If non-
NULL and a scalar, arbvar is set to FALSE. If non-NULL and a vector, arbvar
is set to TRUE and k is set to length(sigma). If NULL, then the initial value is
the reciprocal of the square root of a vector of random exponential-distribution
values whose means are determined according to a binning method done on the
data.

k Number of components. Initial value ignored unless mu and sigma are both
NULL.

mean.constr Equality constraints on the mean parameters, given as a vector of length k. Each
vector entry helps specify the constraints, if any, on the corresponding mean pa-
rameter: If NA, the corresponding parameter is unconstrained. If numeric, the
corresponding parameter is fixed at that value. If a character string consisting of
a single character preceded by a coefficient, such as "0.5a" or "-b", all parame-
ters using the same single character in their constraints will fix these parameters
equal to the coefficient times some the same free parameter. For instance, if
mean.constr = c(NA, 0, "a", "-a"), then the first mean parameter is uncon-
strained, the second is fixed at zero, and the third and forth are constrained to be
equal and opposite in sign.

sd.constr Equality constraints on the standard deviation parameters. See mean.constr.

epsilon The convergence criterion. Convergence is declared when the change in the
observed data log-likelihood increases by less than epsilon.

maxit The maximum number of iterations.

maxrestarts The maximum number of restarts allowed in case of a problem with the particu-
lar starting values chosen due to one of the variance estimates getting too small
(each restart uses randomly chosen starting values). It is well-known that when
each component of a normal mixture may have its own mean and variance, the
likelihood has no maximizer; in such cases, we hope to find a "nice" local max-
imum with this algorithm instead, but occasionally the algorithm finds a "not
nice" solution and one of the variances goes to zero, driving the likelihood to
infinity.

verb If TRUE, then various updates are printed during each iteration of the algorithm.

fast If TRUE and k==2 and arbmean==TRUE, then use normalmixEM2comp, which
is a much faster version of the EM algorithm for this case. This version is less
protected against certain kinds of underflow that can cause numerical problems
and it does not permit any restarts. If k>2, fast is ignored.

38 normalmixEM

ECM logical: Should this algorithm be an ECM algorithm in the sense of Meng and
Rubin (1993)? If FALSE, the algorithm is a true EM algorithm; if TRUE, then
every half-iteration alternately updates the means conditional on the variances
or the variances conditional on the means, with an extra E-step in between these
updates.

arbmean If TRUE, then the component densities are allowed to have different mus. If
FALSE, then a scale mixture will be fit. Initial value ignored unless mu is NULL.

arbvar If TRUE, then the component densities are allowed to have different sigmas. If
FALSE, then a location mixture will be fit. Initial value ignored unless sigma is
NULL.

Details

This is the standard EM algorithm for normal mixtures that maximizes the conditional expected
complete-data log-likelihood at each M-step of the algorithm. If desired, the EM algorithm may
be replaced by an ECM algorithm (see ECM argument) that alternates between maximizing with
respect to the mu and lambda while holding sigma fixed, and maximizing with respect to sigma and
lambda while holding mu fixed. In the case where arbmean is FALSE and arbvar is TRUE, there is
no closed-form EM algorithm, so the ECM option is forced in this case.

Value

normalmixEM returns a list of class mixEM with items:

x The raw data.

lambda The final mixing proportions.

mu The final mean parameters.

sigma The final standard deviations. If arbmean = FALSE, then only the smallest stan-
dard deviation is returned. See scale below.

scale If arbmean = FALSE, then the scale factor for the component standard devia-
tions is returned. Otherwise, this is omitted from the output.

loglik The final log-likelihood.

posterior An nxk matrix of posterior probabilities for observations.

all.loglik A vector of each iteration’s log-likelihood. This vector includes both the initial
and the final values; thus, the number of iterations is one less than its length.

restarts The number of times the algorithm restarted due to unacceptable choice of initial
values.

ft A character vector giving the name of the function.

References

• McLachlan, G. J. and Peel, D. (2000) Finite Mixture Models, John Wiley and Sons, Inc.

• Meng, X.-L. and Rubin, D. B. (1993) Maximum Likelihood Estimation Via the ECM Algo-
rithm: A General Framework, Biometrika 80(2): 267-278.

• Benaglia, T., Chauveau, D., Hunter, D. R., and Young, D. mixtools: An R package for analyz-
ing finite mixture models. Journal of Statistical Software, 32(6):1-29, 2009.

normalmixEM2comp 39

See Also

mvnormalmixEM, normalmixEM2comp, normalmixMMlc, spEMsymloc

Examples

##Analyzing the Old Faithful geyser data with a 2-component mixture of normals.

data(faithful)
attach(faithful)
set.seed(100)
system.time(out<-normalmixEM(waiting, arbvar = FALSE, epsilon = 1e-03))
out
system.time(out2<-normalmixEM(waiting, arbvar = FALSE, epsilon = 1e-03, fast=TRUE))
out2 # same thing but much faster

normalmixEM2comp Fast EM Algorithm for 2-Component Mixtures of Univariate Normals

Description

Return EM algorithm output for mixtures of univariate normal distributions for the special case of
2 components, exploiting the simple structure of the problem to speed up the code.

Usage

normalmixEM2comp(x, lambda, mu, sigsqrd, eps= 1e-8, maxit = 1000, verb=FALSE)

Arguments

x A vector of length n consisting of the data.
lambda Initial value of first-component mixing proportion.
mu A 2-vector of initial values for the mean parameters.
sigsqrd Either a scalar or a 2-vector with initial value(s) for the variance parameters. If

a scalar, the algorithm assumes that the two components have equal variances;
if a 2-vector, it assumes that the two components do not have equal variances.

eps The convergence criterion. Convergence is declared when the change in the
observed data log-likelihood increases by less than epsilon.

maxit The maximum possible number of iterations.
verb If TRUE, then various updates are printed during each iteration of the algorithm.

Details

This code is written to be very fast, sometimes more than an order of magnitude faster than normalmixEM
for the same problem. It is less numerically stable that normalmixEM in the sense that it does not
safeguard against underflow as carefully.

Note that when the two components are assumed to have unequal variances, the loglikelihood is
unbounded. However, in practice this is rarely a problem and quite often the algorithm converges
to a "nice" local maximum.

40 normalmixEM2comp

Value

normalmixEM2comp returns a list of class mixEM with items:

x The raw data.

lambda The final mixing proportions (lambda and 1-lambda).

mu The final two mean parameters.

sigma The final one or two standard deviations.

loglik The final log-likelihood.

posterior An nx2 matrix of posterior probabilities for observations.

all.loglik A vector of each iteration’s log-likelihood. This vector includes both the initial
and the final values; thus, the number of iterations is one less than its length.

restarts The number of times the algorithm restarted due to unacceptable choice of initial
values (always zero).

ft A character vector giving the name of the function.

References

McLachlan, G. J. and Peel, D. (2000) Finite Mixture Models, John Wiley and Sons, Inc.

See Also

mvnormalmixEM, normalmixEM

Examples

##Analyzing the Old Faithful geyser data with a 2-component mixture of normals.

data(faithful)
attach(faithful)
set.seed(100)
system.time(out <- normalmixEM2comp(waiting, lambda=.5,

mu=c(50,80), sigsqrd=100))
out$all.loglik # Note: must be monotone increasing

Compare elapsed time with more general version
system.time(out2 <- normalmixEM(waiting, lambda=c(.5,.5),

mu=c(50,80), sigma=c(10,10), arbvar=FALSE))
out2$all.loglik # Values should be identical to above

normalmixMMlc 41

normalmixMMlc EC-MM Algorithm for Mixtures of Univariate Normals with linear
constraints

Description

Return EC-MM (see below) algorithm output for mixtures of normal distributions with linear con-
straints on the means and variances parameters, as in Chauveau and Hunter (2013). The linear
constraint for the means is of the form µ = Mβ + C, where M and C are matrix and vector spec-
ified as parameters. The linear constraints for the variances are actually specified on the inverse
variances, by π = Aγ, where π is the vector of inverse variances, and A is a matrix specified as a
parameter (see below).

Usage

normalmixMMlc(x, lambda = NULL, mu = NULL, sigma = NULL, k = 2,
mean.constr = NULL, mean.lincstr = NULL,
mean.constant = NULL, var.lincstr = NULL,
gparam = NULL, epsilon = 1e-08, maxit = 1000,
maxrestarts=20, verb = FALSE)

Arguments

x A vector of length n consisting of the data.

lambda Initial value of mixing proportions. Automatically repeated as necessary to pro-
duce a vector of length k, then normalized to sum to 1. If NULL, then lambda is
random from a uniform Dirichlet distribution (i.e., its entries are uniform ran-
dom and then it is normalized to sum to 1).

mu Starting value of vector of component means. If non-NULL and a vector, k is
set to length(mu). If NULL, then the initial value is randomly generated from
a normal distribution with center(s) determined by binning the data.

sigma Starting value of vector of component standard deviations for algorithm. Obso-
lete for linear constraints on the inverse variances; use gparam instead to specify
a starting value.

k Number of components. Initial value ignored unless mu and sigma are both
NULL.

mean.constr First, simplest way to define equality constraints on the mean parameters, given
as a vector of length k, as in normalmixEM. Each vector entry specifies the con-
straints, if any, on the corresponding mean parameter: If NA, the corresponding
parameter is unconstrained. If numeric, the corresponding parameter is fixed at
that value. If a character string consisting of a single character preceded by a co-
efficient, such as "0.5a" or "-b", all parameters using the same single character
in their constraints will fix these parameters equal to the coefficient times some
the same free parameter. For instance, if mean.constr = c(NA, 0, "a", "-a"),
then the first mean parameter is unconstrained, the second is fixed at zero, and
the third and forth are constrained to be equal and opposite in sign. Note: if

42 normalmixMMlc

there are no linear constraints for the means, it is more efficient to use directly
normalmixEM.

mean.lincstr Matrix M (k, p) in the linear constraint for the means equation µ = Mβ + C,
with p ≤ k.

mean.constant Vector of k constants C in the linear constraint for the means equation µ =
Mβ + C.

var.lincstr Matrix A (k, q) in the linear constraint for the inverse variances equation π =
Aγ, with q ≤ k.

gparam Vector of q starting values for the γ parameter in the linear constraint for the
inverse variances; see var.lincstr. If NULL, a vector of randomly generated
standard exponential variables is used.

epsilon The convergence criterion. Convergence is declared when the change in the
observed data log-likelihood increases by less than epsilon.

maxit The maximum allowed number of iterations.

maxrestarts The maximum number of restarts allowed in case of a problem with the particu-
lar starting values chosen due to one of the variance estimates getting too small
(each restart uses randomly chosen starting values). It is well-known that when
each component of a normal mixture may have its own mean and variance, the
likelihood has no maximizer; in such cases, we hope to find a "nice" local max-
imum with this algorithm instead, but occasionally the algorithm finds a "not
nice" solution and one of the variances goes to zero, driving the likelihood to
infinity.

verb If TRUE, then various updates are printed during each iteration of the algorithm.

Details

This is a specific "EC-MM" algorithm for normal mixtures with linear constraints on the means and
variances parameters. EC-MM here means that this algorithm is similar to an ECM algorithm as
in Meng and Rubin (1993), except that it uses conditional MM (Minorization-Maximization)-steps
instead of simple M-steps. Conditional means that it alternates between maximizing with respect to
the mu and lambda while holding sigma fixed, and maximizing with respect to sigma and lambda
while holding mu fixed. This ECM generalization of EM is forced in the case of linear constraints
because there is no closed-form EM algorithm.

Value

normalmixMMlc returns a list of class mixEM with items:

x The raw data.

lambda The final mixing proportions.

mu The final mean parameters.

sigma The final standard deviation(s)

scale Scale factor for the component standard deviations, if applicable.

loglik The final log-likelihood.

posterior An nxk matrix of posterior probabilities for observations.

normalmixMMlc 43

all.loglik A vector of each iteration’s log-likelihood. This vector includes both the initial
and the final values; thus, the number of iterations is one less than its length.

restarts The number of times the algorithm restarted due to unacceptable choice of initial
values.

beta The final β parameter estimate.

gamma The final γ parameter estimate.

ft A character vector giving the name of the function.

Author(s)

Didier Chauveau

References

• McLachlan, G. J. and Peel, D. (2000) Finite Mixture Models, John Wiley & Sons, Inc.

• Meng, X.-L. and Rubin, D. B. (1993) Maximum Likelihood Estimation Via the ECM Algo-
rithm: A General Framework, Biometrika 80(2): 267-278.

• Chauveau, D. and Hunter, D.R. (2013) ECM and MM algorithms for mixtures with con-
strained parameters, preprint https://hal.science/hal-00625285.

• Thomas, H., Lohaus, A., and Domsch, H. (2011) Stable Unstable Reliability Theory, British
Journal of Mathematical and Statistical Psychology 65(2): 201-221.

See Also

normalmixEM, mvnormalmixEM, normalmixEM2comp, tauequivnormalmixEM

Examples

Analyzing synthetic data as in the tau equivalent model
From Thomas et al (2011), see also Chauveau and Hunter (2013)
a 3-component mixture of normals with linear constraints.
lbd <- c(0.6,0.3,0.1); m <- length(lbd)
sigma <- sig0 <- sqrt(c(1,9,9))
means constaints mu = M beta
M <- matrix(c(1,1,1,0,-1,1), 3, 2)
beta <- c(1,5) # unknown constrained mean
mu0 <- mu <- as.vector(M %*% beta)
linear constraint on the inverse variances pi = A.g
A <- matrix(c(1,1,1,0,1,0), m, 2, byrow=TRUE)
iv0 <- 1/(sig0^2)
g0 <- c(iv0[2],iv0[1] - iv0[2]) # gamma^0 init

simulation and EM fits
set.seed(50); n=100; x <- rnormmix(n,lbd,mu,sigma)
s <- normalmixEM(x,mu=mu0,sigma=sig0,maxit=2000) # plain EM
EM with var and mean linear constraints
sc <- normalmixMMlc(x, lambda=lbd, mu=mu0, sigma=sig0,
mean.lincstr=M, var.lincstr=A, gparam=g0)
plot and compare both estimates

https://hal.science/hal-00625285

44 npEM

dnormmixt <- function(t, lam, mu, sig){
m <- length(lam); f <- 0
for (j in 1:m) f <- f + lam[j]*dnorm(t,mean=mu[j],sd=sig[j])
f}
t <- seq(min(x)-2, max(x)+2, len=200)
hist(x, freq=FALSE, col="lightgrey",
ylim=c(0,0.3), ylab="density",main="")
lines(t, dnormmixt(t, lbd, mu, sigma), col="darkgrey", lwd=2) # true
lines(t, dnormmixt(t, s$lambda, s$mu, s$sigma), lty=2)
lines(t, dnormmixt(t, sc$lambda, sc$mu, sc$sigma), col=1, lty=3)
legend("topleft", c("true","plain EM","constr EM"),
col=c("darkgrey",1,1), lty=c(1,2,3), lwd=c(2,1,1))

npEM Nonparametric EM-like Algorithm for Mixtures of Independent Re-
peated Measurements

Description

Returns nonparametric EM algorithm output (Benaglia et al, 2009) for mixtures of multivariate
(repeated measures) data where the coordinates of a row (case) in the data matrix are assumed to be
independent, conditional on the mixture component (subpopulation) from which they are drawn.

Usage

npEM(x, mu0, blockid = 1:ncol(x),
bw = bw.nrd0(as.vector(as.matrix(x))), samebw = TRUE,
h = bw, eps = 1e-8,
maxiter = 500, stochastic = FALSE, verb = TRUE)

Arguments

x An n × r matrix of data. Each of the n rows is a case, and each case has r
repeated measurements. These measurements are assumed to be conditionally
independent, conditional on the mixture component (subpopulation) from which
the case is drawn.

mu0 Either an m× r matrix specifying the initial centers for the kmeans function, or
an integer m specifying the number of initial centers, which are then choosen
randomly in kmeans

blockid A vector of length r identifying coordinates (columns of x) that are assumed
to be identically distributed (i.e., in the same block). For instance, the default
has all distinct elements, indicating that no two coordinates are assumed identi-
cally distributed and thus a separate set of m density estimates is produced for
each column of x. On the other hand, if blockid=rep(1,ncol(x)), then the
coordinates in each row are assumed conditionally i.i.d.

bw Bandwidth for density estimation, equal to the standard deviation of the kernel
density. By default, a simplistic application of the default bw.nrd0 bandwidth
used by density to the entire dataset.

npEM 45

samebw Logical: If TRUE, use the same bandwidth for each iteration and for each com-
ponent and block. If FALSE, use a separate bandwidth for each component and
block, and update this bandwidth at each iteration of the algorithm using a suit-
ably modified bw.nrd0 method as described in Benaglia et al (2011).

h Alternative way to specify the bandwidth, to provide backward compatibility.
eps Tolerance limit for declaring algorithm convergence. Convergence is declared

whenever the maximum change in any coordinate of the lambda vector (of mix-
ing proportion estimates) does not exceed eps.

maxiter The maximum number of iterations allowed, for both stochastic and non-stochastic
versions; for non-stochastic algorithms (stochastic = FALSE), convergence may
be declared before maxiter iterations (see eps above).

stochastic Flag, if FALSE (the default), runs the non-stochastic version of the npEM algo-
rithm, as in Benaglia et al (2009). Set to TRUE to run a stochastic version which
simulates the posteriors at each iteration, and runs for maxiter iterations.

verb If TRUE, print updates for every iteration of the algorithm as it runs

Value

npEM returns a list of class npEM with the following items:

data The raw data (an n× r matrix).
posteriors An n × m matrix of posterior probabilities for observation. If stochastic =

TRUE, this matrix is computed from an average over the maxiter iterations.
bandwidth If samebw==TRUE, same as the bw input argument; otherwise, value of bw ma-

trix at final iteration. This information is needed by any method that produces
density estimates from the output.

blockid Same as the blockid input argument, but recoded to have positive integer val-
ues. Also needed by any method that produces density estimates from the out-
put.

lambda The sequence of mixing proportions over iterations.
lambdahat The final mixing proportions if stochastic = FALSE, or the average mixing pro-

portions if stochastic = TRUE.
loglik The sequence of log-likelihoods over iterations.

References

• Benaglia, T., Chauveau, D., and Hunter, D. R. (2009), An EM-like algorithm for semi- and
non-parametric estimation in multivariate mixtures, Journal of Computational and Graphical
Statistics, 18, 505-526.

• Benaglia, T., Chauveau, D., Hunter, D. R., and Young, D. (2009), mixtools: An R package for
analyzing finite mixture models. Journal of Statistical Software, 32(6):1-29.

• Benaglia, T., Chauveau, D. and Hunter, D.R. (2011), Bandwidth Selection in an EM-like algo-
rithm for nonparametric multivariate mixtures. Nonparametric Statistics and Mixture Models:
A Festschrift in Honor of Thomas P. Hettmansperger. World Scientific Publishing Co., pages
15-27.

• Bordes, L., Chauveau, D., and Vandekerkhove, P. (2007), An EM algorithm for a semipara-
metric mixture model, Computational Statistics and Data Analysis, 51: 5429-5443.

46 npMSL

See Also

plot.npEM, normmixrm.sim, spEMsymloc, spEM, plotseq.npEM

Examples

Examine and plot water-level task data set.

First, try a 3-component solution where no two coordinates are
assumed i.d.
data(Waterdata)
set.seed(100)
Not run:
a <- npEM(Waterdata[,3:10], mu0=3, bw=4) # Assume indep but not iid
plot(a) # This produces 8 plots, one for each coordinate

End(Not run)

Next, same thing but pairing clock angles that are directly opposite one
another (1:00 with 7:00, 2:00 with 8:00, etc.)
Not run:
b <- npEM(Waterdata[,3:10], mu0=3, blockid=c(4,3,2,1,3,4,1,2), bw=4) # iid in pairs
plot(b) # Now only 4 plots, one for each block

End(Not run)

npMSL Nonparametric EM-like Algorithm for Mixtures of Independent Re-
peated Measurements - Maximum Smoothed Likelihood version

Description

Returns nonparametric Smoothed Likelihood algorithm output (Levine et al, 2011) for mixtures of
multivariate (repeated measures) data where the coordinates of a row (case) in the data matrix are
assumed to be independent, conditional on the mixture component (subpopulation) from which they
are drawn.

Usage

npMSL(x, mu0, blockid = 1:ncol(x),
bw = bw.nrd0(as.vector(as.matrix(x))), samebw = TRUE,
bwmethod = "S", h = bw, eps = 1e-8,
maxiter=500, bwiter = maxiter, nbfold = NULL,
ngrid=200, post=NULL, verb = TRUE)

Arguments

x An n × r matrix of data. Each of the n rows is a case, and each case has r
repeated measurements. These measurements are assumed to be conditionally

npMSL 47

independent, conditional on the mixture component (subpopulation) from which
the case is drawn.

mu0 Either an m× r matrix specifying the initial centers for the kmeans function, or
an integer m specifying the number of initial centers, which are then choosen
randomly in kmeans

blockid A vector of length r identifying coordinates (columns of x) that are assumed
to be identically distributed (i.e., in the same block). For instance, the default
has all distinct elements, indicating that no two coordinates are assumed identi-
cally distributed and thus a separate set of m density estimates is produced for
each column of x. On the other hand, if blockid=rep(1,ncol(x)), then the
coordinates in each row are assumed conditionally i.i.d.

bw Bandwidth for density estimation, equal to the standard deviation of the kernel
density. By default, a simplistic application of the default bw.nrd0 bandwidth
used by density to the entire dataset.

samebw Logical: If TRUE, use the same bandwidth for each iteration and for each com-
ponent and block. If FALSE, use a separate bandwidth for each component and
block, and update this bandwidth at each iteration of the algorithm until bwiter
is reached (see below). Two adaptation methods are provided, see bwmethod
below.

bwmethod Define the adaptive bandwidth strategy when samebw = FALSE, in which case the
bandwidth depends on each component, block, and iteration of the algorithm. If
set to "S" (the default), adaptation is done using a suitably modified bw.nrd0
method as described in Benaglia et al (2011). If set to "CV", an adaptive k-fold
Cross Validation method is applied, as described in Chauveau et al (2014), where
nbfold is the number of subsamples. This corresponds to a Leave-[n/nbfold]-
Out CV.

h Alternative way to specify the bandwidth, to provide backward compatibility.

eps Tolerance limit for declaring algorithm convergence. Convergence is declared
whenever the maximum change in any coordinate of the lambda vector (of mix-
ing proportion estimates) does not exceed eps.

maxiter The maximum number of iterations allowed, convergence may be declared be-
fore maxiter iterations (see eps above).

bwiter The maximum number of iterations allowed for adaptive bandwidth stage, when
samebw = FALSE. If set to 0, then the initial bandwidth matrix is used without
adaptation.

nbfold A parameter passed to the internal function wbs.kCV, which controls the weighted
bandwidth selection by k-fold cross-validation.

ngrid Number of points in the discretization of the intervals over which are approxi-
mated the (univariate) integrals for non linear smoothing of the log-densities, as
required in the E step of the npMSL algorithm, see Levine et al (2011).

post If non-NULL, an n×m matrix specifying the initial posterior probability vectors
for each of the observations, i.e., the initial values to start the EM-like algorithm.

verb If TRUE, print updates for every iteration of the algorithm as it runs

48 npMSL

Value

npMSL returns a list of class npEM with the following items:

data The raw data (an n× r matrix).

posteriors An n×m matrix of posterior probabilities for observation.

bandwidth If samebw==TRUE, same as the bw input argument; otherwise, value of bw ma-
trix at final iteration. This information is needed by any method that produces
density estimates from the output.

blockid Same as the blockid input argument, but recoded to have positive integer val-
ues. Also needed by any method that produces density estimates from the out-
put.

lambda The sequence of mixing proportions over iterations.

lambdahat The final mixing proportions.

loglik The sequence of log-likelihoods over iterations.

f An array of size ngrid×m× l, returning last values of density for component
j and block k over grid points.

meanNaN Average number of NaN that occured over iterations (for internal testing and
control purpose).

meanUdfl Average number of "underflow" that occured over iterations (for internal testing
and control purpose).

References

• Benaglia, T., Chauveau, D., and Hunter, D. R. (2009), An EM-like algorithm for semi- and
non-parametric estimation in multivariate mixtures, Journal of Computational and Graphical
Statistics, 18, 505-526.

• Benaglia, T., Chauveau, D. and Hunter, D.R. (2011), Bandwidth Selection in an EM-like algo-
rithm for nonparametric multivariate mixtures. Nonparametric Statistics and Mixture Models:
A Festschrift in Honor of Thomas P. Hettmansperger. World Scientific Publishing Co., pages
15-27.

• Chauveau D., Hunter D. R. and Levine M. (2014), Semi-Parametric Estimation for Condi-
tional Independence Multivariate Finite Mixture Models. Preprint (under revision).

• Levine, M., Hunter, D. and Chauveau, D. (2011), Maximum Smoothed Likelihood for Multi-
variate Mixtures, Biometrika 98(2): 403-416.

See Also

npEM, plot.npEM, normmixrm.sim, spEMsymloc, spEM, plotseq.npEM

Examples

Examine and plot water-level task data set.
Block structure pairing clock angles that are directly opposite one
another (1:00 with 7:00, 2:00 with 8:00, etc.)
set.seed(111) # Ensure that results are exactly reproducible
data(Waterdata)

plot.mixEM 49

blockid <- c(4,3,2,1,3,4,1,2) # see Benaglia et al (2009a)

Not run:
a <- npEM(Waterdata[,3:10], mu0=3, blockid=blockid, bw=4) # npEM solution
b <- npMSL(Waterdata[,3:10], mu0=3, blockid=blockid, bw=4) # smoothed version

Comparisons on the 4 default plots, one for each block
par(mfrow=c(2,2))
for (l in 1:4){
plot(a, blocks=l, breaks=5*(0:37)-92.5,
xlim=c(-90,90), xaxt="n",ylim=c(0,.035), xlab="")
plot(b, blocks=l, hist=FALSE, newplot=FALSE, addlegend=FALSE, lty=2,
dens.col=1)
axis(1, at=30*(1:7)-120, cex.axis=1)
legend("topleft",c("npMSL"),lty=2, lwd=2)}

End(Not run)

plot.mixEM Various Plots Pertaining to Mixture Models

Description

Takes an object of class mixEM and returns various graphical output for select mixture models.

Usage

S3 method for class 'mixEM'
plot(x, whichplots = 1,

loglik = 1 %in% whichplots,
density = 2 %in% whichplots,
xlab1="Iteration", ylab1="Log-Likelihood",
main1="Observed Data Log-Likelihood", col1=1, lwd1=2,
xlab2=NULL, ylab2=NULL, main2=NULL, col2=NULL,
lwd2=2, alpha = 0.05, marginal = FALSE, ...)

Arguments

x An object of class mixEM.

whichplots vector telling which plots to produce: 1 = loglikelihood plot, 2 = density plot.
Irrelevant if loglik and density are specified.

loglik If TRUE, a plot of the log-likelihood versus the EM iterations is given.

density Graphics pertaining to certain mixture models. The details are given below.
xlab1, ylab1, main1, col1, lwd1

Graphical parameters xlab, ..., lwd to be passed to the loglikelihood plot. Trying
to change these parameters using xlab, ..., lwd will result in an error, but all
other graphical parameters are passed directly to the plotting functions via ...

50 plot.mixEM

xlab2, ylab2, main2, col2, lwd2
Same as xlab1 etc. but for the density plot

alpha A vector of significance levels when constructing confidence ellipses and confi-
dence bands for the mixture of multivariate normals and mixture of regressions
cases, respectively. The default is 0.05.

marginal For the mixture of bivariate normals, should optional marginal histograms be
included?

... Graphical parameters passed to plot command.

Value

plot.mixEM returns a plot of the log-likelihood versus the EM iterations by default for all objects
of class mixEM. In addition, other plots may be produced for the following k-component mixture
model functions:

normalmixEM A histogram of the raw data is produced along with k density curves determined
by normalmixEM.

repnormmixEM A histogram of the raw data produced in a similar manner as for normalmixEM.

mvnormalmixEM A 2-dimensional plot with each point color-coded to denote its most probable
component membership. In addition, the estimated component means are plot-
ted along with (1 - alpha)% bivariate normal density contours. These ellipses
are constructed by assigning each value to their component of most probable
membership and then using normal theory. Optional marginal histograms may
also be produced.

regmixEM A plot of the response versus the predictor with each point color-coded to de-
note its most probable component membership. In addition, the estimated com-
ponent regression lines are plotted along with (1 - alpha)% Working-Hotelling
confidence bands. These bands are constructed by assigning each value to their
component of most probable membership and then performing least squares es-
timation.

logisregmixEM A plot of the binary response versus the predictor with each point color-coded
to denote its most probable compopnent membership. In addition, the estimate
component logistic regression lines are plotted.

regmixEM.mixed Provides a 2x2 matrix of plots summarizing the posterior slope and posterior
intercept terms from a mixture of random effects regression. See post.beta for
a more detailed description.

See Also

post.beta

Examples

##Analyzing the Old Faithful geyser data with a 2-component mixture of normals.

data(faithful)
attach(faithful)
set.seed(100)

plot.mixMCMC 51

out <- normalmixEM(waiting, arbvar = FALSE, verb = TRUE,
epsilon = 1e-04)

plot(out, density = TRUE, w = 1.1)

##Fitting randomly generated data with a 2-component location mixture of bivariate normals.

x.1 <- rmvnorm(40, c(0, 0))
x.2 <- rmvnorm(60, c(3, 4))
X.1 <- rbind(x.1, x.2)

out.1 <- mvnormalmixEM(X.1, arbvar = FALSE, verb = TRUE,
epsilon = 1e-03)

plot(out.1, density = TRUE, alpha = c(0.01, 0.05, 0.10),
marginal = TRUE)

plot.mixMCMC Various Plots Pertaining to Mixture Model Output Using MCMC
Methods

Description

Takes an object of class mixMCMC and returns various graphical output for select mixture models.

Usage

S3 method for class 'mixMCMC'
plot(x, trace.plots = TRUE,

summary.plots = FALSE, burnin = 2000, ...)

Arguments

x An object of class mixMCMC.

trace.plots If TRUE, trace plots of the various parameters estimated by the MCMC methods
is given.

summary.plots Graphics pertaining to certain mixture models. The details are given below.

burnin The values 1 to burnin are dropped when producing the plots in summary.plots.

... Graphical parameters passed to regcr function.

Value

plot.mixMCMC returns trace plots of the various parameters estimated by the MCMC methods for all
objects of class mixMCMC. In addition, other plots may be produced for the following k-component
mixture model functions:

regmixMH Credible bands for the regression lines in a mixture of linear regressions. See
regcr for more details.

52 plot.mvnpEM

See Also

regcr

Examples

M-H algorithm for NOdata with acceptance rate about 40%.

data(NOdata)
attach(NOdata)
set.seed(100)
beta <- matrix(c(1.3, -0.1, 0.6, 0.1), 2, 2)
sigma <- c(.02, .05)
MH.out <- regmixMH(Equivalence, NO, beta = beta, s = sigma,

sampsize = 2500, omega = .0013)
plot(MH.out, summary.plots = TRUE, burnin = 2450,

alpha = 0.01)

plot.mvnpEM Plots of Marginal Density Estimates from the mvnpEM Algorithm Out-
put

Description

Takes an object of class mvnpEM, as the one returned by the mvnpEM algorithm, and returns a set of
plots of the density estimates for each coordinate within each multivariate block. All the compo-
nents are displayed on each plot so it is possible to see the mixture structure for each coordinate
and block. The final bandwidth values are also displayed, in a format depending on the bandwidth
strategy .

Usage

S3 method for class 'mvnpEM'
plot(x, truenorm = FALSE, lambda = NULL, mu = NULL, v = NULL,

lgdcex = 1, ...)

Arguments

x An object of class mvnpEM such as the output of the mvnpEM function

truenorm Mostly for checking purpose, if the nonparametric model is to be compared with
a multivariate Gaussian mixture as the true model.

lambda true weight parameters, for Gaussian models only (see above)

mu true mean parameters, for Gaussian models only (see above)

v true covariance matrices, for Gaussian models only (see above)

lgdcex Character expansion factor for legend.

... Any remaining arguments are passed to hist.

plot.npEM 53

Value

plot.mvnpEM currently just plots the figure.

See Also

mvnpEM, npEM, density.npEM

Examples

example as in Chauveau and Hoang (2015) with 6 coordinates
Not run:
m=2; r=6; blockid <-c(1,1,2,2,3,3) # 3 bivariate blocks
generate some data x ...
a <- mvnpEM(x, mu0=2, blockid, samebw=F) # adaptive bandwidth
plot(a) # this S3 method produces 6 plots of univariate marginals
summary(a)
End(Not run)

plot.npEM Plot Nonparametric or Semiparametric EM Output

Description

Takes an object of class npEM and returns a set of plots of the density estimates for each block and
each component. There is one plot per block, with all the components displayed on each block so it
is possible to see the mixture structure for each block.

Usage

S3 method for class 'npEM'
plot(x, blocks = NULL, hist=TRUE, addlegend = TRUE,

scale=TRUE, title=NULL, breaks="Sturges", ylim=NULL, dens.col,
newplot = TRUE, pos.legend = "topright", cex.legend = 1, ...)

S3 method for class 'spEM'
plot(x, blocks = NULL, hist=TRUE, addlegend = TRUE,

scale=TRUE, title=NULL, breaks="Sturges", ylim=NULL, dens.col,
newplot = TRUE, pos.legend = "topright", cex.legend = 1, ...)

Arguments

x An object of class npEM such as the output of the npEM function

blocks Blocks (of repeated measures coordinates) to plot; not relevant for univariate
case. Default is to plot all blocks.

hist If TRUE, superimpose density estimate plots on a histogram of the data

addlegend If TRUE, adds legend to the plot.

54 plot.npEM

scale If TRUE, scale each density estimate by its corresponding estimated mixing
proportion, so that the total area under all densities equals 1 and the densities
plotted may be added to produce an estimate of the mixture density. When
FALSE, each density curve has area 1 in the plot.

title Alternative vector of main titles for plots (recycled as many times as needed)

breaks Passed directly to the hist function

ylim ylim parameter to use for all plots, if desired. If not given, each plot uses its
own ylim that ensures that no part of the plot will go past the top of the plotting
area.

dens.col Color values to use for the individual component density functions, repeated as
necessary. Default value is 2:(m+1).

newplot If TRUE, creates a new plot.

pos.legend Single argument specifying the position of the legend. See ‘Details’ section of
legend.

cex.legend Character expansion factor for legend.

... Any remaining arguments are passed to the hist and lines functions.

Value

plot.npEM returns a list with two elements:

x List of matrices. The jth column of the ith matrix is the vector of x-values for
the jth density in the ith plot.

y y-values, given in the same form as the x-values.

See Also

npEM, density.npEM, spEMsymloc, plotseq.npEM

Examples

Examine and plot water-level task data set.

First, try a 3-component solution where no two coordinates are
assumed i.d.
data(Waterdata)
set.seed(100)
Not run:
a <- npEM(Waterdata[,3:10], 3, bw=4)
par(mfrow=c(2,4))
plot(a) # This produces 8 plots, one for each coordinate

End(Not run)

Not run:
Next, same thing but pairing clock angles that are directly opposite one
another (1:00 with 7:00, 2:00 with 8:00, etc.)
b <- npEM(Waterdata[,3:10], 3, blockid=c(4,3,2,1,3,4,1,2), bw=4)

plot.spEMN01 55

par(mfrow=c(2,2))
plot(b) # Now only 4 plots, one for each block

End(Not run)

plot.spEMN01 Plot mixture pdf for the semiparametric mixture model output by
spEMsymlocN01

Description

Plot mixture density for the semiparametric mixture model output by spEMsymlocN01, with one
component known and set to normal(0,1), and a symmetric nonparametric density with location
parameter.

Usage

S3 method for class 'spEMN01'
plot(x, bw = x$bandwidth, knownpdf = dnorm, add.plot = FALSE, ...)

Arguments

x An object of class "spEMN01" as returned by spEMsymlocN01

bw Bandwidth for weighted kernel density estimation.

knownpdf The known density of component 1, default to dnorm.

add.plot Set to TRUE to add to an existing plot.

... further arguments passed to plot if add.plot = FALSE, and to lines if add.plot
= TRUE.

Value

A plot of the density of the mixture

Author(s)

Didier Chauveau

References

• Chauveau, D., Saby, N., Orton, T. G., Lemercier B., Walter, C. and Arrouys, D. Large-scale
simultaneous hypothesis testing in soil monitoring: A semi-parametric mixture approach,
preprint (2013).

See Also

spEMsymlocN01

56 plotexpRMM

plotexpRMM Plot sequences from the EM algorithm for censored mixture of expo-
nentials

Description

Function for plotting sequences of estimates along iterations, from an object returned by the expRMM_EM,
an EM algorithm for mixture of exponential distributions with randomly right censored data (see
reference below).

Usage

plotexpRMM(a, title=NULL, rowstyle=TRUE, subtitle=NULL, ...)

Arguments

a An object returned by expRMM_EM.

title The title of the plot, set to some default value if NULL.

rowstyle Window organization, for plots in rows (the default) or columns.

subtitle A subtitle for the plot, set to some default value if NULL.

... Other parameters (such as lwd) passed to plot, lines, and legend commands.

Value

The plot returned

Author(s)

Didier Chauveau

References

• Bordes, L., and Chauveau, D. (2016), Stochastic EM algorithms for parametric and semipara-
metric mixture models for right-censored lifetime data, Computational Statistics, Volume 31,
Issue 4, pages 1513-1538. https://link.springer.com/article/10.1007/s00180-016-0661-7

See Also

Related functions: expRMM_EM, summary.mixEM, plot.mixEM.

Other models and algorithms for censored lifetime data (name convention is model_algorithm):
weibullRMM_SEM, spRMM_SEM.

https://link.springer.com/article/10.1007/s00180-016-0661-7

plotFDR 57

Examples

n=300 # sample size
m=2 # number of mixture components
lambda <- c(1/3,1-1/3); rate <- c(1,1/10) # mixture parameters
set.seed(1234)
x <- rexpmix(n, lambda, rate) # iid ~ exponential mixture
cs=runif(n,0,max(x)) # Censoring (uniform) and incomplete data
t <- apply(cbind(x,cs),1,min) # observed or censored data
d <- 1*(x <= cs) # censoring indicator

EM for RMM, exponential lifetimes
l0 <- rep(1/m,m); r0 <- c(1, 0.5) # "arbitrary" initial values
a <- expRMM_EM(t, d, lambda=l0, rate=r0, k = m)
summary(a) # EM estimates etc
plotexpRMM(a, lwd=2) # plot of EM sequences

plotFDR Plot False Discovery Rate (FDR) estimates from output by EM-like
strategies

Description

Plot FDR(pi) estimates against index of sorted p-values from, e.g., normalmixEM or the semipara-
metric mixture model posterior probabilities output by spEMsymlocN01, or any EM-algorithm like
normalmixEM which returns posterior probabilities. The function can simultaneously plot FDR es-
timates from two strategies for comparison. Plot of the true FDR can be added if complete data are
available (typically in simulation studies).

Usage

plotFDR(post1, post2 = NULL, lg1 = "FDR 1", lg2 = NULL, title = NULL,
compH0 = 1, alpha = 0.1, complete.data = NULL, pctfdr = 0.3)

Arguments

post1 The matrix of posterior probabilities from objects such as the output from spEMsymlocN01.
The rows need to be sorted by increasing pvalues.

post2 A second object like post1 if comparison is desired, also sorted by increasing
pvalues.

lg1 Text describing the FDR estimate in post1.

lg2 Text describing the FDR estimate in post2 if provided.

title Plot title, a default is provided if NULL.

compH0 The component indicator associated to the null hypothesis H0, normally 1 since
it is defined in this way in spEMsymlocN01, but in case of label switching in
other algorithms it can be set to 2.

58 plotly_compCDF

alpha The target FDR level; the index at which the FDR estimate crosses the horizontal
line for level alpha gives the maximum number of cases to reject.

complete.data An array with n lines and 2 columns, with the component indicator in column 1
and the p-values in column 2, sorted by p-values.

pctfdr The level up to which the FDR is plotted, i.e. the scale of the vertical axis.

Value

A plot of one or two FDR estimates, with the true FDR if available

Author(s)

Didier Chauveau

References

• Chauveau, D., Saby, N., Orton, T. G., Lemercier B., Walter, C. and Arrouys, D. Large-scale
simultaneous hypothesis testing in monitoring carbon content from French soil database – A
semi-parametric mixture approach, Geoderma 219-220 (2014), 117-124.

See Also

spEMsymlocN01

plotly_compCDF Plot the Component CDF using plotly

Description

Plot the components’ CDF via the posterior probabilities using plotly.

Usage

plotly_compCDF(data, weights, x=seq(min(data, na.rm=TRUE), max(data, na.rm=TRUE),
len=250), comp=1:NCOL(weights), makeplot=TRUE,
cex = 3, width = 3,

legend.text = "Composition", legend.text.size = 15, legend.size = 15,
title = "Empirical CDF", title.x = 0.5, title.y = 0.95, title.size = 15,

xlab = "Data", xlab.size = 15, xtick.size = 15,
ylab = "Probability", ylab.size = 15, ytick.size = 15,
col.comp = NULL)

plotly_compCDF 59

Arguments

data A matrix containing the raw data. Rows are subjects and columns are repeated
measurements.

weights The weights to compute the empirical CDF; however, most of time they are the
posterior probabilities.

x The points at which the CDFs are to be evaluated.

comp The mixture components for which CDFs are desired.

makeplot Logical: Should a plot be produced as a side effect?

cex Size of markers.

width Line width.

title Text of the main title.

title.size Size of the main title.

title.x Horsizontal position of the main title.

title.y Vertical posotion of the main title.

xlab Label of X-axis.

xlab.size Size of the lable of X-axis.

xtick.size Size of tick lables of X-axis.

ylab Label of Y-axis.

ylab.size Size of the lable of Y-axis.

ytick.size Size of tick lables of Y-axis.

legend.text Title of legend.
legend.text.size

Size of the legend title.

legend.size Size of legend.

col.comp Color of compositions. Number of color specified needs to be consistent with
number of compositions.

Details

When makeplot is TRUE, a line plot is produced of the CDFs evaluated at x. The plot is not a step
function plot; the points (x,CDF (x)) are simply joined by line segments.

Value

A matrix with length(comp) rows and length(x) columns in which each row gives the CDF
evaluated at each point of x.

References

McLachlan, G. J. and Peel, D. (2000) Finite Mixture Models, John Wiley and Sons, Inc.

Elmore, R. T., Hettmansperger, T. P. and Xuan, F. (2004) The Sign Statistic, One-Way Layouts and
Mixture Models, Statistical Science 19(4), 579–587.

60 plotly_ellipse

See Also

makemultdata, multmixmodel.sel, multmixEM, compCDF.

Examples

The sulfur content of the coal seams in Texas
set.seed(100)
A <- c(1.51, 1.92, 1.08, 2.04, 2.14, 1.76, 1.17)
B <- c(1.69, 0.64, .9, 1.41, 1.01, .84, 1.28, 1.59)
C <- c(1.56, 1.22, 1.32, 1.39, 1.33, 1.54, 1.04, 2.25, 1.49)
D <- c(1.3, .75, 1.26, .69, .62, .9, 1.2, .32)
E <- c(.73, .8, .9, 1.24, .82, .72, .57, 1.18, .54, 1.3)
dis.coal <- makemultdata(A, B, C, D, E,

cuts = median(c(A, B, C, D, E)))
temp <- multmixEM(dis.coal)
Now plot the components' CDF via the posterior probabilities
plotly_compCDF(dis.coal$x, temp$posterior, xlab="Sulfur")

plotly_ellipse Draw Two-Dimensional Ellipse Based on Mean and Covariance using
plotly

Description

This is an updated version of ellipse. For more technical details, please refer to ellipse.

Usage

plotly_ellipse(mu, sigma, alpha=.05, npoints=250,
draw=TRUE, cex = 3, col = "#1f77b4", lwd = 3,
title = "", title.x = 0.5, title.y = 0.95, title.size = 15,
xlab = "X", xlab.size = 15, xtick.size = 15,
ylab = "Y", ylab.size = 15, ytick.size = 15)

Arguments

mu A 2-vector giving the mean.

sigma A 2x2 matrix giving the covariance matrix.

alpha Probability to be excluded from the ellipse. The default value is alpha = .05,
which results in a 95% ellipse.

npoints Number of points comprising the border of the ellipse.

draw If TRUE, draw the ellipse.

cex Size of markers.

lwd Line width of the ellipse.

col Color of both markers and lines.

plotly_expRMM 61

title Text of the main title.
title.size Size of the main title.
title.x Horsizontal position of the main title.
title.y Vertical posotion of the main title.
xlab Label of X-axis.
xlab.size Size of the lable of X-axis.
xtick.size Size of tick lables of X-axis.
ylab Label of Y-axis.
ylab.size Size of the lable of Y-axis.
ytick.size Size of tick lables of Y-axis.

Value

plotly_ellipse returns an npointsx2 matrix of the points forming the border of the ellipse.

References

Johnson, R. A. and Wichern, D. W. (2002) Applied Multivariate Statistical Analysis, Fifth Edition,
Prentice Hall.

See Also

regcr, ellipse

Examples

Produce a 95% ellipse with the specified mean and covariance structure.
mu <- c(1, 3)
sigma <- matrix(c(1, .3, .3, 1.5), 2, 2)
plotly_ellipse(mu, sigma, npoints = 200)

plotly_expRMM Plot sequences from the EM algorithm for censored mixture of expo-
nentials using plotly

Description

This is an updated function of plotexpRMM. For more technical details, please refer to plotexpRMM.

Usage

plotly_expRMM(a , title = NULL , rowstyle = TRUE , subtitle=NULL,
width = 2 , cex = 2 , col.comp = NULL,
legend.text = NULL, legend.text.size = 15, legend.size = 15,
title.x = 0.5, title.y = 0.95, title.size = 15,
xlab.size = 15, xtick.size = 15,
ylab.size = 15, ytick.size = 15)

62 plotly_expRMM

Arguments

a An object returned by expRMM_EM.

title The title of the plot, set to some default value if NULL.

rowstyle Window organization, for plots in rows (the default) or columns.

subtitle A subtitle for the plot, set to some default value if NULL.

width Line width.

cex Size of dots.

col.comp Color of different components. Number of color specified needs to be consistent
with number of components.

legend.text Title of legend.
legend.text.size

Size of the legend title.

legend.size Size of legend.

title.size Size of the main title.

title.x Horsizontal position of the main title.

title.y Vertical posotion of the main title.

xlab.size Size of the lable of X-axis.

xtick.size Size of tick lables of X-axis.

ylab.size Size of the lable of Y-axis.

ytick.size Size of tick lables of Y-axis.

Value

The plot returned

Author(s)

Didier Chauveau

References

• Bordes, L., and Chauveau, D. (2016), Stochastic EM algorithms for parametric and semipara-
metric mixture models for right-censored lifetime data, Computational Statistics, Volume 31,
Issue 4, pages 1513-1538. https://link.springer.com/article/10.1007/s00180-016-0661-7

See Also

Related functions: expRMM_EM, summary.mixEM, plot.mixEM, plotexpRMM.

Other models and algorithms for censored lifetime data (name convention is model_algorithm):
weibullRMM_SEM, spRMM_SEM.

https://link.springer.com/article/10.1007/s00180-016-0661-7

plotly_FDR 63

Examples

n=300 # sample size
m=2 # number of mixture components
lambda <- c(1/3,1-1/3); rate <- c(1,1/10) # mixture parameters
set.seed(1234)
x <- rexpmix(n, lambda, rate) # iid ~ exponential mixture
cs=runif(n,0,max(x)) # Censoring (uniform) and incomplete data
t <- apply(cbind(x,cs),1,min) # observed or censored data
d <- 1*(x <= cs) # censoring indicator
EM for RMM, exponential lifetimes
l0 <- rep(1/m,m); r0 <- c(1, 0.5) # "arbitrary" initial values
a <- expRMM_EM(t, d, lambda=l0, rate=r0, k = m)
summary(a) # EM estimates etc
plotly_expRMM(a , rowstyle = TRUE) # plot of EM sequences

plotly_FDR Plot False Discovery Rate (FDR) estimates from output by EM-like
strategies using plotly

Description

This is an updated version of plotFDR. For more technical details, please refer to plotFDR.

Usage

plotly_FDR(post1, post2=NULL, lg1="FDR 1", lg2=NULL,
compH0=1, alpha=0.1, complete.data =NULL, pctfdr=0.3,
col = NULL, width = 3 ,
title = NULL , title.size = 15 , title.x = 0.5 , title.y = 0.95,
xlab = "Index" , xlab.size = 15 , xtick.size = 15,
ylab = "Probability" , ylab.size = 15 , ytick.size = 15,
legend.text = "" , legend.text.size = 15 , legend.size = 15)

Arguments

post1 The matrix of posterior probabilities from objects such as the output from spEMsymlocN01.
The rows need to be sorted by increasing pvalues.

post2 A second object like post1 if comparison is desired, also sorted by increasing
pvalues.

lg1 Text describing the FDR estimate in post1.

lg2 Text describing the FDR estimate in post2 if provided.

compH0 The component indicator associated to the null hypothesis H0, normally 1 since
it is defined in this way in spEMsymlocN01, but in case of label switching in
other algorithms it can be set to 2.

alpha The target FDR level; the index at which the FDR estimate crosses the horizontal
line for level alpha gives the maximum number of cases to reject.

64 plotly_FDR

complete.data An array with n lines and 2 columns, with the component indicator in column 1
and the p-values in column 2, sorted by p-values.

pctfdr The level up to which the FDR is plotted, i.e. the scale of the vertical axis.

col Color of traces.

width Width of traces.

title Text of the main title.

title.size Size of the main title.

title.x Horsizontal position of the main title.

title.y Vertical posotion of the main title.

xlab Label of X-axis.

xlab.size Size of the lable of X-axis.

xtick.size Size of tick lables of X-axis.

ylab Label of Y-axis.

ylab.size Size of the lable of Y-axis.

ytick.size Size of tick lables of Y-axis.

legend.text Title of legend.
legend.text.size

Size of the legend title.

legend.size Size of legend.

Value

A plot of one or two FDR estimates, with the true FDR if available

Author(s)

Didier Chauveau

References

• Chauveau, D., Saby, N., Orton, T. G., Lemercier B., Walter, C. and Arrouys, D. Large-scale
simultaneous hypothesis testing in monitoring carbon content from French soil database – A
semi-parametric mixture approach, Geoderma 219-220 (2014), 117-124.

See Also

spEMsymlocN01, plotFDR

Examples

Probit transform of p-values
from a Beta-Uniform mixture model
comparion of parametric and semiparametric EM fit
Note: in actual situations n=thousands
set.seed(50)

plotly_ise.npEM 65

n=300 # nb of multiple tests
m=2 # 2 mixture components
a=c(1,0.1); b=c(1,1); lambda=c(0.6,0.4) # parameters
z=sample(1:m, n, rep=TRUE, prob = lambda)
p <- rbeta(n, shape1 = a[z], shape2 = b[z]) # p-values
o <- order(p)
cpd <- cbind(z,p)[o,] # sorted complete data, z=1 if H0, 2 if H1
p <- cpd[,2] # sorted p-values
y <- qnorm(p) # probit transform of the pvalues
gaussian EM fit with component 1 constrained to N(0,1)
s1 <- normalmixEM(y, mu=c(0,-4),

mean.constr = c(0,NA), sd.constr = c(1,NA))
s2 <- spEMsymlocN01(y, mu0 = c(0,-3)) # spEM with N(0,1) fit
plotly_FDR(s1$post, s2$post, lg1 = "normalmixEM", lg2 = "spEMsymlocN01",

complete.data = cpd) # with true FDR computed from z

plotly_ise.npEM Visualization of Integrated Squared Error for a selected density from
npEM output using plotly

Description

This is an updated visualization function for ise.npEM. For more technical details, please refer to
ise.npEM.

Usage

plotly_ise.npEM(npEMout, component=1, block=1, truepdf=dnorm, lower=-Inf,
upper=Inf, plots = TRUE ,
col = NULL , width = 3,
title = NULL , title.size = 15 , title.x = 0.5 , title.y = 0.95,
xlab = "t" , xlab.size = 15 , xtick.size = 15,
ylab = "" , ylab.size = 15 , ytick.size = 15,

legend.text = "" , legend.text.size = 15 , legend.size = 15, ...)

Arguments

npEMout An object of class npEM such as the output of the npEM function
component, block

Component and block of particular density to analyze from npEMout.

truepdf an R function taking a numeric first argument and returning a numeric vector of
the same length. Returning a non-finite element will generate an error.

lower, upper the limits of integration. Can be infinite.

plots logical: Should plots be produced?

... additional arguments to be passed to truepdf (and that may be mandatory like,
e.g., the df = argument of dt). Remember to use argument names not matching
those of ise.npRM.

66 plotly_ise.npEM

col Color of traces.

width Line width of traces.

title Text of the main title.

title.size Size of the main title.

title.x Horsizontal position of the main title.

title.y Vertical posotion of the main title.

xlab Label of X-axis.

xlab.size Size of the lable of X-axis.

xtick.size Size of tick lables of X-axis.

ylab Label of Y-axis.

ylab.size Size of the lable of Y-axis.

ytick.size Size of tick lables of Y-axis.

legend.text Title of legend.
legend.text.size

Size of the legend title.

legend.size Size of legend.

Details

This function calls the wkde (weighted kernel density estimate) function.

Value

Just as for the integrate function, a list of class "integrate" with components

value the final estimate of the integral.

abs.error estimate of the modulus of the absolute error.

subdivisions the number of subintervals produced in the subdivision process.

message "OK" or a character string giving the error message.

call the matched call.

References

• Benaglia, T., Chauveau, D., and Hunter, D. R. (2009), An EM-like algorithm for semi- and
non-parametric estimation in multivariate mixtures, Journal of Computational and Graphical
Statistics, 18, 505-526.

• Benaglia, T., Chauveau, D., Hunter, D. R., and Young, D. (2009), mixtools: An R package for
analyzing finite mixture models. Journal of Statistical Software, 32(6):1-29.

See Also

npEM, wkde, integrate, ise.npEM

plotly_mixEM 67

Examples

Not run:
data(Waterdata)
set.seed(100)
a <- npEM(Waterdata[,3:10], mu0=3, bw=4) # Assume indep but not iid
plotly_ise.npEM(a , plots = TRUE)

End(Not run)

plotly_mixEM Visualization of output of mixEM function using plotly

Description

This is an updated version of plot.mixEM. For more technical details, please refer to plot.mixEM.

Usage

plotly_mixEM(x,
loglik = TRUE,
density = FALSE,
xlab1="Iteration", xlab1.size=15 , xtick1.size=15,
ylab1="Log-Likelihood", ylab1.size=15 , ytick1.size=15,
title1="Observed Data Log-Likelihood", title1.size=15,
title1.x = 0.5,title1.y=0.95,
col1="#1f77b4", lwd1=3, cex1=6,
xlab2=NULL, xlab2.size=15 , xtick2.size=15,
ylab2=NULL, ylab2.size=15 , ytick2.size=15,
title2=NULL, title2.size=15,
title2.x = 0.5,title2.y=0.95, col.hist = "#1f77b4",
col2=NULL, lwd2=3, cex2=6,
alpha = 0.05, marginal = FALSE)

Arguments

x An object of class mixEM.

loglik If TRUE, a plot of the log-likelihood versus the EM iterations is given.

density Graphics pertaining to certain mixture models. The details are given below.

xlab1 Label of x-axis to be passed to the loglikelihood plot. Trying to change these
parameters using xlab result in an error.

xlab1.size Font of xlab1.

xtick1.size Font of tick labels of x-axis to be passed to the loglikelihood plot.

ylab1 Label of y-axis to be passed to the loglikelihood plot. Trying to change these
parameters using ylab result in an error.

ylab1.size Font of ylab1.

68 plotly_mixEM

ytick1.size Font of tick labels of y-axis to be passed to the loglikelihood plot.

title1 Title to be passed to the loglikelihood plot.

title1.size Tile size of the loglikelihood plot.

title1.x Horizontal position of the loglikelihood plot.

title1.y Verticle position of the loglikelihood plot.

col1 Color of the loglikelihood plot.

lwd1 Width of the density curve of the loglikelihood plot.

cex1 Dot size of the loglikelihood plot.

xlab2 Label of x-axis to be passed to the density plot. Trying to change these parame-
ters using xlab result in an error.

xlab2.size Font of xlab2.

xtick2.size Font of tick labels of x-axis to be passed to the density plot.

ylab2 Label of y-axis to be passed to the density plot. Trying to change these parame-
ters using ylab result in an error.

ylab2.size Font of ylab2.

ytick2.size Font of tick labels of y-axis to be passed to the density plot.

title2 Title to be passed to the density plot.

title2.size Tile size of the density plot.

title2.x Horizontal position of the density plot.

title2.y Verticle position of the density plot.

col2 Color of the density plot.

lwd2 Width of the density curve of the density plot.

cex2 Dot size of the density plot.

col.hist Color of the histogram of the density plot

alpha A vector of significance levels when constructing confidence ellipses and confi-
dence bands for the mixture of multivariate normals and mixture of regressions
cases, respectively. The default is 0.05

marginal If TRUE, marginal density is presented on the side of the corresponding variable.

Value

A plot of the output of mixEM function is presented depends on output type.

See Also

post.beta

plotly_mixEM 69

Examples

Not run:
EM output for data generated from a 2-component binary logistic regression model.
beta <- matrix(c(-10, .1, 20, -.1), 2, 2)
x <- runif(500, 50, 250)
x1 <- cbind(1, x)
xbeta <- x1
w <- rbinom(500, 1, .3)
y <- w*rbinom(500, size = 1, prob = (1/(1+exp(-xbeta[, 1]))))+

(1-w)*rbinom(500, size = 1, prob =
(1/(1+exp(-xbeta[, 2]))))

out.2 <- logisregmixEM(y, x, beta = beta, lambda = c(.3, .7),
verb = TRUE, epsilon = 1e-01)

plotly_mixEM(out.2 , col2 = c("red" , "green") , density = TRUE)

Fitting randomly generated data with a 2-component location mixture of bivariate normals.
set.seed(100)
x.1 <- rmvnorm(40, c(0, 0))
x.2 <- rmvnorm(60, c(3, 4))
X.1 <- rbind(x.1, x.2)
mu <- list(c(0, 0), c(3, 4))
out.1 <- mvnormalmixEM(X.1, arbvar = FALSE, mu = mu,

epsilon = 1e-02)
plotly_mixEM(out.1 , col2 = c("brown" , "blue") ,

alpha = c(0.01 , 0.05 , 0.1),
density = TRUE , marginal = FALSE)

Fitting randomly generated data with a 2-component scale mixture of bivariate normals.
x.3 <- rmvnorm(40, c(0, 0), sigma =

matrix(c(200, 1, 1, 150), 2, 2))
x.4 <- rmvnorm(60, c(0, 0))
X.2 <- rbind(x.3, x.4)
lambda <- c(0.40, 0.60)
sigma <- list(diag(1, 2), matrix(c(200, 1, 1, 150), 2, 2))
out.2 <- mvnormalmixEM(X.2, arbmean = FALSE,

sigma = sigma, lambda = lambda,
epsilon = 1e-02)

plotly_mixEM(out.1 , col2 = c("brown" , "blue") ,
alpha = c(0.01 , 0.05 , 0.1),
density = TRUE , marginal = TRUE)

EM output for simulated data from 2-component mixture of random effects.
data(RanEffdata)
set.seed(100)
x <- lapply(1:length(RanEffdata), function(i)

matrix(RanEffdata[[i]][, 2:3], ncol = 2))
x <- x[1:20]
y <- lapply(1:length(RanEffdata), function(i)

matrix(RanEffdata[[i]][, 1], ncol = 1))
y <- y[1:20]
lambda <- c(0.45, 0.55)
mu <- matrix(c(0, 4, 100, 12), 2, 2)

70 plotly_mixMCMC

sigma <- 2
R <- list(diag(1, 2), diag(1, 2))
em.out <- regmixEM.mixed(y, x, sigma = sigma, arb.sigma = FALSE,

lambda = lambda, mu = mu, R = R,
addintercept.random = FALSE,
epsilon = 1e-02, verb = TRUE)

plotly_mixEM(em.out , col2 = c("gold" , "purple") ,
density = TRUE , lwd2 = 1 , cex2 =9)

Analyzing the Old Faithful geyser data with a 2-component mixture of normals.
data(faithful)
attach(faithful)
set.seed(100)
out <- normalmixEM(waiting, arbvar = FALSE, verb = TRUE,

epsilon = 1e-04)
plotly_mixEM(out, density = TRUE , col2 = c("gold" , "purple"))

EM output for the water-level task data set.
data(Waterdata)
set.seed(100)
water <- t(as.matrix(Waterdata[,3:10]))
em.out <- repnormmixEM(water, k = 2, verb = TRUE, epsilon = 1e-03)
plotly_mixEM(em.out, density = TRUE , col2 = c("gold" , "purple"))

End(Not run)

plotly_mixMCMC Various Plots Pertaining to Mixture Model Output Using MCMC
Methods using plotly

Description

This is an updated version of plot.mixMCMC. For technical details, please refer to plot.mixMCMC.

Usage

plotly_mixMCMC(x, trace.plot = TRUE, summary.plot = FALSE, burnin = 2000,
credit.region = 0.95, col.cr = NULL,
cex.trace = 3, width.trace = 3,
cex.summary = 3, width.summary = 1,
title.trace = "", title.trace.x = 0.5,
title.trace.y = 0.95, title.trace.size = 15,

xlab.trace = "Index", xlab.trace.size = 15, xtick.trace.size = 15,
ylab.trace = NULL, ylab.trace.size = 15, ytick.trace.size = 15,
title.summary = "Credible Regions", title.summary.x = 0.5,
title.summary.y = 0.95, title.summary.size = 15,
xlab.summary = "Predictor", xlab.summary.size = 15,
xtick.summary.size = 15,
ylab.summary = "Response", ylab.summary.size = 15,

plotly_mixMCMC 71

ytick.summary.size = 15
)

Arguments

x An object of class mixMCMC.

trace.plot If TRUE, trace plots of the various parameters estimated by the MCMC methods
is given.

summary.plot Graphics pertaining to certain mixture models. The details are given below.

burnin The values 1 to burnin are dropped when producing the plots in summary.plots.

credit.region Confidence level of credit region.

col.cr Color of credit region. Number of color specified needs to be consistent with
number of components.

cex.trace Dot size of trace plots.

width.trace Line width of trace plots.

cex.summary Dot size of summary plots.

width.summary Line width of summary plots.

title.trace Text of the main title of trace plots.

title.trace.x Horizontal position of main title of trace plots.

title.trace.y Vertical position of main title of trace plots.
title.trace.size

Text sise of main title of trace plots.

xlab.trace Label of X-axis of trace plots.
xlab.trace.size

Size of the lable of X-axis of trace plots.
xtick.trace.size

Size of tick lables of X-axis of trace plots.

ylab.trace Label of Y-axis of trace plots.
ylab.trace.size

Size of the lable of Y-axis of trace plots.
ytick.trace.size

Size of tick lables of Y-axis of trace plots.

title.summary Text of the main title of summar plot.
title.summary.x

Horizontal position of main title of summary plot.
title.summary.y

Vertical position of main title of summary plot.
title.summary.size

Text sise of main title of summary plot.

xlab.summary Label of X-axis of summary plot.
xlab.summary.size

Size of the lable of X-axis of summary plot.

72 plotly_mixturegram

xtick.summary.size

Size of tick lables of X-axis of summary plot.

ylab.summary Label of Y-axis of summary plot.
ylab.summary.size

Size of the lable of Y-axis of summary plot.
ytick.summary.size

Size of tick lables of Y-axis of summary plot.

Value

plotly_mixMCMC returns trace plots of the various parameters estimated by the MCMC methods for
all objects of class mixMCMC. In addition, other plots may be produced for the following k-component
mixture model functions:

regmixMH Credible bands for the regression lines in a mixture of linear regressions. See
regcr for more details.

See Also

regcr, plot.mixMCMC

Examples

Not run:
data(NOdata)
attach(NOdata)
set.seed(100)
beta <- matrix(c(1.3, -0.1, 0.6, 0.1), 2, 2)
sigma <- c(.02, .05)
MH.out <- regmixMH(Equivalence, NO, beta = beta, s = sigma,

sampsize = 2500, omega = .0013)
plotly_mixMCMC(x = MH.out, summary.plot = TRUE, col.cr = c("red", "green"))

End(Not run)

plotly_mixturegram Mixturegrams

Description

Construct a mixturegram for determining an apporpriate number of components using plotly.

Usage

plotly_mixturegram(data, pmbs, method=c("pca","kpca","lda"),
all.n=FALSE, id.con=NULL, score=1, iter.max=50,
nstart=25, xlab = "K", xlab.size = 15,
xtick.size = 15, ylab = NULL, ylab.size = 15,

plotly_mixturegram 73

ytick.size = 15, cex = 12, col.dot = "red",
width = 1, title = "Mixturegram", title.size = 15,
title.x = 0.5, title.y = 0.95)

Arguments

data The data, which must either be a vector or a matrix. If a matrix, then the rows
correspond to the observations.

pmbs A list of length (K-1) such that each element is an nxk matrix of the posterior
membership probabilities. These are obtained from each of the "best" estimated
k-component mixture models, k = 2,...,K.

method The dimension reduction method used. method = "pca" implements principal
components analysis. method = "kpca" implements kernel principal compo-
nents analysis. method = "lda" implements reduced rank linear discriminant
analysis.

all.n A logical specifying whether the mixturegram should plot the profiles of all ob-
servations (TRUE) or just the K-profile summaries (FALSE). The default is FALSE.

id.con An argument that allows one to impose some sort of (meaningful) identifiabil-
ity constraint so that the mixture components are in some sort of comparable
order between mixture models with different numbers of components. If NULL,
then the components are ordered by the component means for univariate data or
ordered by the first dimension of the component means for multivariate data.

score The value for the specified dimension reduction technique’s score, which is used
for constructing the mixturegram. By default, this value is 1, which is the value
that will typically be used. Larger values will result in more variability displayed
on the mixturegram. Note that the largest value that can be calculated at each
value of k>1 on the mixturegram is p+k-1, where p is the number of columns of
data.

iter.max The maximum number of iterations allowed for the k-means clustering algo-
rithm, which is passed to the kmeans function. The default is 50.

nstart The number of random sets chosen based on k centers, which is passed to the
kmeans function. The default is 25.

title Text of the main title.
title.size Size of the main title.
title.x Horsizontal position of the main title.
title.y Vertical posotion of the main title.
xlab Label of X-axis.
xlab.size Size of the lable of X-axis.
xtick.size Size of tick lables of X-axis.
ylab Label of Y-axis.
ylab.size Size of the lable of Y-axis.
ytick.size Size of tick lables of Y-axis.
cex Size of dots.
col.dot Color of dots.
width Line width.

74 plotly_mixturegram

Value

plotly_mixturegram returns a mixturegram where the profiles are plotted over component values
of k = 1,...,K.

References

Young, D. S., Ke, C., and Zeng, X. (2018) The Mixturegram: A Visualization Tool for Assessing
the Number of Components in Finite Mixture Models, Journal of Computational and Graphical
Statistics, 27(3), 564–575.

See Also

boot.comp, mixturegram

Examples

Not run:
##Data generated from a 2-component mixture of normals.
set.seed(100)
n <- 100
w <- rmultinom(n,1,c(.3,.7))
y <- sapply(1:n,function(i) w[1,i]*rnorm(1,-6,1) +

w[2,i]*rnorm(1,0,1))
selection <- function(i,data,rep=30){

out <- replicate(rep,normalmixEM(data,epsilon=1e-06,
k=i,maxit=5000),simplify=FALSE)

counts <- lapply(1:rep,function(j)
table(apply(out[[j]]$posterior,1,

which.max)))
counts.length <- sapply(counts, length)
counts.min <- sapply(counts, min)
counts.test <- (counts.length != i)|(counts.min < 5)
if(sum(counts.test) > 0 & sum(counts.test) < rep)
out <- out[!counts.test]

l <- unlist(lapply(out, function(x) x$loglik))
tmp <- out[[which.max(l)]]

}
all.out <- lapply(2:5, selection, data = y, rep = 2)
pmbs <- lapply(1:length(all.out), function(i)

all.out[[i]]$post)
plotly_mixturegram(y, pmbs, method = "pca", all.n = TRUE,

id.con = NULL, score = 1,
title = "Mixturegram (Well-Separated Data)")

End(Not run)

plotly_npEM 75

plotly_npEM Plot Nonparametric or Semiparametric EM Output

Description

This is an updater version of plot.npEM function by using plotly. For technical details, please
refer to plot.npEM.

Usage

plotly_npEM(x, blocks = NULL, hist=TRUE, addlegend=TRUE,
scale = TRUE, title=NULL, breaks="Sturges",
dens.col = NULL, newplot=TRUE, ylim = NULL ,
col.hist = "#1f77b4",
width = 3, title.x = 0.5 , title.y = 0.95, title.size = 15,
xlab = "X" , xlab.size = 15 , xtick.size = 15,
ylab = "Density" , ylab.size = 15 , ytick.size = 15,
legend.text = "Posteriors",
legend.text.size = 15,
legend.size = 15)

plotly_spEM(x, blocks = NULL, hist=TRUE, addlegend=TRUE,
scale = TRUE, title=NULL, breaks="Sturges",
dens.col = NULL, newplot=TRUE, ylim = NULL ,
col.hist = "#1f77b4",
width = 3, title.x = 0.5 , title.y = 0.95, title.size = 15,
xlab = "X" , xlab.size = 15 , xtick.size = 15,
ylab = "Density" , ylab.size = 15 , ytick.size = 15,
legend.text = "Posteriors",
legend.text.size = 15,
legend.size = 15)

Arguments

x An object of class npEM such as the output of the npEM function

blocks Blocks (of repeated measures coordinates) to plot; not relevant for univariate
case. Default is to plot all blocks.

hist If TRUE, superimpose density estimate plots on a histogram of the data

addlegend If TRUE, adds legend to the plot.

scale If TRUE, scale each density estimate by its corresponding estimated mixing
proportion, so that the total area under all densities equals 1 and the densities
plotted may be added to produce an estimate of the mixture density. When
FALSE, each density curve has area 1 in the plot.

title Alternative vector of main titles for plots (recycled as many times as needed)

breaks Passed directly to the hist function

76 plotly_npEM

ylim ylim parameter to use for all plots, if desired. If not given, each plot uses its
own ylim that ensures that no part of the plot will go past the top of the plotting
area.

dens.col Color values to use for the individual component density functions, repeated as
necessary. Default value is 2:(m+1).

newplot If TRUE, creates a new plot.

col.hist Color of the histogram to plot.

width Line width.

title.size Size of the main title.

title.x Horsizontal position of the main title.

title.y Vertical posotion of the main title.

xlab Label of X-axis.

xlab.size Size of the lable of X-axis.

xtick.size Size of tick lables of X-axis.

ylab Label of Y-axis.

ylab.size Size of the lable of Y-axis.

ytick.size Size of tick lables of Y-axis.

legend.text Title of legend.
legend.text.size

Size of the legend title.

legend.size Size of legend.

Value

plotly_npEM returns a list with two elements:

x List of matrices. The jth column of the ith matrix is the vector of x-values for
the jth density in the ith plot.

y y-values, given in the same form as the x-values.

See Also

npEM, density.npEM, spEMsymloc, plotseq.npEM, plot.npEM

Examples

Not run:
Examine and plot water-level task data set.

First, try a 3-component solution where no two coordinates are
assumed i.d.
data(Waterdata)
set.seed(100)
a <- npEM(Waterdata[,3:10], 3, bw=4)
plotly_npEM(a , newplot = FALSE)

plotly_seq.npEM 77

Next, same thing but pairing clock angles that are directly opposite one
another (1:00 with 7:00, 2:00 with 8:00, etc.)
b <- npEM(Waterdata[,3:10], 3, blockid=c(4,3,2,1,3,4,1,2), bw=4)
plotly_npEM(b , newplot = FALSE)

End(Not run)

plotly_seq.npEM Plotting sequences of estimates from non- or semiparametric EM-like
Algorithm using plotly

Description

This is an updated version of plotseq.npEM. For technical details, please refer to plotseq.npEM.

Usage

plotly_seq.npEM (x, col = '#1f77b4' , width = 6,
xlab = "Iteration" , xlab.size = 15 , xtick.size = 15,
ylab.size = 15 , ytick.size = 15,
title.size = 15 , title.x = 0.5 , title.y = 0.95)

Arguments

x an object of class npEM, as output by npEM or spEMsymloc

col Line color.

width Line width.

title Text of the main title.

title.size Size of the main title.

title.x Horsizontal position of the main title.

title.y Vertical posotion of the main title.

xlab Label of X-axis.

xlab.size Size of the lable of X-axis.

xtick.size Size of tick lables of X-axis.

ylab.size Size of the lable of Y-axis.

ytick.size Size of tick lables of Y-axis.

Value

plotly_seq.npEM returns a figure with one plot for each component proportion, and, in the case of
spEMsymloc, one plot for each component mean.

78 plotly_spEMN01

Author(s)

Didier Chauveau

References

• Benaglia, T., Chauveau, D., and Hunter, D. R. (2009), An EM-like algorithm for semi- and
non-parametric estimation in multivariate mixtures, Journal of Computational and Graphical
Statistics (to appear).

• Bordes, L., Chauveau, D., and Vandekerkhove, P. (2007), An EM algorithm for a semipara-
metric mixture model, Computational Statistics and Data Analysis, 51: 5429-5443.

See Also

plot.npEM, rnormmix, npEM, spEMsymloc, plotly_seq.npEM

Examples

Not run:
Examine and plot water-level task data set.
First, try a 3-component solution where no two coordinates are
assumed i.d.
data(Waterdata)
set.seed(100)
Not run:
a <- npEM(Waterdata[,3:10], mu0=3, bw=4) # Assume indep but not iid
plotly_seq.npEM(a)

End(Not run)

plotly_spEMN01 Plot mixture pdf for the semiparametric mixture model output by
spEMsymlocN01 using plotly.

Description

This is an updated version of plotlspEMN01 function by using plotly. For technical details, please
refer to plot.spEMN01.

Usage

plotly_spEMN01(x, bw=x$bandwidth, knownpdf=dnorm, add.plot=FALSE,
width = 3 , col.dens = NULL, col.hist = '#1f77b4',
title = NULL , title.size = 15 ,
title.x = 0.5 , title.y = 0.95,
xlab = "t" , xlab.size = 15 , xtick.size = 15,
ylab = "Density" , ylab.size = 15 , ytick.size = 15,
legend.text = "Densities" , legend.text.size = 15 ,
legend.size = 15)

plotly_spEMN01 79

Arguments

x An object of class "spEMN01" as returned by spEMsymlocN01

bw Bandwidth for weighted kernel density estimation.

knownpdf The known density of component 1, default to dnorm.

add.plot Set to TRUE to add to an existing plot.

width Line width.

col.dens Color of density lines. Number of colors specified needs to be consistent with
number of components.

col.hist Color of histogram.

title Text of the main title.

title.size Size of the main title.

title.x Horsizontal position of the main title.

title.y Vertical posotion of the main title.

xlab Label of X-axis.

xlab.size Size of the lable of X-axis.

xtick.size Size of tick lables of X-axis.

ylab Label of Y-axis.

ylab.size Size of the lable of Y-axis.

ytick.size Size of tick lables of Y-axis.

legend.text Title of legend.
legend.text.size

Size of the legend title.

legend.size Size of legend.

Value

A plot of the density of the mixture

Author(s)

Didier Chauveau

References

• Chauveau, D., Saby, N., Orton, T. G., Lemercier B., Walter, C. and Arrouys, D. Large-scale
simultaneous hypothesis testing in soil monitoring: A semi-parametric mixture approach,
preprint (2013).

See Also

spEMsymlocN01, plot.spEMN01

80 plotly_spRMM

Examples

Probit transform of p-values
from a Beta-Uniform mixture model
comparion of parametric and semiparametric EM fit
Note: in actual situations n=thousands
set.seed(50)
n=300 # nb of multiple tests
m=2 # 2 mixture components
a=c(1,0.1); b=c(1,1); lambda=c(0.6,0.4) # parameters
z=sample(1:m, n, rep=TRUE, prob = lambda)
p <- rbeta(n, shape1 = a[z], shape2 = b[z]) # p-values
o <- order(p)
cpd <- cbind(z,p)[o,] # sorted complete data, z=1 if H0, 2 if H1
p <- cpd[,2] # sorted p-values
y <- qnorm(p) # probit transform of the pvalues
gaussian EM fit with component 1 constrained to N(0,1)
s1 <- normalmixEM(y, mu=c(0,-4),

mean.constr = c(0,NA), sd.constr = c(1,NA))
s2 <- spEMsymlocN01(y, mu0 = c(0,-3)) # spEM with N(0,1) fit
plotly_spEMN01(s2 , add.plot = FALSE)

plotly_spRMM Plot output from Stochastic EM algorithm for semiparametric scaled
mixture of censored data using plotly.

Description

This is an updated version of plotspRMM function. For technical details, please refer to plotspRMM.

Usage

plotly_spRMM(sem, tmax = NULL,
width = 3 , col = '#1f77b4', cex = 3,
title.size = 15 ,
title.x = 0.5 , title.y = 0.95,
xlab.size = 15 , xtick.size=15 ,
ylab.size = 15 , ytick.size=15)

Arguments

sem An object returned by spRMM_SEM.

tmax The max time for x axis, set to some default value if NULL.

width Width of lines.

col Color of lines.

cex Size of dots.

title.size Size of the main title.

plotly_spRMM 81

title.x Horizontal position of the main title.

title.y Vertical position of the main title.

xlab.size Size of the label of X-axis.

xtick.size Size of the tick of X-axis.

ylab.size Size of the label of Y-axis.

ytick.size Size of the tick of Y-axis.

Value

The four plots returned.

Author(s)

Didier Chauveau

References

• Bordes, L., and Chauveau, D. (2016), Stochastic EM algorithms for parametric and semipara-
metric mixture models for right-censored lifetime data, Computational Statistics, Volume 31,
Issue 4, pages 1513-1538. https://link.springer.com/article/10.1007/s00180-016-0661-7

See Also

Related functions: spRMM_SEM , plotspRMM.

Other models and algorithms for censored lifetime data (name convention is model_algorithm):
expRMM_EM, weibullRMM_SEM.

Examples

Not run:
n=500 # sample size
m=2 # nb components
lambda=c(0.4, 0.6) # parameters
meanlog=3; sdlog=0.5; scale=0.1
set.seed(12)
simulate a scaled mixture of lognormals
x <- rlnormscalemix(n, lambda, meanlog, sdlog, scale)
cs=runif(n,20,max(x)+400) # Censoring (uniform) and incomplete data
t <- apply(cbind(x,cs),1,min)
d <- 1*(x <= cs)
tauxc <- 100*round(1-mean(d),3)
cat(tauxc, "percents of data censored.\n")

c0 <- c(25, 180) # data-driven initial centers (visible modes)
sc0 <- 25/180 # and scaling
s <- spRMM_SEM(t, d, scaling = sc0, centers = c0, bw = 15, maxit = 100)

plotly_spRMM(s) # default
summary(s) # S3 method for class "spRMM"

https://link.springer.com/article/10.1007/s00180-016-0661-7

82 plotly_weibullRMM

End(Not run)

plotly_weibullRMM Plot sequences from the Stochastic EM algorithm for mixture of
Weibull using plotly

Description

This is an updated version of plotweibullRMM function by using plotly function. For technical
details, please refer to plotweibullRMM.

Usage

plotly_weibullRMM(a, title=NULL, rowstyle=TRUE, subtitle=NULL,
width = 3 , col = NULL ,
title.size = 15 , title.x = 0.5 , title.y = 0.95,
xlab = "Iterations" , xlab.size = 15 , xtick.size = 15,
ylab = "Estimates" , ylab.size = 15 , ytick.size = 15,
legend.size = 15)

Arguments

a An object returned by weibullRMM_SEM.

title The title of the plot, set to some default value if NULL.

rowstyle Window organization, for plots in rows (the default) or columns.

subtitle A subtitle for the plot, set to some default value if NULL.

width Line width.

col Color of lines. Number of colors specified needs to be consistent with number
of components.

title.size Size of the main title.

title.x Horsizontal position of the main title.

title.y Vertical posotion of the main title.

xlab Label of X-axis.

xlab.size Size of the lable of X-axis.

xtick.size Size of tick lables of X-axis.

ylab Label of Y-axis.

ylab.size Size of the lable of Y-axis.

ytick.size Size of tick lables of Y-axis.

legend.size Size of legend.

Value

The plot returned.

plotseq.npEM 83

Author(s)

Didier Chauveau

References

• Bordes, L., and Chauveau, D. (2016), Stochastic EM algorithms for parametric and semipara-
metric mixture models for right-censored lifetime data, Computational Statistics, Volume 31,
Issue 4, pages 1513-1538. https://link.springer.com/article/10.1007/s00180-016-0661-7

See Also

Related functions: weibullRMM_SEM, summary.mixEM, plotweibullRMM.

Other models and algorithms for censored lifetime data (name convention is model_algorithm):
expRMM_EM, spRMM_SEM .

Examples

n = 500 # sample size
m = 2 # nb components
lambda=c(0.4, 0.6)
shape <- c(0.5,5); scale <- c(1,20) # model parameters
set.seed(321)
x <- rweibullmix(n, lambda, shape, scale) # iid ~ weibull mixture
cs=runif(n,0,max(x)+10) # iid censoring times
t <- apply(cbind(x,cs),1,min) # censored observations
d <- 1*(x <= cs) # censoring indicator
set arbitrary or "reasonable" (e.g., data-driven) initial values
l0 <- rep(1/m,m); sh0 <- c(1, 2); sc0 <- c(2,10)
Stochastic EM algorithm
a <- weibullRMM_SEM(t, d, lambda = l0, shape = sh0, scale = sc0, maxit = 200)
summary(a) # Parameters estimates etc
plotly_weibullRMM(a , legend.size = 20) # plot of St-EM sequences

plotseq.npEM Plotting sequences of estimates from non- or semiparametric EM-like
Algorithm

Description

Returns plots of the sequences of scalar parameter estimates along iterations from an object of class
npEM.

Usage

S3 method for class 'npEM'
plotseq(x, ...)

https://link.springer.com/article/10.1007/s00180-016-0661-7

84 plotspRMM

Arguments

x an object of class npEM, as output by npEM or spEMsymloc

... further parameters that are passed to plot

Details

plotseq.npEM returns a figure with one plot for each component proportion, and, in the case of
spEMsymloc, one plot for each component mean.

References

• Benaglia, T., Chauveau, D., and Hunter, D. R. (2009), An EM-like algorithm for semi- and
non-parametric estimation in multivariate mixtures, Journal of Computational and Graphical
Statistics (to appear).

• Bordes, L., Chauveau, D., and Vandekerkhove, P. (2007), An EM algorithm for a semipara-
metric mixture model, Computational Statistics and Data Analysis, 51: 5429-5443.

See Also

plot.npEM, rnormmix, npEM, spEMsymloc

Examples

Example from a normal location mixture
n <- 200
set.seed(100)
lambda <- c(1/3,2/3)
mu <- c(0, 4); sigma<-rep(1, 2)
x <- rnormmix(n, lambda, mu, sigma)
b <- spEMsymloc(x, mu0=c(-1, 2), stochastic=FALSE)
plotseq(b)
bst <- spEMsymloc(x, mu0=c(-1, 2), stochastic=TRUE)
plotseq(bst)

plotspRMM Plot output from Stochastic EM algorithm for semiparametric scaled
mixture of censored data

Description

Function for plotting various results from an object returned by spRMM_SEM, a Stochastic EM al-
gorithm for semiparametric scaled mixture of randomly right censored lifetime data. Four plots of
sequences of estimates along iterations, survival and density estimates (see reference below).

Usage

plotspRMM(sem, tmax = NULL)

plotweibullRMM 85

Arguments

sem An object returned by spRMM_SEM.

tmax The max time for x axis, set to some default value if NULL.

Value

The four plots returned

Author(s)

Didier Chauveau

References

• Bordes, L., and Chauveau, D. (2016), Stochastic EM algorithms for parametric and semipara-
metric mixture models for right-censored lifetime data, Computational Statistics, Volume 31,
Issue 4, pages 1513-1538. https://link.springer.com/article/10.1007/s00180-016-0661-7

See Also

Related functions: spRMM_SEM.

Other models and algorithms for censored lifetime data (name convention is model_algorithm):
expRMM_EM, weibullRMM_SEM.

Examples

See example(spRMM_SEM)

plotweibullRMM Plot sequences from the Stochastic EM algorithm for mixture of
Weibull

Description

Function for plotting sequences of estimates along iterations, from an object returned by weibullRMM_SEM,
a Stochastic EM algorithm for mixture of Weibull distributions with randomly right censored data
(see reference below).

Usage

plotweibullRMM(a, title = NULL, rowstyle = TRUE, subtitle = NULL, ...)

https://link.springer.com/article/10.1007/s00180-016-0661-7

86 plotweibullRMM

Arguments

a An object returned by weibullRMM_SEM.

title The title of the plot, set to some default value if NULL.

rowstyle Window organization, for plots in rows (the default) or columns.

subtitle A subtitle for the plot, set to some default value if NULL.

... Other parameters (such as lwd) passed to plot, lines, and legend commands.

Value

The plot returned

Author(s)

Didier Chauveau

References

• Bordes, L., and Chauveau, D. (2016), Stochastic EM algorithms for parametric and semipara-
metric mixture models for right-censored lifetime data, Computational Statistics, Volume 31,
Issue 4, pages 1513-1538. https://link.springer.com/article/10.1007/s00180-016-0661-7

See Also

Related functions: weibullRMM_SEM, summary.mixEM.

Other models and algorithms for censored lifetime data (name convention is model_algorithm):
expRMM_EM, spRMM_SEM .

Examples

n = 500 # sample size
m = 2 # nb components
lambda=c(0.4, 0.6)
shape <- c(0.5,5); scale <- c(1,20) # model parameters
set.seed(321)
x <- rweibullmix(n, lambda, shape, scale) # iid ~ weibull mixture
cs=runif(n,0,max(x)+10) # iid censoring times
t <- apply(cbind(x,cs),1,min) # censored observations
d <- 1*(x <= cs) # censoring indicator

set arbitrary or "reasonable" (e.g., data-driven) initial values
l0 <- rep(1/m,m); sh0 <- c(1, 2); sc0 <- c(2,10)
Stochastic EM algorithm
a <- weibullRMM_SEM(t, d, lambda = l0, shape = sh0, scale = sc0, maxit = 200)

summary(a) # Parameters estimates etc
plotweibullRMM(a) # default plot of St-EM sequences

https://link.springer.com/article/10.1007/s00180-016-0661-7

poisregmixEM 87

poisregmixEM EM Algorithm for Mixtures of Poisson Regressions

Description

Returns EM algorithm output for mixtures of Poisson regressions with arbitrarily many components.

Usage

poisregmixEM(y, x, lambda = NULL, beta = NULL, k = 2,
addintercept = TRUE, epsilon = 1e-08,
maxit = 10000, verb = FALSE)

Arguments

y An n-vector of response values.
x An nxp matrix of predictors. See addintercept below.
lambda Initial value of mixing proportions. Entries should sum to 1. This determines

number of components. If NULL, then lambda is random from uniform Dirich-
let and number of components is determined by beta.

beta Initial value of beta parameters. Should be a pxk matrix, where p is the num-
ber of columns of x and k is number of components. If NULL, then beta is
generated by binning the data into k bins and using glm on the values in each
of the bins. If both lambda and beta are NULL, then number of components is
determined by k.

k Number of components. Ignored unless lambda and beta are both NULL.
addintercept If TRUE, a column of ones is appended to the x matrix before the value of p is

calculated.
epsilon The convergence criterion.
maxit The maximum number of iterations.
verb If TRUE, then various updates are printed during each iteration of the algorithm.

Value

poisregmixEM returns a list of class mixEM with items:

x The predictor values.
y The response values.
lambda The final mixing proportions.
beta The final Poisson regression coefficients.
loglik The final log-likelihood.
posterior An nxk matrix of posterior probabilities for observations.
all.loglik A vector of each iteration’s log-likelihood.
restarts The number of times the algorithm restarted due to unacceptable choice of initial

values.
ft A character vector giving the name of the function.

88 post.beta

References

McLachlan, G. J. and Peel, D. (2000) Finite Mixture Models, John Wiley and Sons, Inc.

Wang, P., Puterman, M. L., Cockburn, I. and Le, N. (1996) Mixed Poisson Regression Models with
Covariate Dependent Rates, Biometrics, 52(2), 381–400.

See Also

logisregmixEM

Examples

EM output for data generated from a 2-component model.

set.seed(100)
beta <- matrix(c(1, .5, .7, -.8), 2, 2)
x <- runif(50, 0, 10)
xbeta <- cbind(1, x)%*%beta
w <- rbinom(50, 1, .5)
y <- w*rpois(50, exp(xbeta[, 1]))+(1-w)*rpois(50, exp(xbeta[, 2]))
out <- poisregmixEM(y, x, verb = TRUE, epsilon = 1e-03)
out

post.beta Summary of Posterior Regression Coefficients in Mixtures of Random
Effects Regressions

Description

Returns a 2x2 matrix of plots summarizing the posterior intercept and slope terms in a mixture of
random effects regression with arbitrarily many components.

Usage

post.beta(y, x, p.beta, p.z)

Arguments

y A list of N response trajectories with (possibly) varying dimensions of length
ni.

x A list of N predictor values of dimension ni. Each trajectory in y has its own
design vector.

p.beta A list of N 2xk matrices giving the posterior intercept and slope values from the
output of an EM algorithm.

p.z An Nxk matrix of posterior membership probabilities from the output of an EM
algorithm.

post.beta 89

Details

This is primarily used for within plot.mixEM.

Value

post.beta returns a 2x2 matrix of plots giving:

(1, 1) The data plotted on the x-y axes with all posterior regression lines.
(1, 2) The data plotted on the x-y axes with most probable posterior regression lines.
(2, 1) A beta-space plot of all posterior regression coefficients.
(1, 1) A beta-space plot of most probable posterior regression coefficients.

References

Young, D. S. and Hunter, D. R. (2015) Random Effects Regression Mixtures for Analyzing Infant
Habituation, Journal of Applied Statistics, 42(7), 1421–1441.

See Also

regmixEM.mixed, plot.mixEM

Examples

Not run:
EM output for simulated data from 2-component mixture of random effects.

data(RanEffdata)
set.seed(100)
x <- lapply(1:length(RanEffdata), function(i)

matrix(RanEffdata[[i]][, 2:3], ncol = 2))
x <- x[1:20]
y <- lapply(1:length(RanEffdata), function(i)

matrix(RanEffdata[[i]][, 1], ncol = 1))
y <- y[1:20]
lambda <- c(0.45, 0.55)
mu <- matrix(c(0, 4, 100, 12), 2, 2)
sigma <- 2
R <- list(diag(1, 2), diag(1, 2))
em.out <- regmixEM.mixed(y, x, sigma = sigma, arb.sigma = FALSE,

lambda = lambda, mu = mu, R = R,
addintercept.random = FALSE,
epsilon = 1e-02, verb = TRUE)

Obtaining the 2x2 matrix of plots.

x.ran <- lapply(1:length(x), function(i) x[[i]][, 2])
p.beta <- em.out$posterior.beta
p.z <- em.out$posterior.z
post.beta(y, x.ran, p.beta = p.beta, p.z = p.z)

End(Not run)

90 print.mvnpEM

print.mvnpEM Printing of Results from the mvnpEM Algorithm Output

Description

print method for class mvnpEM.

Usage

S3 method for class 'mvnpEM'
print(x, ...)

Arguments

x an object of class mvnpEM such as a result of a call to mvnpEM

... Additional arguments to print

Details

print.mvnpEM prints the elements of an mvnpEM object without printing the data or the posterior
probabilities. (These may still be accessed as x$data and x$posteriors.)

Value

print.mvnpEM returns (invisibly) the full value of x itself, including the data and posteriors
elements.

See Also

mvnpEM, plot.mvnpEM summary.mvnpEM

Examples

Example as in Chauveau and Hoang (2015) with 6 coordinates
Not run:
m=2; r=6; blockid <-c(1,1,2,2,3,3) # 3 bivariate blocks
generate some data x ...
a <- mvnpEM(x, mu0=2, blockid, samebw=F) # adaptive bandwidth
print(a)
End(Not run)

print.npEM 91

print.npEM Printing non- and semi-parametric multivariate mixture model fits

Description

print method for class npEM.

Usage

S3 method for class 'npEM'
print(x, ...)

Arguments

x an object of class npEM such as a result of a call to npEM

... Additional arguments to print

Details

print.npEM prints the elements of an npEM object without printing the data or the posterior proba-
bilities. (These may still be accessed as x$data and x$posteriors.)

Value

print.npEM returns (invisibly) the full value of x itself, including the data and posteriors ele-
ments.

See Also

npEM, plot.npEM summary.npEM

Examples

data(Waterdata)
set.seed(100)
Not run: npEM(Waterdata[,3:10], 3, bw=4, verb=FALSE) # Assume indep but not iid

92 regcr

RanEffdata Simulated Data from 2-Component Mixture of Regressions with Ran-
dom Effects

Description

This data set was generated from a 2-component mixture of regressions with random effects.

Usage

data(RanEffdata)

Format

This data set consists of a list with 100 25x3 matrices. The first column is the response variable, the
second column is a column of 1’s and the last column is the predictor variable.

See Also

regmixEM.mixed

regcr Add a Confidence Region or Bayesian Credible Region for Regression
Lines to a Scatterplot

Description

Produce a confidence or credible region for regression lines based on a sample of bootstrap beta
values or posterior beta values. The beta parameters are the intercept and slope from a simple linear
regression.

Usage

regcr(beta, x, em.beta = NULL, em.sigma = NULL, alpha = .05,
nonparametric = FALSE, plot = FALSE, xyaxes = TRUE, ...)

Arguments

beta An nx2 matrix of regression parameters. The first column gives the intercepts
and the second column gives the slopes.

x An n-vector of the predictor variable which is necessary when nonparametric =
TRUE.

em.beta The estimates for beta required when obtaining confidence regions. This is re-
quired for performing the standardization necessary when obtaining nonpara-
metric confidence regions.

regcr 93

em.sigma The estimates for the regression standard deviation required when obtaining
confidence regions. This is required for performing the standardization nec-
essary when obtaining nonparametric confidence regions.

alpha The proportion of the beta sample to remove. In other words, 1-alpha is the level
of the credible region.

nonparametric If nonparametric = TRUE, then the region is based on the convex hull of the
remaining beta after trimming, which is accomplished using a data depth tech-
nique. If nonparametric = FALSE, then the region is based on the asymptotic
normal approximation.

plot If plot = TRUE, lines are added to the existing plot. The type of plot created
depends on the value of xyaxes.

xyaxes If xyaxes = TRUE and plot = TRUE, then a confidence or credible region for the
regression lines is plotted on the x-y axes, presumably overlaid on a scatterplot
of the data. If xyaxes = FALSE and plot = TRUE, the (convex) credible region
for the regression line is plotted on the beta, or intercept-slope, axes, presumably
overlaid on a scatterplot of beta.

... Graphical parameters passed to lines or plot command.

Value

regcr returns a list containing the following items:

boundary A matrix of points in beta, or intercept-slope, space arrayed along the boundary
of the confidence or credible region.

upper A matrix of points in x-y space arrayed along the upper confidence or credible
limit for the regression line.

lower A matrix of points in x-y space arrayed along the lower confidence or credible
limit for the regression line.

See Also

regmixEM, regmixMH

Examples

Nonparametric credible regions fit to NOdata.

data(NOdata)
attach(NOdata)
set.seed(100)
beta <- matrix(c(1.3, -0.1, 0.6, 0.1), 2, 2)
sigma <- c(.02, .05)
MH.out <- regmixMH(Equivalence, NO, beta = beta, s = sigma,

sampsize = 2500, omega = .0013)
attach(data.frame(MH.out$theta))
beta.c1 <- cbind(beta0.1[2400:2499], beta1.1[2400:2499])
beta.c2 <- cbind(beta0.2[2400:2499], beta1.2[2400:2499])
plot(NO, Equivalence)
regcr(beta.c1, x = NO, nonparametric = TRUE, plot = TRUE,

94 regmixEM

col = 2)
regcr(beta.c2, x = NO, nonparametric = TRUE, plot = TRUE,

col = 3)

regmixEM EM Algorithm for Mixtures of Regressions

Description

Returns EM algorithm output for mixtures of multiple regressions with arbitrarily many compo-
nents.

Usage

regmixEM(y, x, lambda = NULL, beta = NULL, sigma = NULL, k = 2,
addintercept = TRUE, arbmean = TRUE, arbvar = TRUE,
epsilon = 1e-08, maxit = 10000, verb = FALSE)

Arguments

y An n-vector of response values.

x An nxp matrix of predictors. See addintercept below.

lambda Initial value of mixing proportions. Entries should sum to 1. This determines
number of components. If NULL, then lambda is random from uniform Dirich-
let and number of components is determined by beta.

beta Initial value of beta parameters. Should be a pxk matrix, where p is the num-
ber of columns of x and k is number of components. If NULL, then beta has
standard normal entries according to a binning method done on the data. If
both lambda and beta are NULL, then number of components is determined by
sigma.

sigma A vector of standard deviations. If NULL, then 1/sigma^2 has random standard
exponential entries according to a binning method done on the data. If lambda,
beta, and sigma are NULL, then number of components is determined by k.

k Number of components. Ignored unless all of lambda, beta, and sigma are
NULL.

addintercept If TRUE, a column of ones is appended to the x matrix before the value of p is
calculated.

arbmean If TRUE, each mixture component is assumed to have a different set of regres-
sion coefficients (i.e., the betas).

arbvar If TRUE, each mixture component is assumed to have a different sigma.

epsilon The convergence criterion.

maxit The maximum number of iterations.

verb If TRUE, then various updates are printed during each iteration of the algorithm.

regmixEM 95

Value

regmixEM returns a list of class mixEM with items:

x The set of predictors (which includes a column of 1’s if addintercept = TRUE).

y The response values.

lambda The final mixing proportions.

beta The final regression coefficients.

sigma The final standard deviations. If arbmean = FALSE, then only the smallest stan-
dard deviation is returned. See scale below.

scale If arbmean = FALSE, then the scale factor for the component standard devia-
tions is returned. Otherwise, this is omitted from the output.

loglik The final log-likelihood.

posterior An nxk matrix of posterior probabilities for observations.

all.loglik A vector of each iteration’s log-likelihood.

restarts The number of times the algorithm restarted due to unacceptable choice of initial
values.

ft A character vector giving the name of the function.

References

de Veaux, R. D. (1989), Mixtures of Linear Regressions, Computational Statistics and Data Analy-
sis 8, 227-245.

Hurn, M., Justel, A. and Robert, C. P. (2003) Estimating Mixtures of Regressions, Journal of Com-
putational and Graphical Statistics 12(1), 55–79.

McLachlan, G. J. and Peel, D. (2000) Finite Mixture Models, John Wiley and Sons, Inc.

See Also

regcr, regmixMH

Examples

EM output for NOdata.

data(NOdata)
attach(NOdata)
set.seed(100)
em.out <- regmixEM(Equivalence, NO, verb = TRUE, epsilon = 1e-04)
em.out[3:6]

96 regmixEM.lambda

regmixEM.lambda EM Algorithm for Mixtures of Regressions with Local Lambda Esti-
mates

Description

Returns output for one step of an EM algorithm output for mixtures of multiple regressions where
the mixing proportions are estimated locally.

Usage

regmixEM.lambda(y, x, lambda = NULL, beta = NULL, sigma = NULL,
k = 2, addintercept = TRUE, arbmean = TRUE,
arbvar = TRUE, epsilon = 1e-8, maxit = 10000,
verb = FALSE)

Arguments

y An n-vector of response values.

x An nxp matrix of predictors. See addintercept below.

lambda An nxk matrix of initial local values of mixing proportions. Entries should sum
to 1. This determines number of components. If NULL, then lambda is simply
one over the number of components.

beta Initial value of beta parameters. Should be a pxk matrix, where p is the number
of columns of x and k is number of components. If NULL, then beta has uni-
form standard normal entries. If both lambda and beta are NULL, then number
of components is determined by sigma.

sigma k-vector of initial global values of standard deviations. If NULL, then 1/sigma2

has random standard exponential entries. If lambda, beta, and sigma are NULL,
then number of components is determined by k.

k The number of components. Ignored unless all of lambda, beta, and sigma are
NULL.

addintercept If TRUE, a column of ones is appended to the x matrix before the value of p is
calculated.

arbmean If TRUE, each mixture component is assumed to have a different set of regres-
sion coefficients (i.e., the betas).

arbvar If TRUE, each mixture component is assumed to have a different sigma.

epsilon The convergence criterion.

maxit The maximum number of iterations.

verb If TRUE, then various updates are printed during each iteration of the algorithm.

Details

Primarily used within regmixEM.loc.

regmixEM.loc 97

Value

regmixEM.lambda returns a list of class mixEM with items:

x The set of predictors (which includes a column of 1’s if addintercept = TRUE).

y The response values.

lambda The inputted mixing proportions.

beta The final regression coefficients.

sigma The final standard deviations. If arbmean = FALSE, then only the smallest stan-
dard deviation is returned. See scale below.

scale If arbmean = FALSE, then the scale factor for the component standard devia-
tions is returned. Otherwise, this is omitted from the output.

loglik The final log-likelihood.

posterior An nxk matrix of posterior probabilities for observations.

all.loglik A vector of each iteration’s log-likelihood.

restarts The number of times the algorithm restarted due to unacceptable choice of initial
values.

ft A character vector giving the name of the function.

See Also

regmixEM.loc

Examples

Compare a 2-component and 3-component fit to NOdata.

data(NOdata)
attach(NOdata)
set.seed(100)
out1 <- regmixEM.lambda(Equivalence, NO)
out2 <- regmixEM.lambda(Equivalence, NO, k = 3)
c(out1$loglik, out2$loglik)

regmixEM.loc Iterative Algorithm Using EM Algorithm for Mixtures of Regressions
with Local Lambda Estimates

Description

Iterative algorithm returning EM algorithm output for mixtures of multiple regressions where the
mixing proportions are estimated locally.

98 regmixEM.loc

Usage

regmixEM.loc(y, x, lambda = NULL, beta = NULL, sigma = NULL,
k = 2, addintercept = TRUE, kern.l = c("Gaussian",
"Beta", "Triangle", "Cosinus", "Optcosinus"),
epsilon = 1e-08, maxit = 10000, kernl.g = 0,
kernl.h = 1, verb = FALSE)

Arguments

y An n-vector of response values.

x An nxp matrix of predictors. See addintercept below.

lambda An nxk matrix of initial local values of mixing proportions. Entries should sum
to 1. This determines number of components. If NULL, then lambda is simply
one over the number of components.

beta Initial global values of beta parameters. Should be a pxk matrix, where p is the
number of columns of x and k is number of components. If NULL, then beta
has uniform standard normal entries. If both lambda and beta are NULL, then
number of components is determined by sigma.

sigma A k-vector of initial global values of standard deviations. If NULL, then 1/sigma2

has random standard exponential entries. If lambda, beta, and sigma are NULL,
then number of components determined by k.

k Number of components. Ignored unless all of lambda, beta, and sigma are
NULL.

addintercept If TRUE, a column of ones is appended to the x matrix before the value of p is
calculated.

kern.l The type of kernel to use in the local estimation of lambda.

epsilon The convergence criterion.

maxit The maximum number of iterations.

kernl.g A shape parameter required for the symmetric beta kernel for local estimation
of lambda. The default is g = 0 which yields the uniform kernel. Some common
values are g = 1 for the Epanechnikov kernel, g = 2 for the biweight kernel, and
g = 3 for the triweight kernel.

kernl.h The bandwidth controlling the size of the window used in the local estimation
of lambda around x.

verb If TRUE, then various updates are printed during each iteration of the algorithm.

Value

regmixEM.loc returns a list of class mixEM with items:

x The set of predictors (which includes a column of 1’s if addintercept = TRUE).

y The response values.

lambda.x The final local mixing proportions.

beta The final global regression coefficients.

regmixEM.mixed 99

sigma The final global standard deviations.

loglik The final log-likelihood.

posterior An nxk matrix of posterior probabilities for observations.

all.loglik A vector of each iteration’s log-likelihood.

restarts The number of times the algorithm restarted due to unacceptable choice of initial
values.

ft A character vector giving the name of the function.

See Also

regmixEM.lambda

Examples

Compare a 2-component and 3-component fit to NOdata.

data(NOdata)
attach(NOdata)
set.seed(100)
out1 <- regmixEM.loc(Equivalence, NO, kernl.h = 2,

epsilon = 1e-02, verb = TRUE)
out2 <- regmixEM.loc(Equivalence, NO, kernl.h = 2, k = 3,

epsilon = 1e-02, verb = TRUE)
c(out1$loglik, out2$loglik)

regmixEM.mixed EM Algorithm for Mixtures of Regressions with Random Effects

Description

Returns EM algorithm output for mixtures of multiple regressions with random effects and an option
to incorporate fixed effects and/or AR(1) errors.

Usage

regmixEM.mixed(y, x, w = NULL, sigma = NULL, arb.sigma = TRUE,
alpha = NULL, lambda = NULL, mu = NULL,
rho = NULL, R = NULL, arb.R = TRUE, k = 2,
ar.1 = FALSE, addintercept.fixed = FALSE,
addintercept.random = TRUE, epsilon = 1e-08,
maxit = 10000, verb = FALSE)

100 regmixEM.mixed

Arguments

y A list of N response trajectories with (possibly) varying dimensions of length
ni.

x A list of N design matrices of dimensions (ni) × p. Each trajectory in y has its
own design matrix.

w A list of N known explanatory variables having dimensions (ni) × q. If mixed
= FALSE, then w is replaced by a list of N zeros.

sigma A vector of standard deviations. If NULL, then 1/s2 has random standard ex-
ponential entries according to a binning method done on the data.

arb.sigma If TRUE, then sigma is k-dimensional. Else a common standard deviation is
assumed.

alpha A q-vector of unknown regression parameters for the fixed effects. If NULL and
mixed = TRUE, then alpha is random from a normal distribution with mean and
variance according to a binning method done on the data. If mixed = FALSE,
then alpha = 0.

lambda Initial value of mixing proportions for the assumed mixture structure on the
regression coefficients. Entries should sum to 1. This determines number of
components. If NULL, then lambda is random from uniform Dirichlet and the
number of components is determined by mu.

mu A pxk matrix of the mean for the mixture components of the random regression
coefficients. If NULL, then the columns of mu are random from a multivariate
normal distribution with mean and variance determined by a binning method
done on the data.

rho An Nxk matrix giving initial values for the correlation term in an AR(1) process.
If NULL, then these values are simulated from a uniform distribution on the
interval (-1, 1).

R A list of N pxp covariance matrices for the mixture components of the random
regression coefficients. If NULL, then each matrix is random from a standard
Wishart distribution according to a binning method done on the data.

arb.R If TRUE, then R is a list of N pxp covariance matrices. Else, one common
covariance matrix is assumed.

k Number of components. Ignored unless lambda is NULL.

ar.1 If TRUE, then an AR(1) process on the error terms is included. The default is
FALSE.

addintercept.fixed

If TRUE, a column of ones is appended to the matrices in w.
addintercept.random

If TRUE, a column of ones is appended to the matrices in x before p is calcu-
lated.

epsilon The convergence criterion.

maxit The maximum number of iterations.

verb If TRUE, then various updates are printed during each iteration of the algorithm.

regmixEM.mixed 101

Value

regmixEM returns a list of class mixEM with items:

x The predictor values corresponding to the random effects.

y The response values.

w The predictor values corresponding to the (optional) fixed effects.

lambda The final mixing proportions.

mu The final mean vectors.

R The final covariance matrices.

sigma The final component error standard deviations.

alpha The final regression coefficients for the fixed effects.

rho The final error correlation values if an AR(1) process is included.

loglik The final log-likelihood.

posterior.z An Nxk matrix of posterior membership probabilities.

posterior.beta A list of N pxk matrices giving the posterior regression coefficient values.

all.loglik A vector of each iteration’s log-likelihood.

restarts The number of times the algorithm restarted due to unacceptable choice of initial
values.

ft A character vector giving the name of the function.

References

Xu, W. and Hedeker, D. (2001) A Random-Effects Mixture Model for Classifying Treatment Re-
sponse in Longitudinal Clinical Trials, Journal of Biopharmaceutical Statistics, 11(4), 253–273.

Young, D. S. and Hunter, D. R. (2015) Random Effects Regression Mixtures for Analyzing Infant
Habituation, Journal of Applied Statistics, 42(7), 1421–1441.

See Also

regmixEM, post.beta

Examples

EM output for simulated data from 2-component mixture of random effects.

data(RanEffdata)
set.seed(100)
x <- lapply(1:length(RanEffdata), function(i)

matrix(RanEffdata[[i]][, 2:3], ncol = 2))
x <- x[1:20]
y <- lapply(1:length(RanEffdata), function(i)

matrix(RanEffdata[[i]][, 1], ncol = 1))
y <- y[1:20]
lambda <- c(0.45, 0.55)
mu <- matrix(c(0, 4, 100, 12), 2, 2)

102 regmixMH

sigma <- 2
R <- list(diag(1, 2), diag(1, 2))
em.out <- regmixEM.mixed(y, x, sigma = sigma, arb.sigma = FALSE,

lambda = lambda, mu = mu, R = R,
addintercept.random = FALSE,
epsilon = 1e-02, verb = TRUE)

em.out[4:10]

regmixMH Metropolis-Hastings Algorithm for Mixtures of Regressions

Description

Return Metropolis-Hastings (M-H) algorithm output for mixtures of multiple regressions with arbi-
trarily many components.

Usage

regmixMH(y, x, lambda = NULL, beta = NULL, s = NULL, k = 2,
addintercept = TRUE, mu = NULL, sig = NULL, lam.hyp = NULL,
sampsize = 1000, omega = 0.01, thin = 1)

Arguments

y An n-vector of response values.

x An nxp matrix of predictors. See addintercept below.

lambda Initial value of mixing proportions. Entries should sum to 1. This determines
number of components. If NULL, then lambda is random from uniform Dirich-
let and number of components is determined by beta.

beta Initial value of beta parameters. Should be a pxk matrix, where p is the number
of columns of x and k is number of components. If NULL, then beta has uni-
form standard normal entries. If both lambda and beta are NULL, then number
of components is determined by s.

s k-vector of standard deviations. If NULL, then 1/s2 has random standard expo-
nential entries. If lambda, beta, and s are NULL, then number of components
determined by k.

k Number of components. Ignored unless all of lambda, beta, and s are NULL.

addintercept If TRUE, a column of ones is appended to the x matrix before the value of p is
calculated.

mu The prior hyperparameter of same size as beta; the means of beta components.
If NULL, these are set to zero.

sig The prior hyperparameter of same size as beta; the standard deviations of beta
components. If NULL, these are all set to five times the overall standard devia-
tion of y.

regmixMH 103

lam.hyp The prior hyperparameter of length k for the mixing proportions (i.e., these are
hyperparameters for the Dirichlet distribution). If NULL, these are generated
from a standard uniform distribution and then scaled to sum to 1.

sampsize Size of posterior sample returned.

omega Multiplier of step size to control M-H acceptance rate. Values closer to zero
result in higher acceptance rates, generally.

thin Lag between parameter vectors that will be kept.

Value

regmixMH returns a list of class mixMCMC with items:

x A nxp matrix of the predictors.

y A vector of the responses.

theta A (sampsize/thin) x q matrix of MCMC-sampled q-vectors, where q is the
total number of parameters in beta, s, and lambda.

k The number of components.

References

Hurn, M., Justel, A. and Robert, C. P. (2003) Estimating Mixtures of Regressions, Journal of Com-
putational and Graphical Statistics 12(1), 55–79.

See Also

regcr

Examples

M-H algorithm for NOdata with acceptance rate about 40%.

data(NOdata)
attach(NOdata)
set.seed(100)
beta <- matrix(c(1.3, -0.1, 0.6, 0.1), 2, 2)
sigma <- c(.02, .05)
MH.out <- regmixMH(Equivalence, NO, beta = beta, s = sigma,

sampsize = 2500, omega = .0013)
MH.out$theta[2400:2499,]

104 regmixmodel.sel

regmixmodel.sel Model Selection in Mixtures of Regressions

Description

Assess the number of components in a mixture of regressions model using the Akaike’s informa-
tion criterion (AIC), Schwartz’s Bayesian information criterion (BIC), Bozdogan’s consistent AIC
(CAIC), and Integrated Completed Likelihood (ICL).

Usage

regmixmodel.sel(x, y, w = NULL, k = 2, type = c("fixed",
"random", "mixed"), ...)

Arguments

x An nxp matrix (or list) of predictors. If an intercept is required, then x must
NOT include a column of 1’s! Requiring an intercept may be controlled through
arguments specified in

y An n-vector (or list) of response values.

w An optional list of fixed effects predictors for type "mixed" or "random".

k The maximum number of components to assess.

type The type of regression mixture to use. If "fixed", then a mixture of regressions
with fixed effects will be used. If "random", then a mixture of regressions where
the random effects regression coefficients are assumed to come from a mixture
will be used. If "mixed", the mixture structure used is the same as "random",
except a coefficient of fixed effects is also assumed.

... Additional arguments passed to the EM algorithm used for calculating the type
of regression mixture specified in type.

Value

regmixmodel.sel returns a matrix of the AIC, BIC, CAIC, and ICL values along with the win-
ner (i.e., the highest value given by the model selection criterion) for various types of regression
mixtures.

References

Biernacki, C., Celeux, G. and Govaert, G. (2000) Assessing a Mixture Model for Clustering with the
Integrated Completed Likelihood, IEEE Transactions on Pattern Analysis and Machine Intelligence
22(7), 719–725.

Bozdogan, H. (1987) Model Selection and Akaike’s Information Criterion (AIC): The General The-
ory and its Analytical Extensions, Psychometrika 52, 345–370.

repnormmixEM 105

See Also

regmixEM, regmixEM.mixed

Examples

Assessing the number of components for NOdata.

data(NOdata)
attach(NOdata)
set.seed(100)
regmixmodel.sel(x = NO, y = Equivalence, k = 3, type = "fixed")

repnormmixEM EM Algorithm for Mixtures of Normals with Repeated Measurements

Description

Returns EM algorithm output for mixtures of normals with repeated measurements and arbitrarily
many components.

Usage

repnormmixEM(x, lambda = NULL, mu = NULL, sigma = NULL, k = 2,
arbmean = TRUE, arbvar = TRUE, epsilon = 1e-08,
maxit = 10000, verb = FALSE)

Arguments

x An mxn matrix of data. The columns correspond to the subjects and the rows
correspond to the repeated measurements.

lambda Initial value of mixing proportions. Entries should sum to 1. This determines
number of components. If NULL, then lambda is random from uniform Dirich-
let and number of components is determined by mu.

mu A k-vector of component means. If NULL, then mu is determined by a normal
distribution according to a binning method done on the data. If both lambda and
mu are NULL, then number of components is determined by sigma.

sigma A vector of standard deviations. If NULL, then 1/sigma2 has random standard
exponential entries according to a binning method done on the data. If lambda,
mu, and sigma are NULL, then number of components is determined by k.

k Number of components. Ignored unless all of lambda, mu, and sigma are NULL.
arbmean If TRUE, then the component densities are allowed to have different mus. If

FALSE, then a scale mixture will be fit.
arbvar If TRUE, then the component densities are allowed to have different sigmas. If

FALSE, then a location mixture will be fit.
epsilon The convergence criterion.
maxit The maximum number of iterations.
verb If TRUE, then various updates are printed during each iteration of the algorithm.

106 repnormmixmodel.sel

Value

repnormmixEM returns a list of class mixEM with items:

x The raw data.

lambda The final mixing proportions.

mu The final mean parameters.

sigma The final standard deviations. If arbmean = FALSE, then only the smallest stan-
dard deviation is returned. See scale below.

scale If arbmean = FALSE, then the scale factor for the component standard devia-
tions is returned. Otherwise, this is omitted from the output.

loglik The final log-likelihood.

posterior An nxk matrix of posterior probabilities for observations.

all.loglik A vector of each iteration’s log-likelihood.

restarts The number of times the algorithm restarted due to unacceptable choice of initial
values.

ft A character vector giving the name of the function.

References

Hettmansperger, T. P. and Thomas, H. (2000) Almost Nonparametric Inference for Repeated Mea-
sures in Mixture Models, Journal of the Royals Statistical Society, Series B 62(4) 811–825.

See Also

normalmixEM

Examples

EM output for the water-level task data set.

data(Waterdata)
set.seed(100)
water <- t(as.matrix(Waterdata[,3:10]))
em.out <- repnormmixEM(water, k = 2, verb = TRUE, epsilon = 1e-03)
em.out

repnormmixmodel.sel Model Selection in Mixtures of Normals with Repeated Measures

Description

Assess the number of components in a mixture model with normal components and repeated mea-
sures using the Akaike’s information criterion (AIC), Schwartz’s Bayesian information criterion
(BIC), Bozdogan’s consistent AIC (CAIC), and Integrated Completed Likelihood (ICL).

rexpmix 107

Usage

repnormmixmodel.sel(x, k = 2, ...)

Arguments

x An mxn matrix of observations. The rows correspond to the repeated measures
and the columns correspond to the subject.

k The maximum number of components to assess.

... Additional arguments passed to repnormmixEM.

Value

repnormmixmodel.sel returns a matrix of the AIC, BIC, CAIC, and ICL values along with the
winner (i.e., the highest value given by the model selection criterion) for a mixture of normals with
repeated measures.

References

Biernacki, C., Celeux, G., and Govaert, G. (2000). Assessing a Mixture Model for Clustering
with the Integrated Completed Likelihood. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(7):719-725.

Bozdogan, H. (1987). Model Selection and Akaike’s Information Criterion (AIC): The General
Theory and its Analytical Extensions. Psychometrika, 52:345-370.

See Also

repnormmixEM

Examples

Assessing the number of components for the water-level task data set.

data(Waterdata)
water<-t(as.matrix(Waterdata[,3:10]))
set.seed(100)
out <- repnormmixmodel.sel(water, k = 3, epsilon = 5e-01)
out

rexpmix Simulate from Mixtures of Exponentials

Description

Simulate from a mixture of univariate exponential distributions.

Usage

rexpmix(n, lambda = 1, rate = 1)

108 rmvnorm

Arguments

n Number of cases to simulate.

lambda Vector of mixture probabilities, with length equal to m, the desired number of
components (subpopulations). This is assumed to sum to 1.

rate Vector of component rates.

Value

rexpmix returns an n-vector sampled from an m-component mixture of univariate exponential dis-
tributions.

See Also

rnormmix, rmvnormmix for Gaussian mixtures, rweibullmix for mixture of Weibull distributions.

Examples

Generate data from a 2-component mixture of exponentials.
n=300 # sample size
m=2 # nb components
lambda=c(1/3, 2/3); rate = c(1,1/10) # parameters
set.seed(1234)
x <- rexpmix(n, lambda, rate) # iid ~ exp mixture

histogram of the simulated data.
hist(x, col=8)

rmvnorm Simulate from a Multivariate Normal Distribution

Description

Simulate from a multiviate normal distribution

Usage

rmvnorm(n, mu=NULL, sigma=NULL)

Arguments

n Number of vectors to simulate

mu mean vector

sigma covariance matrix, assumed symmetric and nonnegative definite

Details

This function uses an eigen decomposition assuming sigma is symmetric. In particular, the upper
triangle of sigma is ignored.

rmvnormmix 109

Value

An n × d matrix in which each row is an independently generated realization from the desired
multivariate normal distribution

See Also

eigen, dnorm, dmvnorm

rmvnormmix Simulate from Multivariate (repeated measures) Mixtures of Normals

Description

Simulate from a mixture of multivariate zero-correlation normal distributions

Usage

rmvnormmix(n, lambda=1, mu=0, sigma=1)

Arguments

n Number of cases to simulate.

lambda Vector of mixture probabilities with length equal to m, the desired number of
components. This is assumed to sum to 1; if not, it is normalized.

mu Matrix of means of dimensions m × r, where m is the number of components
(subpopulations) and r is the number of coordinates (repeated measurements)
per case. Note: mu is automatically coerced to a matrix with m rows even if it is
not given in this form, which can lead to unexpected behavior in some cases.

sigma Matrix of standard deviations, same dimensions as mu. The coordinates within a
case are independent, conditional on the mixture component. (There is marginal
correlation among the coordinates, but this is due to the mixture structure only.)
Note: sigma is automatically coerced to a matrix with m rows even if it is not
given in this form, which can lead to unexpected behavior in some cases.

Details

It is possible to generate univariate standard normal random variables using the default values (but
why bother?). The case of conditionally iid coordinates is covered by the situation in which all
columns in mu and sigma are identical.

Value

rmvnormmix returns an n× r matrix in which each row is a sample from one of the components of
a mixture of zero-correlation multivariate normals. The mixture structure induces nonzero correla-
tions among the coordinates.

110 rnormmix

See Also

rnormmix

Examples

##Generate data from a 2-component mixture of trivariate normals.

set.seed(100)
n <- 200
lambda <- rep(1, 2)/2
mu <- matrix(2*(1:6), 2, 3)
sigma <- matrix(1,2,3)
mydata<-rmvnormmix(n, lambda, mu, sigma)

Now check to see if we can estimate mixture densities well:
title <- paste("Does this resemble N(", mu[1,], ",1) and N(", mu[2,],",1)?",

sep="")
plot(npEM(mydata, 2), title=title)

rnormmix Simulate from Mixtures of Normals

Description

Simulate from a mixture of univariate normal distributions.

Usage

rnormmix(n, lambda=1, mu=0, sigma=1)

Arguments

n Number of cases to simulate.

lambda Vector of mixture probabilities, with length equal to m, the desired number of
components (subpopulations). This is assumed to sum to 1; if not, it is normal-
ized.

mu Vector of means.

sigma Vector of standard deviations.

Details

This function simply calls rmvnormmix.

Value

rnormmix returns an n-vector sampled from an m-component mixture of univariate normal distri-
butions.

RodFramedata 111

See Also

makemultdata, rmvnormmix

Examples

##Generate data from a 2-component mixture of normals.

set.seed(100)
n <- 500
lambda <- rep(1, 2)/2
mu <- c(0, 5)
sigma <- rep(1, 2)
mixnorm.data <- rnormmix(n, lambda, mu, sigma)

##A histogram of the simulated data.

hist(mixnorm.data)

RodFramedata Rod and Frame Task Data Set

Description

This data set involves assessing children longitudinally at 6 age points from ages 4 through 18 years
for the rod and frame task. This task sits the child in a darkened room in front of a luminous square
frame tilted at 28 degrees on its axis to the left or right. Centered inside the frame was a luminous
rod also tilted 28 degrees to the left or right. The child’s task was to adjust the rod to the vertical
position and the absolute deviation from the vertical (in degrees) was the measured response.

Usage

data(RodFramedata)

Format

This data frame consists of 140 children (the rows). Column 1 is the subject number and column 2
is the sex (0=MALE and 1=FEMALE). Columns 3 through 26 give the 8 responses at each of the
ages 4, 5, and 7. Columns 27 through 56 give the 10 responses at each of the ages 11, 14, and 18.
A value of 99 denotes missing data.

Source

Thomas, H. and Dahlin, M. P. (2005) Individual Development and Latent Groups: Analytical Tools
for Interpreting Heterogeneity, Developmental Review 25(2), 133–154.

112 RTdata2

RTdata Reaction Time (RT) Data Set

Description

This data set involves normally developing children 9 years of age presented with two visual simuli
on a computer monitor. The left image is the target stimuli and on the right is either an exact copy
or a mirror image of the target stimuli. The child must press one key if it is a copy or another key if
it is a mirror image. The data consists of the reaction times (RT) of the 197 children who provided
correct responses for all 6 task trials.

Usage

data(RTdata)

Format

This data frame consists of 197 children (the rows) and their 6 responses (the columns) to the
stimulus presented. The response (RT) is recorded in milliseconds.

References

Cruz-Medina, I. R., Hettmansperger, T. P. and Thomas, H. (2004) Semiparametric Mixture Models
and Repeated Measures: The Multinomial Cut Point Model, Applied Statistics 53(3), 463–474.

Miller, C. A., Kail, R., Leonard, L. B. and Tomblin, J. B. (2001) Speed of Processing in Children
with Specific Language Impairment, Journal of Speech, Language, and Hearing Research 44(2),
416–433.

See Also

RTdata2

RTdata2 Reaction Time (RT) Data Set (No. 2)

Description

This data set involves normally developing children 9 years of age presented visual simuli on a
computer monitor. There are three different experimental conditions, according to the length of
the delay after which the stimulus was displayed on the screen. Each subject experienced each
condition eight times, and these 24 trials were given in random order. These data give the 82
children for whom there are complete measurements among over 200 total subjects.

Usage

data(RTdata2)

rweibullmix 113

Format

This data frame consists of 82 children (the rows) and their 24 responses (the columns) to the
stimulus presented. The response is recorded in milliseconds. The columns are not in the order in
which the stimuli were presented to the children; rather, they are arranged into three blocks of eight
columns each so that each eight-column block contains only trials from one of the three conditions.

References

Miller, C. A., Kail, R., Leonard, L. B. and Tomblin, J. B. (2001) Speed of Processing in Children
with Specific Language Impairment, Journal of Speech, Language, and Hearing Research 44(2),
416–433.

See Also

RTdata

rweibullmix Simulate from Mixtures of Weibull distributions

Description

Simulate from a mixture of univariate Weibull distributions.

Usage

rweibullmix(n, lambda = 1, shape = 1, scale = 1)

Arguments

n Number of cases to simulate.

lambda Vector of mixture probabilities, with length equal to m, the desired number of
components (subpopulations). This is assumed to sum to 1.

shape Vector of component shapes.

scale Vector of component scales.

Value

rexpmix returns an n-vector sampled from an m-component mixture of univariate Weibull distri-
butions.

See Also

rnormmix and rmvnormmix for Gaussian mixtures, rexpmix for mixture of exponentials.

114 segregmixEM

Examples

n = 500 # sample size
m = 2 # nb components
lambda=c(0.4, 0.6)
shape <- c(0.5,5); scale <- c(1,20) # model parameters
set.seed(321)
x <- rweibullmix(n, lambda, shape, scale) # iid ~ weibull mixture

histogram of the simulated data.
hist(x, col=8)

segregmixEM ECM Algorithm for Mixtures of Regressions with Changepoints

Description

Returns ECM algorithm output for mixtures of multiple regressions with changepoints and arbitrar-
ily many components.

Usage

segregmixEM(y, x, lambda = NULL, beta = NULL, sigma = NULL,
k = 2, seg.Z, psi, psi.locs = NULL, delta = NULL,
epsilon = 1e-08, maxit = 10000, verb = FALSE,
max.restarts = 15)

Arguments

y An n-vector of response values.

x An nxp matrix of predictors. Note that this model assumes the presence of an
intercept.

lambda Initial value of mixing proportions. Entries should sum to 1. This determines
number of components. If NULL, then lambda is random from uniform Dirich-
let and the number of components is determined by beta.

beta Initial value of beta parameters. This is a list of length k such that each element
must contain a vector having length consistent with the defined changepoint
structure. See seg.Z, psi, and psi.loc below. If NULL, then beta has standard
normal entries according to a binning method done on the data. If both lambda
and beta are NULL, then number of components is determined by sigma.

sigma A vector of standard deviations. If NULL, then 1/sigma^2 has random standard
exponential entries according to a binning method done on the data. If lambda,
beta, and sigma are NULL, then number of components is determined by k.

k Number of components. Ignored unless all of lambda, beta, and sigma are
NULL.

segregmixEM 115

seg.Z A list of length k whose elements are right-hand side formulas, which are ad-
ditive linear models of the predictors that have changepoints in their respective
components. See below for more details.

psi A kxp matrix specifying the number of changepoints for each predictor in each
component. See below for more details.

psi.locs A list of length k that has initial estimates for the changepoint locations. Each el-
ement of the list must have length equal to the number of chanegpoints specified
in the corresponding row of the psi matrix. For components with no change-
points, simply set that element equal to NULL. See below for more details.

delta An optional list of values quantifying the amount of separation at each change-
point if assuming discontinuities at the changepoints. This has the same dimen-
sions as psi.locs.

epsilon The convergence criterion.

maxit The maximum number of iterations.

verb If TRUE, then various updates are printed during each iteration of the algorithm.

max.restarts The number of times to try restarting the ECM algorithm if estimation problems
occur - such as choice of poor initial values or a poorly chosen changepoint
structure.

Details

seg.Z is defined as a list of right-hand side linear model formulas that are used to identify which
predictors have changepoints in each component. For example, suppose you have a dataframe with
three predictors: V1, V2, V3. Suppose now that you wish to model a 3-component mixture of re-
gressions with changepoints structure such that the first component has changepoints in V1 and V2,
the second component has changepoints in V3, and the third component has no changepoints. Then
you would define seg.Z = list(~V1+V2, ~V3, NULL). Note that you MUST place the variables in
order with respect to how they appear in the predictor matrix x.

psi is a kxp matrix specifying the number of changepoints for each predictor in each component.
For the example given above, suppose there are three changepoints for V1, two changepoints for V2,
and four changepoints for V3. Then you would define psi = rbind(c(3, 2, 0), c(0, 0, 4), c(0,
0, 0)).

psi.locs is a list of length k whose elements give the initial locations of the changepoints for each
component. Each element of the list must have length equal to the total number of changepoints for
that component’s regression equation. For the example given above, in component 1, assume that
the three changepoints for V1 are at 3, 7, and 10 and the two changepoints for V1 are at 5, 20, and
30. In component 2, assume that the four changepoints for V3 are at 2, 4, 6, and 8. Then you would
define psi.locs = list(c(3, 7, 10, 5, 20, 30), c(2, 4, 6, 8), NULL). Note that the order of
the changepoints is determined by first sorting the predictors by how they appear in the formulas in
seg.Z and then sorting in increasing order within each predictor.

Value

segregmixEM returns a list of class segregmixEM with items:

x The set of predictors.

116 segregmixEM

y The response values.

lambda The final mixing proportions.

beta The final regression coefficients.

sigma The final standard deviations.

seg.Z The list of right-hand side formulas as defined by the user.

psi.locs A list of length k with the final estimates for the changepoint locations.

delta A list of the delta values that were optionally specified by the user.

loglik The final log-likelihood.

posterior An nxk matrix of posterior probabilities for observations.

all.loglik A vector of each iteration’s log-likelihood.

restarts The number of times the algorithm restarted due to unacceptable choice of initial
values.

ft A character vector giving the name of the function.

Note

As of version 0.4.6, this more general function has replaced the now defunct regmixEM.chgpt and
associated internal functions.

References

Young, D. S. (2014) Mixtures of Regressions with Changepoints, Statistics and Computing, 24(2),
265–281.

See Also

regmixEM

Examples

Not run:
Simulated example.

set.seed(100)
x <- 1:20
y1 <- 3 + x + rnorm(20)
y2 <- 3 - x - 5*(x - 15)*(x > 15) + rnorm(20)
y <- c(y1, y2)
x <- c(x, x)

set.seed(100)
be <- list(c(3, -1, -5), c(3, 1))
s <- c(1, 1)
psi.locs <- list(comp.1 = list(x = 15), comp.2 = NULL)
out <- segregmixEM(y, cbind(1,x), verb = TRUE, k = 2,

beta = be, sigma = s, lambda = c(1, 1)/2,
seg.Z = list(~x, NULL), psi = rbind(1, 0),

spEM 117

psi.locs = psi.locs, epsilon = 0.9)

z <- seq(0, 21, len = 40)
plot(x, y, col = apply(out$post, 1, which.max) + 1, pch = 19,

cex.lab = 1.4, cex = 1.4)
b <- out$beta
d <- out$psi.locs
lines(z, b[[1]][1] + b[[1]][2] * z + b[[1]][3] *

(z - d[[1]][[1]]) * (z > d[[1]][[1]]) , col = 2, lwd = 2)
lines(z, b[[2]][1] + b[[2]][2] * z, col = 3, lwd = 2)
abline(v = out$psi.locs[[1]][1], col = 2, lty = 2)

End(Not run)

Not run:
Example using the NOdata.

data(NOdata)
attach(NOdata)

set.seed(100)
be <- list(c(1.30, -0.13, 0.08), c(0.56, 0.09))
s <- c(0.02, 0.04)
psi.locs <- list(comp.1 = list(NO = 1.57), comp.2 = NULL)
out <- segregmixEM(Equivalence, cbind(NO), verb = TRUE, k = 2,

beta = be, sigma = s, lambda = c(1, 1)/2,
seg.Z = list(~NO, NULL), psi = rbind(1, 0),
psi.locs = psi.locs, epsilon = 0.1)

z <- seq(0, 5, len = 1000)
plot(NOdata, col = apply(out$post, 1, which.max) + 1, pch = 19,

cex.lab = 1.4, cex = 1.4, ylab = "Equivalence Ratio")
b <- out$beta
d <- out$psi.locs
lines(z, b[[1]][1] + b[[1]][2] * z + b[[1]][3] *

(z - d[[1]][[1]]) * (z > d[[1]][[1]]) , col = 2, lwd = 2)
lines(z, b[[2]][1] + b[[2]][2] * z, col = 3, lwd = 2)
abline(v = out$psi.locs[[1]][1], col = 2, lty = 2)

detach(NOdata)

End(Not run)

spEM Semiparametric EM-like Algorithm for Mixtures of Independent Re-
peated Measurements

Description

Returns semiparametric EM algorithm output (Benaglia et al, 2009) for mixtures of multivariate
(repeated measures) data where the coordinates of a row (case) in the data matrix are assumed to

118 spEM

be independent, conditional on the mixture component (subpopulation) from which they are drawn.
For now, this algorithm only implements model (4.7) in Benaglia et al, in which each component
and block has exactly the same (nonparametric) shape and they differ only by location and scale.

Usage

spEM(x, mu0, blockid = 1:ncol(x),
bw = bw.nrd0(as.vector(as.matrix(x))), constbw = TRUE,
h = bw, eps = 1e-8,
maxiter = 500, stochastic = FALSE, verb = TRUE)

Arguments

x An n × r matrix of data. Each of the n rows is a case, and each case has r
repeated measurements. These measurements are assumed to be conditionally
independent, conditional on the mixture component (subpopulation) from which
the case is drawn.

mu0 Either an m× r matrix specifying the initial centers for the kmeans function, or
an integer m specifying the number of initial centers, which are then choosen
randomly in kmeans

blockid A vector of length r identifying coordinates (columns of x) that are assumed
to be identically distributed (i.e., in the same block). For instance, the default
has all distinct elements, indicating that no two coordinates are assumed identi-
cally distributed and thus a separate set of m density estimates is produced for
each column of x. On the other hand, if blockid=rep(1,ncol(x)), then the
coordinates in each row are assumed conditionally i.i.d.

bw Bandwidth for density estimation, equal to the standard deviation of the kernel
density. By default, a simplistic application of the default bw.nrd0 bandwidth
used by density to the entire dataset.

constbw Logical: If TRUE, use the same bandwidth for each iteration and for each com-
ponent and block. If FALSE, use a separate bandwidth for each component and
block, and update this bandwidth at each iteration of the algorithm using a suit-
ably modified bw.nrd0 method as described in Benaglia et al (2011).

h Alternative way to specify the bandwidth, to provide backward compatibility.

eps Tolerance limit for declaring algorithm convergence. Convergence is declared
whenever the maximum change in any coordinate of the lambda vector (of mix-
ing proportion estimates) does not exceed eps.

maxiter The maximum number of iterations allowed, for both stochastic and non-stochastic
versions; for non-stochastic algorithms (stochastic = FALSE), convergence may
be declared before maxiter iterations (see eps above).

stochastic Flag, if FALSE (the default), runs the non-stochastic version of the npEM algo-
rithm, as in Benaglia et al (2009). Set to TRUE to run a stochastic version which
simulates the posteriors at each iteration, and runs for maxiter iterations.

verb If TRUE, print updates for every iteration of the algorithm as it runs

spEM 119

Value

spEM returns a list of class spEM with the following items:

data The raw data (an n× r matrix).

posteriors An n × m matrix of posterior probabilities for observation. If stochastic =
TRUE, this matrix is computed from an average over the maxiter iterations.

bandwidth If constbw==TRUE, same as the bw input argument; otherwise, value of bw matrix
at final iteration (since for now this algorithm only implements model (4.7) in
Benaglia et al, the bandwidth matrix is reduced to a single bandwith scalar).
This information is needed by any method that produces density estimates from
the output.

blockid Same as the blockid input argument, but recoded to have positive integer val-
ues. Also needed by any method that produces density estimates from the out-
put.

lambda The sequence of mixing proportions over iterations.

lambdahat The final mixing proportions if stochastic = FALSE, or the average mixing pro-
portions if stochastic = TRUE.

mu The sequence of location parameters over iterations.

muhat The final location parameters if stochastic = FALSE, or the average location
parameters if stochastic = TRUE.

sigma The sequence of scale parameters over iterations.

sigmahat The final scale parameters if stochastic = FALSE, or the average scale param-
eters if stochastic = TRUE.

loglik The sequence of log-likelihoods over iterations.

References

• Benaglia, T., Chauveau, D., and Hunter, D. R., An EM-like algorithm for semi- and non-
parametric estimation in multivariate mixtures, Journal of Computational and Graphical Statis-
tics, 18, 505-526, 2009.

• Benaglia, T., Chauveau, D. and Hunter, D.R. Bandwidth Selection in an EM-like algorithm
for nonparametric multivariate mixtures. Nonparametric Statistics and Mixture Models: A
Festschrift in Honor of Thomas P. Hettmansperger. World Scientific Publishing Co., pages
15-27, 2011.

• Bordes, L., Chauveau, D., and Vandekerkhove, P., An EM algorithm for a semiparametric
mixture model, Computational Statistics and Data Analysis, 51: 5429-5443, 2007.

See Also

plot.spEM, normmixrm.sim, spEMsymloc, npEM, plotseq.npEM

120 spEMsymloc

Examples

Not run:
simulate a 2-component gaussian mixture with 3 iid repeated measures
set.seed(100)
mu <- matrix(c(0, 15), 2, 3)
sigma <- matrix(c(1, 5), 2, 3)
x <- rmvnormmix(300, lambda = c(.4,.6), mu = mu, sigma = sigma)

apply spEM with or without an iterative bandwidth selection
d <- spEM(x, mu0 = 2, blockid = rep(1,3), constbw = FALSE)
d2 <- spEM(x, mu0 = 2, blockid = rep(1,3), constbw = TRUE)
plot(d, xlim=c(-10, 40), ylim = c(0, .16), xlab = "", breaks = 30,

cex.lab=1.5, cex.axis=1.5, addlegend=FALSE)
plot(d2, newplot=FALSE, addlegend=FALSE, lty=2)
End(Not run)

spEMsymloc Semiparametric EM-like Algorithm for univariate symmetric location
mixture

Description

Returns semiparametric EM algorithm output (Bordes et al, 2007, and Benaglia et al, 2009) for
location mixtures of univariate data and symmetric component density.

Usage

spEMsymloc(x, mu0, bw = bw.nrd0(x), h=bw, eps = 1e-8, maxiter = 100,
stochastic = FALSE, verbose = FALSE)

Arguments

x A vector of length n consisting of the data.

mu0 Either a vector specifying the initial centers for the kmeans function, and from
which the number of component is obtained, or an integer m specifying the
number of initial centers, which are then choosen randomly in kmeans.

bw Bandwidth for density estimation, equal to the standard deviation of the kernel
density.

h Alternative way to specify the bandwidth, to provide backward compatibility.

eps Tolerance limit for declaring algorithm convergence. Convergence is declared
before maxiter iterations whenever the maximum change in any coordinate of
the lambda (mixing proportion estimates) and mu (means) vector does not exceed
eps.

maxiter The maximum number of iterations allowed, for both stochastic and non-stochastic
versions; for non-stochastic algorithms (stochastic = FALSE), convergence may
be declared before maxiter iterations (see eps above).

spEMsymloc 121

stochastic Flag, if FALSE (the default), runs the non-stochastic version of the algorithm,
as in Benaglia et al (2009). Set to TRUE to run a stochastic version which
simulates the posteriors at each iteration (as in Bordes et al, 2007), and runs for
maxiter iterations.

verbose If TRUE, print updates for every iteration of the algorithm as it runs

Value

spEMsymloc returns a list of class npEM with the following items:

data The raw data (an n× r matrix).

posteriors An n × m matrix of posterior probabilities for observations. If stochastic =
TRUE, this matrix is computed from an average over the maxiter iterations.

bandwidth Same as the bw input argument, returned because this information is needed by
any method that produces density estimates from the output.

lambda The sequence of mixing proportions over iterations.

lambdahat The final estimate for mixing proportions if stochastic = FALSE, the average
over the sequence if stochastic = TRUE.

mu the sequence of component means over iterations.

muhat the final estimate of component means if stochastic = FALSE, the average over
the sequence if stochastic = TRUE.

symmetric Flag indicating that the kernel density estimate is using a symmetry assumption.

References

• Benaglia, T., Chauveau, D., and Hunter, D. R., An EM-like algorithm for semi- and non-
parametric estimation in multivariate mixtures, Journal of Computational and Graphical Statis-
tics, 18, 505-526, 2009.

• Benaglia, T., Chauveau, D., Hunter, D. R., and Young, D. mixtools: An R package for analyz-
ing finite mixture models. Journal of Statistical Software, 32(6):1-29, 2009.

• Bordes, L., Chauveau, D., and Vandekerkhove, P. (2007), An EM algorithm for a semipara-
metric mixture model, Computational Statistics and Data Analysis, 51: 5429-5443.

See Also

plot.npEM, rnormmix, npEM, spEMsymlocN01, plotseq.npEM

Examples

Example from a normal location mixture
set.seed(100)
n <- 200
lambda <- c(1/3,2/3)
mu <- c(0, 4); sigma<-rep(1, 2)
x <- rnormmix(n, lambda, mu, sigma)
out.stoc <- spEMsymloc(x, mu0=c(-1, 2), stochastic=TRUE)
out.nonstoc <- spEMsymloc(x, mu0=c(-1, 2))

122 spEMsymlocN01

spEMsymlocN01 semiparametric EM-like algorithm for univariate mixture in False Dis-
covery Rate (FDR) estimation

Description

Return semiparametric EM-like algorithm output for a 2-components mixture model with one com-
ponent set to Normal(0,1), and the other component being a unspecified but symmetric density with
a location parameter. This model is tailored to FDR estimation on probit transform (qnorm) of
p-values arising from multiple testing.

Usage

spEMsymlocN01(x, mu0 = 2, bw = bw.nrd0(x), h=bw, eps = 1e-8,
maxiter = 100, verbose = FALSE, plotf = FALSE)

Arguments

x A vector of length n consisting of the data, probit transform of pvalues, prefer-
ably sorted.

mu0 Starting value of vector of component means. If not set then the initial value is
randomly generated by a kmeans of the data in two bins. Since component 1 is
theoretically normal(0,1), mu[1] must be 0 and mu[2] some negative value (see
details).

bw Bandwidth for weighted kernel density estimation.

h Alternative way to specify the bandwidth, to provide backward compatibility.

eps Tolerance limit for declaring algorithm convergence. Convergence is declared
before maxiter iterations whenever the maximum change in any coordinate of
the lambda (mixing proportion estimates) and mu (mean of the semiparametric
component) vector does not exceed eps

maxiter The maximum number of iterations allowed; convergence may be declared be-
fore maxiter iterations (see eps above).

verbose If TRUE, print updates for every iteration of the algorithm as it runs.

plotf If TRUE, plots successive updates of the nonparametric density estimate over
iterations. Mostly for testing purpose.

Details

This algorithm is a specific version of semiparametric EM-like algorithm similar in spirit to spEMsymloc,
but specialized for FDR estimation on probit transform (qnorm) of p-values in multiple testing
framework. In this model, component 1 corresponds to the individuals under the null hypothe-
sis, i.e. theoretically normal(0,1) distributed, whereas component 2 corresponds to individuals in
the alternative hypothesis, with typically very small p-values and consequently negative values for
probit(p) data. This model only assumes that these individuals come from an unspecified but sym-
metric density with a location parameter, as in Bordes and Vandekerkhove (2010) and Chauveau et
al. (2014).

spEMsymlocN01 123

Value

spEMsymlocN01 returns a list of class spEMN01 with the following items:

data The raw data (an n× r matrix).

posteriors An n× 2 matrix of posterior probabilities for observations. This can be used in,
e.g., plotFDR to plot False Discovery Rate estimates.

bandwidth Same as the bw input argument, returned because this information is needed by
any method that produces density estimates from the output.

lambda The sequence of mixing proportions over iterations.

lambdahat The final estimate for mixing proportions.

mu the sequence of second component mean over iterations.

muhat the final estimate of second component mean.

symmetric Flag indicating that the kernel density estimate is using a symmetry assumption.

Author(s)

Didier Chauveau

References

• Bordes, L. and Vandekerkhove, P. (2010). Semiparametric two-component mixture model
with a known component: an asymptotically normal estimator. Mathematical Methods of
Statistics, 19(1):22-41

• Chauveau, D., Saby, N., Orton, T. G., Lemercier B., Walter, C. and Arrouys, D. (2014) Large-
scale simultaneous hypothesis testing in monitoring carbon content from french soil database:
A semi-parametric mixture approach. Geoderma 219-220 (2014): 117-124.

See Also

spEMsymloc, normalmixEM, npEM, plot.spEMN01, plotFDR

Examples

Probit transform of p-values
from a Beta-Uniform mixture model
comparion of parametric and semiparametric EM fit
Note: in actual situations n=thousands
set.seed(50)
n=300 # nb of multiple tests
m=2 # 2 mixture components
a=c(1,0.1); b=c(1,1); lambda=c(0.6,0.4) # parameters
z=sample(1:m, n, rep=TRUE, prob = lambda)
p <- rbeta(n, shape1 = a[z], shape2 = b[z]) # p-values
o <- order(p)
cpd <- cbind(z,p)[o,] # sorted complete data, z=1 if H0, 2 if H1
p <- cpd[,2] # sorted p-values

y <- qnorm(p) # probit transform of the pvalues

124 spregmix

gaussian EM fit with component 1 constrained to N(0,1)
s1 <- normalmixEM(y, mu=c(0,-4),
mean.constr = c(0,NA), sd.constr = c(1,NA))
s2 <- spEMsymlocN01(y, mu0 = c(0,-3)) # spEM with N(0,1) fit
hist(y, freq = FALSE, col = 8, main = "histogram of probit(pvalues)")
plot(s2, add.plot = TRUE, lwd = 2)

Exemples of plot capabilities
Note: posteriors must be ordered by p for plot.FDR
plotFDR(s1$post) # when true complete data not observed
plotFDR(s1$post, s2$post) # comparing 2 strategies
plotFDR(s1$post, s2$post, lg1 = "normalmixEM", lg2 = "spEMsymlocN01",
complete.data = cpd) # with true FDR computed from z

spregmix EM-like Algorithm for Semiparametric Mixtures of Regressions

Description

Returns parameter estimates for finite mixtures of linear regressions with unspecified error structure.
Based on Hunter and Young (2012).

Usage

spregmix(lmformula, bw = NULL, constbw = FALSE,
bwmult = 0.9, z.hat = NULL, symm = TRUE, betamethod = "LS",
m = ifelse(is.null(z.hat), 2, ncol(z.hat)),
epsilon = 1e-04, maxit = 1000, verbose = FALSE,
...)

Arguments

lmformula Formula for a linear model, in the same format used by lm. Additional parame-
ters may be passed to lm via the ... argument.

bw Initial bandwidth value. If NULL, this will be chosen automatically by the al-
gorithm.

constbw Logical: If TRUE, the bandwidth is held constant throughout the algorithm; if
FALSE, it adapts at each iteration according to the rules given in Hunter and
Young (2012).

bwmult Whenever it is updated automatically, the bandwidth is equal to bwmult divided
by the fifth root of n times the smaller of s and IQR/1.34, where s and IQR
are estimates of the standard deviation and interquartile range of the residuals,
as explained in Hunter and Young (2012). The value of 0.9 gives the rule of
Silverman (1986) and the value of 1.06 gives the rule of Scott (1992). Larger
values lead to greater smoothing, whereas smaller values lead to less smoothing.

spregmix 125

z.hat Initial nxm matrix of posterior probabilities. If NULL, this is initialized ran-
domly. As long as a parametric estimation method like least squares is used to
estimate beta in each M-step, the z.hat values are the only values necessary to
begin the EM iterations.

symm Logical: If TRUE, the error density is assumed symmetric about zero. If FALSE,
it is not. WARNING: If FALSE, the intercept parameter is not uniquely identi-
fiable if it is included in the linear model.

betamethod Method of calculating beta coefficients in the M-step. Current possible val-
ues are "LS" for least-squares; "L1" for least absolute deviation; "NP" for fully
nonparametric; and "transition" for a transition from least squares to fully non-
parametric. If something other than these four possibilities is used, then "NP" is
assumed. For details of these methods, see Hunter and Young (2012).

m Number of components in the mixture.

epsilon Convergence is declared if the largest change in any lambda or beta coordinate
is smaller than epsilon.

maxit The maximum number of iterations; if convergence is never declared based on
comparison with epsilon, then the algorithm stops after maxit iterations.

verbose Logical: If TRUE, then various updates are printed during each iteration of the
algorithm.

... Additional parameters passed to the model.frame and model.matrix functions,
which are used to obtain the response and predictor of the regression.

Value

regmixEM returns a list of class npEM with items:

x The set of predictors (which includes a column of 1’s if addintercept = TRUE).

y The response values.

lambda The mixing proportions for every iteration in the form of a matrix with m columns
and (#iterations) rows

beta The final regression coefficients.

posterior An nxm matrix of posterior probabilities for observations.

np.stdev Nonparametric estimate of the standard deviation, as given in Hunter and Young
(2012)

bandwidth Final value of the bandwidth

density.x Points at which the error density is estimated

density.y Values of the error density at the points density.x

symmetric Logical: Was the error density assumed symmetric?

loglik A quantity similar to a log-likelihood, computed just like a standard loglikeli-
hood would be, conditional on the component density functions being equal to
the final density estimates.

ft A character vector giving the name of the function.

126 spRMM_SEM

References

Hunter, D. R. and Young, D. S. (2012) Semi-parametric Mixtures of Regressions, Journal of Non-
parametric Statistics 24(1): 19-38.

Scott, D. W. (1992) Multivariate Density Estimation, John Wiley & Sons Inc., New York.

Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis, Chapman & Hall,
London.

See Also

regmixEM, spEMsymloc, lm

Examples

data(tonedata)
By default, the bandwidth will adapt and the error density is assumed symmetric
set.seed(100)
a=spregmix(tuned~stretchratio, bw=.2, data=tonedata, verb=TRUE)

Look at the sp mixreg solution:
plot(tonedata)
abline(a=a$beta[1,1],b=a$beta[2,1], col=2)
abline(a=a$beta[1,2],b=a$beta[2,2], col=3)

Look at the nonparametric KD-based estimate of the error density,
constrained to be zero-symmetric:
plot(xx<-a$density.x, yy<-a$density.y, type="l")
Compare to a normal density with mean 0 and NP-estimated stdev:
z <- seq(min(xx), max(xx), len=200)
lines(z, dnorm(z, sd=sqrt((a$np.stdev)^2+a$bandwidth^2)), col=2, lty=2)
Add bandwidth^2 to variance estimate to get estimated var of KDE

Now add the sp mixreg estimate without assuming symmetric errors:
b=spregmix(tuned~stretchratio, bw=.2, , symm=FALSE, data=tonedata, verb=TRUE)
lines(b$density.x, b$density.y, col=3)

spRMM_SEM Stochastic EM algorithm for semiparametric scaled mixture of cen-
sored data

Description

Stochastic EM algorithm for semiparametric scaled mixture for randomly right censored data.

Usage

spRMM_SEM(t, d = NULL, lambda = NULL, scaling = NULL,
centers = 2, kernelft = triang_wkde,
bw = rep(bw.nrd0(t),length(t)), averaged = TRUE,
epsilon = 1e-08, maxit = 100, batchsize = 1, verb = FALSE)

spRMM_SEM 127

Arguments

t A vector of n real positive lifetime (possibly censored) durations. If d is not NULL
then a vector of random censoring times c occurred, so that x = min(x, c) and
d = I(x <= c).

d The vector of censoring indication, where 1 means observed lifetime data, and
0 means censored lifetime data.

lambda Initial value of mixing proportions. If NULL, then lambda is set to rep(1/k,k).
scaling Initial value of scaling between components, set to 1 if NULL.
centers initial centers for initial call to kmeans for initialization.
kernelft .
bw Bandwidth in the kernel hazard estimates.
averaged averaged.
epsilon Tolerance limit.
maxit The number of iterations allowed.
batchsize The batchsize (see reference below).
verb If TRUE, print updates for every iteration of the algorithm as it runs

Value

spRMM_SEM returns a list of class "spRMM" with the following items:

t The input data.
d The input censoring indicator.
lambda The estimates for the mixing proportions.
scaling The estimates for the components scaling.
posterior An n× k matrix of posterior probabilities for observation, after convergence of

the algorithm.
loglik The (pseudo) log-likelihood value at convergence of the algorithm.
all.loglik The sequence of log-likelihood values over iterations.
all.lambda The sequence of mixing proportions over iterations.
all.scaling The sequence of scaling parameter over iterations.
meanpost Posterior probabilities averaged over iterations.
survival Kaplan-Meier last iteration estimate (a stepfun object).
hazard Hazard rate last iteration estimate evaluated at final.t.
final.t Last iteration unscaled sample (see reference).
s.hat Kaplan-Meier average estimate.
t.hat Ordered unscaled sample, for testing purpose.
avg.od For testing purpose only.
hazard.hat Hazard rate average estimate on t.hat.
batch.t Batch sample (not ordered), see reference.
batch.d Associated event indicators just rep(d,batchsize), for testing purpose.
sumNaNs Internal control of numerical stability.
ft A character vector giving the name of the function.

128 summary.mixEM

Author(s)

Didier Chauveau

References

• Bordes, L., and Chauveau, D. (2016), Stochastic EM algorithms for parametric and semipara-
metric mixture models for right-censored lifetime data, Computational Statistics, Volume 31,
Issue 4, pages 1513-1538. https://link.springer.com/article/10.1007/s00180-016-0661-7

See Also

Related functions: plotspRMM, summary.spRMM.

Other models and algorithms for censored lifetime data (name convention is model_algorithm):
expRMM_EM, weibullRMM_SEM.

Examples

Not run:
n=500 # sample size
m=2 # nb components
lambda=c(0.4, 0.6) # parameters
meanlog=3; sdlog=0.5; scale=0.1
set.seed(12)
simulate a scaled mixture of lognormals
x <- rlnormscalemix(n, lambda, meanlog, sdlog, scale)
cs=runif(n,20,max(x)+400) # Censoring (uniform) and incomplete data
t <- apply(cbind(x,cs),1,min)
d <- 1*(x <= cs)
tauxc <- 100*round(1-mean(d),3)
cat(tauxc, "percents of data censored.\n")

c0 <- c(25, 180) # data-driven initial centers (visible modes)
sc0 <- 25/180 # and scaling
s <- spRMM_SEM(t, d, scaling = sc0, centers = c0, bw = 15, maxit = 100)

plotspRMM(s) # default
summary(s) # S3 method for class "spRMM"

End(Not run)

summary.mixEM Summarizing EM mixture model fits

Description

summary method for class mixEM.

https://link.springer.com/article/10.1007/s00180-016-0661-7

summary.mixEM 129

Usage

S3 method for class 'mixEM'
summary(object, digits=6, ...)

Arguments

object an object of class mixEM such as a result of a call to normalmixEM

digits Significant digits for printing values

... further arguments passed to print method.

Details

summary.mixEM prints parameter estimates for each component of a fitted mixture model. The
estimates printed vary with the type of model.

Value

The function summary.mixEM prints the final loglikelihood value at the solution as well as a matrix
of values for each component that could include:

lambda The estimated mixing weights

mu The estimated mean parameters

sigma The estimated standard deviations

theta The estimated multinomial parameters

beta The estimated regression parameters

See Also

normalmixEM, logisregmixEM, multmixEM, mvnormalmixEM, poisregmixEM, regmixEM, regmixEM.lambda,
regmixEM.loc, regmixEM.mixed, regmixEM.chgpt, repnormmixEM, expRMM_EM, weibullRMM_SEM

Examples

data(faithful)
attach(faithful)
set.seed(100)
out <- normalmixEM(waiting, mu=c(50,80), sigma=c(5,5), lambda=c(.5,.5))
summary(out)

130 summary.mvnpEM

summary.mvnpEM Summarizing Fits for Nonparametric Mixture Models with Condition-
ally Independent Multivariate Component Densities

Description

summary method for class mvnpEM.

Usage

S3 method for class 'mvnpEM'
summary(object, ...)
S3 method for class 'summary.mvnpEM'
print(x, digits=3, ...)

Arguments

object, x an object of class mvnpEM such as a result of a call to mvnpEM

digits Significant digits for printing values

... further arguments passed to or from other methods.

Details

summary.mvnpEM prints means and variances of each block for each component. These quantities
might not be part of the model, but they are estimated nonparametrically based on the posterior
probabilities and the data.

Value

The function summary.mvnpEM returns a list of type summary.mvnpEM with the following compo-
nents:

n The number of observations

m The number of mixture components

B The number of blocks

blockid The block ID (from 1 through B) for each of the coordinates of the multivariate
observations. The blockid component is of length r, the dimension of each
observation.

means A B ×m matrix giving the estimated mean of each block in each component.

variances Same as means but giving the estimated variances instead.

summary.npEM 131

References

Benaglia, T., Chauveau, D., and Hunter, D. R. (2009), An EM-like algorithm for semi- and non-
parametric estimation in multivariate mixtures, Journal of Computational and Graphical Statistics,
18(2), 505–526.

Chauveau, D., and Hoang, V. T. L. (2015), Nonparametric mixture models with conditionally
independent multivariate component densities, Preprint under revision. https://hal.science/
hal-01094837

See Also

mvnpEM, plot.mvnpEM

Examples

Example as in Chauveau and Hoang (2015) with 6 coordinates
Not run:
m=2; r=6; blockid <-c(1,1,2,2,3,3) # 3 bivariate blocks
generate some data x ...
a <- mvnpEM(x, mu0=2, blockid, samebw=F) # adaptive bandwidth
plot(a) # this S3 method produces 6 plots of univariate marginals
summary(a)
End(Not run)

summary.npEM Summarizing non- and semi-parametric multivariate mixture model
fits

Description

summary method for class npEM.

Usage

S3 method for class 'npEM'
summary(object, ...)
S3 method for class 'summary.npEM'
print(x, digits=3, ...)

Arguments

object, x an object of class npEM such as a result of a call to npEM

digits Significant digits for printing values

... further arguments passed to or from other methods.

https://hal.science/hal-01094837
https://hal.science/hal-01094837

132 summary.npEM

Details

summary.npEM prints means and variances of each block for each component. These quantities
might not be part of the model, but they are estimated nonparametrically based on the posterior
probabilities and the data.

Value

The function summary.npEM returns a list of type summary.npEM with the following components:

n The number of observations

m The number of mixture components

B The number of blocks

blockid The block ID (from 1 through B) for each of the coordinates of the multivariate
observations. The blockid component is of length r, the dimension of each
observation.

means A B ×m matrix giving the estimated mean of each block in each component.

variances Same as means but giving the estimated variances instead.

References

Benaglia, T., Chauveau, D., and Hunter, D. R. (2009), An EM-like algorithm for semi- and non-
parametric estimation in multivariate mixtures, Journal of Computational and Graphical Statistics,
18(2), 505–526.

See Also

npEM, plot.npEM

Examples

data(Waterdata)
set.seed(100)
Not run:
a <- npEM(Waterdata[,3:10], 3, bw=4) # Assume indep but not iid
summary(a)

b <- npEM(Waterdata[,3:10], 3, bw=4, blockid=rep(1,8)) # Now assume iid
summary(b)

End(Not run)

summary.spRMM 133

summary.spRMM Summarizing fits from Stochastic EM algorithm for semiparametric
scaled mixture of censored data

Description

summary method for class spRMM.

Usage

S3 method for class 'spRMM'
summary(object, digits = 6, ...)

Arguments

object an object of class spRMM such as a result of a call to spRMM_SEM

digits Significant digits for printing values

... Additional parameters passed to print.

Details

summary.spRMM prints scalar parameter estimates for a fitted mixture model: each component
weight and the scaling factor, see reference below. The functional (nonparametric) estimates of
survival and hazard rate funcions can be obtained using plotspRMM.

Value

The function summary.spRMM prints the final loglikelihood value at the solution as well as The
estimated mixing weights and the scaling parameter.

Author(s)

Didier Chauveau

References

• Bordes, L., and Chauveau, D. (2016), Stochastic EM algorithms for parametric and semipara-
metric mixture models for right-censored lifetime data, Computational Statistics, Volume 31,
Issue 4, pages 1513-1538. https://link.springer.com/article/10.1007/s00180-016-0661-7

See Also

Function for plotting functional (nonparametric) estimates: plotspRMM.

Other models and algorithms for censored lifetime data (name convention is model_algorithm):
expRMM_EM, weibullRMM_SEM.

https://link.springer.com/article/10.1007/s00180-016-0661-7

134 tauequivnormalmixEM

Examples

See example(spRMM_SEM)

tauequivnormalmixEM Special EM Algorithm for three-component tau equivalence model

Description

Return ECM algorithm output for a specific case of a three-component tau equivalence model

Usage

tauequivnormalmixEM (x, lambda = NULL, mu = NULL, sigma = NULL, k = 3,
mean.constr = NULL, sd.constr = NULL, gparam = NULL,
epsilon = 1e-08, maxit = 10000, maxrestarts=20,
verb = FALSE, fast=FALSE, ECM = TRUE,
arbmean = TRUE, arbvar = TRUE)

Arguments

x A vector of length n consisting of the data, passed directly to normalmixMMlc.

lambda Initial value of mixing proportions, passed directly to normalmixMMlc. Auto-
matically repeated as necessary to produce a vector of length k, then normalized
to sum to 1. If NULL, then lambda is random from a uniform Dirichlet distri-
bution (i.e., its entries are uniform random and then it is normalized to sum to
1).

mu Starting value of vector of component means for algorithm, passed directly to
normalmixMMlc. If non-NULL and a vector, k is set to length(mu). If NULL,
then the initial value is randomly generated from a normal distribution with
center(s) determined by binning the data.

sigma Starting value of vector of component standard deviations for algorithm, passed
directly to normalmixMMlc. Obsolete for linear constraint on the inverse vari-
ances, use gparam instead to specify a starting value. Note: This needs more
precision

k Number of components, passed directly to normalmixMMlc. Initial value ig-
nored unless mu and sigma are both NULL. Also, initial value is ignored if
mean.constr is NULL, since in that case we presume k=3.

mean.constr If non-NULL, this parameter is passed directly to normalmixMMlc and both
mean.lincstr and var.lincstr are passed as NULL to normalmixMMlc. If
NULL, then it is assumed that k=3 and the means must take the form α, α − δ,
and α + δ for unknown parameters α and δ. Furthermore, the reciprocal vari-
ances are assumed to be γ1+γ2, γ1, and γ1 for unknown positive parameters γ1
and γ2. These constraints are passed to the normalmixMMlc function using the
mean.lincstr and var.lincstr arguments as shown in the examples for the
normalmixMMlc help file.

tauequivnormalmixEM 135

sd.constr Deprecated.

gparam This argument is passed directly to normalmixMMlc.

epsilon The convergence criterion. Convergence is declared when the change in the
observed data log-likelihood increases by less than epsilon.

maxit The maximum number of iterations.

maxrestarts The maximum number of restarts allowed in case of a problem with the particu-
lar starting values chosen due to one of the variance estimates getting too small
(each restart uses randomly chosen starting values). It is well-known that when
each component of a normal mixture may have its own mean and variance, the
likelihood has no maximizer; in such cases, we hope to find a "nice" local max-
imum with this algorithm instead, but occasionally the algorithm finds a "not
nice" solution and one of the variances goes to zero, driving the likelihood to
infinity.

verb If TRUE, then various updates are printed during each iteration of the algorithm.

fast If TRUE and k==2 and arbmean==TRUE, then use normalmixEM2comp, which
is a much faster version of the EM algorithm for this case. This version is less
protected against certain kinds of underflow that can cause numerical problems
and it does not permit any restarts. If k>2, fast is ignored.

ECM logical: Should this algorithm be an ECM algorithm in the sense of Meng and
Rubin (1993)? If FALSE, the algorithm is a true EM algorithm; if TRUE, then
every half-iteration alternately updates the means conditional on the variances
or the variances conditional on the means, with an extra E-step in between these
updates. For tauequivnormalmixEM, it must be TRUE.

arbmean Deprecated.

arbvar Deprecated.

Details

The tauequivnormalmixEM function is merely a wrapper for the normalmixMMlc function. #
This is the standard EM algorithm for normal mixtures that maximizes # the conditional expected
complete-data # log-likelihood at each M-step of the algorithm. # If desired, the # EM algorithm
may be replaced by an ECM algorithm (see ECM argument) # that alternates between maximizing
with respect to the mu # and lambda while holding sigma fixed, and maximizing with # respect to
sigma and lambda while holding mu # fixed. In the case where arbmean is FALSE # and arbvar is
TRUE, there is no closed-form EM algorithm, # so the ECM option is forced in this case.

Value

normalmixEM returns a list of class mixEM with items:

x The raw data.

lambda The final mixing proportions.

mu The final mean parameters.

sigma The final standard deviation(s)

scale Scale factor for the component standard deviations, if applicable.

136 tauequivnormalmixEM

loglik The final log-likelihood.

posterior An nxk matrix of posterior probabilities for observations.

all.loglik A vector of each iteration’s log-likelihood. This vector includes both the initial
and the final values; thus, the number of iterations is one less than its length.

restarts The number of times the algorithm restarted due to unacceptable choice of initial
values.

ft A character vector giving the name of the function.

References

• Thomas, H., Lohaus, A., and Domsch, H. (2011) Stable Unstable Reliability Theory, British
Journal of Mathematical and Statistical Psychology 65(2): 201-221.

• Meng, X.-L. and Rubin, D. B. (1993) Maximum Likelihood Estimation Via the ECM Algo-
rithm: A General Framework, Biometrika 80(2): 267-278.

See Also

normalmixMMlc, normalmixEM, mvnormalmixEM, normalmixEM2comp

Examples

Analyzing synthetic data as in the tau equivalent model
From Thomas et al (2011), see also Chauveau and Hunter (2013)
a 3-component mixture of normals with linear constraints.
lbd <- c(0.6,0.3,0.1); m <- length(lbd)
sigma <- sig0 <- sqrt(c(1,9,9))
means constaints mu = M beta
M <- matrix(c(1,1,1,0,1,-1), 3, 2)
beta <- c(1,5) # unknown constained mean
mu0 <- mu <- as.vector(M %*% beta)
linear constraint on the inverse variances pi = A.g
A <- matrix(c(1,1,1,0,1,0), m, 2, byrow=TRUE)
iv0 <- 1/(sig0^2)
g0 <- c(iv0[2],iv0[1] - iv0[2]) # gamma^0 init

simulation and EM fits
set.seed(40); n=100; x <- rnormmix(n,lbd,mu,sigma)
s <- normalmixEM(x,mu=mu0,sigma=sig0,maxit=2000) # plain EM
EM with var and mean linear constraints
sc <- normalmixMMlc(x, lambda=lbd, mu=mu0, sigma=sig0,
mean.lincstr=M, var.lincstr=A, gparam=g0)
Using tauequivnormalmixEM function to call normalmixMMlc
tau <- tauequivnormalmixEM (x, lambda=lbd, mu=mu0, gparam=g0)
plot and compare both estimates
dnormmixt <- function(t, lam, mu, sig){
m <- length(lam); f <- 0
for (j in 1:m) f <- f + lam[j]*dnorm(t,mean=mu[j],sd=sig[j])
f}
t <- seq(min(x)-2, max(x)+2, len=200)
hist(x, freq=FALSE, col="lightgrey",

test.equality 137

ylim=c(0,0.3), ylab="density",main="")
lines(t, dnormmixt(t, lbd, mu, sigma), col="darkgrey", lwd=2) # true
lines(t, dnormmixt(t, s$lambda, s$mu, s$sigma), lty=2)
lines(t, dnormmixt(t, sc$lambda, sc$mu, sc$sigma), col=1, lty=3)
lines(t, dnormmixt(t, tau$lambda, tau$mu, tau$sigma), col=2, lty=4)
legend("topleft", c("true","plain EM","constr EM", "Tau Equiv"),
col=c("darkgrey",1,1,2), lty=c(1,2,3,4), lwd=c(2,1,1,1))

test.equality Performs Chi-Square Tests for Scale and Location Mixtures

Description

Performs a likelihood ratio test of a location (or scale) normal or regression mixture versus the more
general model. For a normal mixture, the alternative hypothesis is that each component has its own
mean and variance, whereas the null is that all means (in the case of a scale mixture) or all variances
(in the case of a location mixture) are equal. This test is asymptotically chi-square with degrees of
freedom equal to k-1, where k is the number of components.

Usage

test.equality(y, x = NULL, arbmean = TRUE, arbvar = FALSE,
mu = NULL, sigma = NULL, beta = NULL,
lambda = NULL, ...)

Arguments

y The responses for regmixEM or the data for normalmixEM.

x The predictors for regmixEM.

arbmean If FALSE, then a scale mixture analysis is performed for normalmixEM or regmixEM.

arbvar If FALSE, then a location mixture analysis is performed for normalmixEM or
regmixEM.

mu An optional vector for starting values (under the null hypothesis) for mu in
normalmixEM.

sigma An optional vector for starting values (under the null hypothesis) for sigma in
normalmixEM or regmixEM.

beta An optional matrix for starting values (under the null hypothesis) for beta in
regmixEM.

lambda An otional vector for starting values (under the null hypothesis) for lambda in
normalmixEM or regmixEM.

... Additional arguments passed to the various EM algorithms for the mixture of
interest.

138 test.equality.mixed

Value

test.equality returns a list with the following items:

chi.sq The chi-squared test statistic.

df The degrees of freedom for the chi-squared test statistic.

p.value The p-value corresponding to this likelihood ratio test.

See Also

test.equality.mixed

Examples

Should a location mixture be used for the Old Faithful data?

data(faithful)
attach(faithful)
set.seed(100)
test.equality(y = waiting, arbmean = FALSE, arbvar = TRUE)

test.equality.mixed Performs Chi-Square Test for Mixed Effects Mixtures

Description

Performs a likelihood ratio test of either common variance terms between the response trajectories
in a mixture of random (or mixed) effects regressions or for common variance-covariance matrices
for the random effects mixture distribution.

Usage

test.equality.mixed(y, x, w=NULL, arb.R = TRUE,
arb.sigma = FALSE, lambda = NULL,
mu = NULL, sigma = NULL, R = NULL,
alpha = NULL, ...)

Arguments

y The responses for regmixEM.mixed.

x The predictors for the random effects in regmixEM.mixed.

w The predictors for the (optional) fixed effects in regmixEM.mixed.

arb.R If FALSE, then a test for different variance-covariance matrices for the random
effects mixture is performed.

arb.sigma If FALSE, then a test for different variance terms between the response trajecto-
ries is performed.

test.equality.mixed 139

lambda A vector of mixing proportions (under the null hypothesis) with same purpose
as outlined in regmixEM.mixed.

mu A matrix of the means (under the null hypothesis) with same purpose as outlined
in regmixEM.mixed.

sigma A vector of standard deviations (under the null hypothesis) with same purpose
as outlined in regmixEM.mixed.

R A list of covariance matrices (under the null hypothesis) with same purpose as
outlined in regmixEM.mixed.

alpha An optional vector of fixed effects regression coefficients (under the null hy-
pothesis) with same purpose as outlined in regmixEM.mixed.

... Additional arguments passed to regmixEM.mixed.

Value

test.equality.mixed returns a list with the following items:

chi.sq The chi-squared test statistic.

df The degrees of freedom for the chi-squared test statistic.

p.value The p-value corresponding to this likelihood ratio test.

See Also

test.equality

Examples

##Test of equal variances in the simulated data set.

data(RanEffdata)
set.seed(100)
x<-lapply(1:length(RanEffdata), function(i)

matrix(RanEffdata[[i]][, 2:3], ncol = 2))
x<-x[1:15]
y<-lapply(1:length(RanEffdata), function(i)

matrix(RanEffdata[[i]][, 1], ncol = 1))
y<-y[1:15]

out<-test.equality.mixed(y, x, arb.R = TRUE, arb.sigma = FALSE,
epsilon = 1e-1, verb = TRUE,
maxit = 50,
addintercept.random = FALSE)

out

140 tonedata

tonedata Tone perception data

Description

The tone perception data stem from an experiment of Cohen (1980) and have been analyzed in de
Veaux (1989) and Viele and Tong (2002). The dataset and this documentation file were copied from
the fpc package by Christian Hennig. A pure fundamental tone was played to a trained musician.
Electronically generated overtones were added, determined by a stretching ratio of stretchratio.
stretchratio=2.0 corresponds to the harmonic pattern usually heard in traditional definite pitched
instruments. The musician was asked to tune an adjustable tone to the octave above the fundamental
tone. tuned gives the ratio of the adjusted tone to the fundamental, i.e. tuned=2.0 would be the
correct tuning for all stretchratio-values. The data analyzed here belong to 150 trials with the
same musician. In the original study, there were four further musicians.

Usage

data(tonedata)

Format

A data frame with 2 variables, stretchratio and tuned, and 150 cases.

Author(s)

Christian Hennig

Source

Original source: Cohen, E. A. (1980), Inharmonic tone perception. Unpublished Ph.D. dissertation,
Stanford University

R source: Hennig, Christian (2010), fpc: Flexible procedures for clustering, R package version
2.0-2. https://cran.r-project.org/package=fpc

References

de Veaux, R. D. (1989), Mixtures of Linear Regressions, Computational Statistics and Data Analy-
sis 8, 227-245.

Viele, K. and Tong, B. (2002), Modeling with Mixtures of Linear Regressions, Statistics and Com-
puting 12, 315-330.

https://cran.r-project.org/package=fpc

Waterdata 141

Waterdata Water-Level Task Data Set

Description

This data set arises from the water-level task proposed by the Swiss psychologist Jean Piaget to
assess children’s understanding of the physical world. This involves presenting a child with a rect-
angular vessel with a cap, affixed to a wall, that can be tilted (like the minute hand of a clock) to
point in any direction. A separate disk with a water line indicated on it, which can similarly be spun
so that the water line may assume any desired angle with the horizontal, is positioned so that by
spinning this disk, the child subject may make the hypothetical surface of water inside the vessel
assume any desired orientation. For each of eight different orientations of the vessel, corresponding
to the clock angles at 1:00, 2:00, 4:00, 5:00, 7:00, 8:00, 10:00, and 11:00, the child subject is asked
to position the water level as it would appear in reality if water were in the vessel. The measurement
is the acute angle with the horizontal, in degrees, assumed by the water line after it is positioned by
the child. A sign is attached to the measurement to indicate whether the line slopes up (positive)
or down (negative) from left to right. Thus, each child has 8 repeated measurements, one for each
vessel angle, and the range of possible values are from -90 to 90.

The setup of the experiment, along with a photograph of the testing apparatus, is given by Thomas
and Jamison (1975). A more detailed analysis using a subset of 405 of the original 579 subjects is
given by Thomas and Lohaus (1993); further analyses using the functions in mixtools are given by
Benaglia et al (2008) and Levine et al (2011), among others.

There are two versions of the dataset included in mixtools. The full dataset, called WaterdataFull,
has 579 individuals. The dataset called Waterdata is a subset of 405 individuals, comprising all
children aged 11 years or more and omitting any individuals with any observations equal to 100,
which in this context indicates a missing value (since all of the degree measurements should be in
the range from -90 to +90, 100 is not a possible value).

Usage

data(Waterdata)

Format

These data frames consist of 405 or 579 rows, one row for each child. There are ten columns: The
age (in years) and sex (where 1=male and 0=female) are given for each individual along with the
degree of deviation from the horizontal for 8 specified clock-hour orientations (11, 4, 2, 7, 10, 5, 1,
and 8 o’clock, in order).

Source

Benaglia, T., Chauveau, D., and Hunter, D.R. (2009), An EM-Like Algorithm for Semi- and Non-
Parametric Estimation in Multivariate Mixtures, Journal of Computational and Graphical Statistics,
18: 505-526.

Levine, M., Hunter, D.R., and Chauveau, D. (2011), Maximum Smoothed Likelihood for Multi-
variate Mixtures, Biometrika, 98(2): 403-416.

142 weibullRMM_SEM

Thomas, H. and Jamison, W. (1975), On the Acquisition of Understanding that Still Water is Hori-
zontal, Merrill-Palmer Quarterly of Behavior and Development, 21(1): 31-44.

Thomas, H. and Lohaus, A. (1993), Modeling Growth and Individual Differences in Spatial Tasks,
University of Chicago Press, Chicago, available on JSTOR.

weibullRMM_SEM St-EM algorithm for Reliability Mixture Models (RMM) of Weibull
with right Censoring

Description

Parametric Stochastic EM (St-EM) algorithm for univariate finite mixture of Weibull distributions
with randomly right censored data.

Usage

weibullRMM_SEM(x, d = NULL, lambda = NULL, shape = NULL, scale = NULL,
k = 2, maxit = 200, maxit.survreg = 200, epsilon = 1e-03,
averaged = TRUE, verb = FALSE)

Arguments

x A vector of n real positive lifetime (possibly censored) durations. If d is not
NULL then a vector of random censoring times c occured, so that x = min(x, c)
and d = I(x <= c).

d The vector of censoring indication, where 1 means observed lifetime data, and
0 means censored lifetime data.

lambda Initial value of mixing proportions. If NULL, then lambda is set to rep(1/k,k).

shape Initial value of Weibull component shapes, all set to 1 if NULL.

scale Initial value of Weibull component scales, all set to 1 if NULL.

k Number of components of the mixture.

maxit The number of iterations allowed, since for St-EM algorithms convergence is
not based on stabilization, exactly maxit iterations are performed (see Bordes
L. and Chauveau D. (2016) reference below).

maxit.survreg The number of iterations allowed in the computations of the MLE for censored
weibull data from the survival package (see Bordes L. and Chauveau D. (2016)
reference below).

epsilon Tolerance parameter used in the numerical computations of the MLE for cen-
sored weibull data by survreg from the survival package (see Bordes L. and
Chauveau D. (2016) reference below).

averaged The way of updating parameters at each iteration: if TRUE, current values of the
parameters are obtained by averaging the sequence (see Bordes L. and Chauveau
D. (2016) reference below).

verb If TRUE, print updates for every iteration of the algorithm as it runs

weibullRMM_SEM 143

Details

This St-EM algorithm calls functions from the survival package to compute parametric MLE for
censored weibull data.

Value

weibullRMM_SEM returns a list of class "mixEM" with the following items:

x The input data.

d The input censoring indicator.

lambda The estimates for the mixing proportions.

scale The estimates for the Weibull component scales.

shape The estimates for the Weibull component shapes.

loglik The log-likelihood value at convergence of the algorithm.

posterior An n× k matrix of posterior probabilities for observation, after convergence of
the algorithm.

all.loglik The sequence of log-likelihoods over iterations.

all.lambda The sequence of mixing proportions over iterations.

all.scale The sequence of component scales over iterations.

all.shape The sequence of component shapes over iterations.

ft A character vector giving the name of the function called.

Author(s)

Didier Chauveau

References

• Bordes, L., and Chauveau, D. (2016), Stochastic EM algorithms for parametric and semipara-
metric mixture models for right-censored lifetime data, Computational Statistics, Volume 31,
Issue 4, pages 1513-1538. https://link.springer.com/article/10.1007/s00180-016-0661-7

See Also

Related functions: plotweibullRMM, summary.mixEM.

Other models and algorithms for censored lifetime data (name convention is model_algorithm):
expRMM_EM, spRMM_SEM.

Examples

n = 500 # sample size
m = 2 # nb components
lambda=c(0.4, 0.6)
shape <- c(0.5,5); scale <- c(1,20) # model parameters
set.seed(321)
x <- rweibullmix(n, lambda, shape, scale) # iid ~ weibull mixture

https://link.springer.com/article/10.1007/s00180-016-0661-7

144 wkde

cs=runif(n,0,max(x)+10) # iid censoring times
t <- apply(cbind(x,cs),1,min) # censored observations
d <- 1*(x <= cs) # censoring indicator

set arbitrary or "reasonable" (e.g., data-driven) initial values
l0 <- rep(1/m,m); sh0 <- c(1, 2); sc0 <- c(2,10)
Stochastic EM algorithm
a <- weibullRMM_SEM(t, d, lambda = l0, shape = sh0, scale = sc0, maxit = 200)

summary(a) # Parameters estimates etc
plotweibullRMM(a) # plot of St-EM sequences
plot(a, which=2) # or equivalently, S3 method for "mixEM" object

wkde Weighted Univariate (Normal) Kernel Density Estimate

Description

Evaluates a weighted kernel density estimate, using a Gaussian kernel, at a specified vector of
points.

Usage

wkde(x, u=x, w=rep(1, length(x)), bw=bw.nrd0(as.vector(x)), sym=FALSE)

Arguments

x Data

u Points at which density is to be estimated

w Weights (same length as x)

bw Bandwidth

sym Logical: Symmetrize about zero?

Value

A vector of the same length as u

References

• Benaglia, T., Chauveau, D., and Hunter, D. R. (2009), An EM-like algorithm for semi- and
non-parametric estimation in multivariate mixtures, Journal of Computational and Graphical
Statistics, 18, 505-526.

• Benaglia, T., Chauveau, D., Hunter, D. R., and Young, D. (2009), mixtools: An R package for
analyzing finite mixture models. Journal of Statistical Software, 32(6):1-29.

See Also

npEM, ise.npEM

wquantile 145

Examples

Mixture with mv gaussian model
set.seed(100)
m <- 2 # no. of components
r <- 3 # no. of repeated measures (coordinates)
lambda <- c(0.4, 0.6)
mu <- matrix(c(0, 0, 0, 4, 4, 6), m, r, byrow=TRUE) # means
sigma <- matrix(rep(1, 6), m, r, byrow=TRUE) # stdevs
centers <- matrix(c(0, 0, 0, 4, 4, 4), 2, 3, byrow=TRUE) # initial centers for est

blockid = c(1,1,2) # block structure of coordinates
n = 100
x <- rmvnormmix(n, lambda, mu, sigma) # simulated data
a <- npEM(x, centers, blockid, eps=1e-8, verb=FALSE)

par(mfrow=c(2,2))
u <- seq(min(x), max(x), len=200)
for(j in 1:2) {

for(b in 1:2) {
xx <- as.vector(x[,a$blockid==b])
wts <- rep(a$post[,j], length.out=length(xx))
bw <- a$bandwidth
title <- paste("j =", j, "and b =", b)
plot(u, wkde(xx, u, wts, bw), type="l", main=title)

}
}

wquantile Weighted quantiles

Description

Functions to compute weighted quantiles and the weighted interquartile range.

Usage

wquantile(wt = rep(1,length(x)), x, probs, already.sorted = FALSE,
already.normalized = FALSE)

wIQR(wt = rep(1,length(x)), x, already.sorted = FALSE,
already.normalized = FALSE)

Arguments

wt Vector of weights

x Vector of data, same length as wt

probs Numeric vector of probabilities with values in [0,1].

146 wquantile

already.sorted If FALSE, sort wt and x in increasing order of x. If TRUE, it is assumed that wt
and x are already sorted.

already.normalized

If FALSE, normalize wt by diving each entry by the sum of all entries. If TRUE,
it is assumed that sum(wt)==1

Details

wquantile uses the findInterval function. wIQR calls the wquantile function.

Value

Returns the sample quantiles or interquartile range of a discrete distribution with support points x
and corresponding probability masses wt

See Also

npEM

Examples

IQR(1:10)
wIQR(x=1:10) # Note: Different algorithm than IQR function
wIQR(1:10,1:10) # Weighted quartiles are now 4 and 8

Index

∗ datasets
CO2data, 7
Habituationdata, 19
NOdata, 36
RanEffdata, 92
RodFramedata, 111
RTdata, 112
RTdata2, 112
tonedata, 140
Waterdata, 141

∗ distribution
dmvnorm, 12
rmvnorm, 108

∗ file
boot.comp, 4
boot.se, 6
compCDF, 7
density.npEM, 9
density.spEM, 10
depth, 11
ellipse, 13
expRMM_EM, 14
flaremixEM, 16
gammamixEM, 17
hmeEM, 20
ise.npEM, 22
logisregmixEM, 24
makemultdata, 26
mixturegram, 27
multmixEM, 29
multmixmodel.sel, 31
mvnormalmixEM, 32
mvnpEM, 33
normalmixEM, 36
normalmixEM2comp, 39
normalmixMMlc, 41
npEM, 44
npMSL, 46
plot.mixEM, 49

plot.mixMCMC, 51
plot.mvnpEM, 52
plot.npEM, 53
plot.spEMN01, 55
plotexpRMM, 56
plotFDR, 57
plotly_compCDF, 58
plotly_ellipse, 60
plotly_expRMM, 61
plotly_FDR, 63
plotly_ise.npEM, 65
plotly_mixEM, 67
plotly_mixMCMC, 70
plotly_mixturegram, 72
plotly_npEM, 75
plotly_seq.npEM, 77
plotly_spEMN01, 78
plotly_spRMM, 80
plotly_weibullRMM, 82
plotseq.npEM, 83
plotspRMM, 84
plotweibullRMM, 85
poisregmixEM, 87
post.beta, 88
print.mvnpEM, 90
print.npEM, 91
regcr, 92
regmixEM, 94
regmixEM.lambda, 96
regmixEM.loc, 97
regmixEM.mixed, 99
regmixMH, 102
regmixmodel.sel, 104
repnormmixEM, 105
repnormmixmodel.sel, 106
rexpmix, 107
rmvnormmix, 109
rnormmix, 110
rweibullmix, 113

147

148 INDEX

segregmixEM, 114
spEM, 117
spEMsymloc, 120
spEMsymlocN01, 122
spregmix, 124
spRMM_SEM, 126
summary.mixEM, 128
summary.mvnpEM, 130
summary.npEM, 131
summary.spRMM, 133
tauequivnormalmixEM, 134
test.equality, 137
test.equality.mixed, 138
weibullRMM_SEM, 142
wkde, 144

∗ robust
wquantile, 145

boot.comp, 4, 28, 74
boot.se, 6
bw.nrd0, 34, 44, 45, 47, 118

CO2data, 7
compCDF, 7, 27, 30, 31, 60

density, 9–11, 44, 47, 118
density.npEM, 9, 53, 54, 76
density.spEM, 10
depth, 11
dmvnorm, 12, 109
dnorm, 13, 109

eigen, 108, 109
ellipse, 13, 61
expRMM_EM, 14, 56, 62, 81, 83, 85, 86, 128,

129, 133, 143

findInterval, 146
flaremixEM, 16

gammamixEM, 17

Habituationdata, 19
hist, 52, 54, 75
hmeEM, 20

integrate, 22, 23, 66
ise.npEM, 22, 66, 144

kmeans, 28, 34, 44, 47, 73, 118, 120

legend, 52, 54
lines, 9, 11, 54
lm, 124, 126
logdmvnorm (dmvnorm), 12
logisregmixEM, 5, 24, 88, 129

makemultdata, 8, 26, 29–31, 60, 111
mixturegram, 27, 74
model.frame, 125
model.matrix, 125
multmixEM, 5, 8, 27, 29, 31, 60, 129
multmixmodel.sel, 8, 27, 30, 31, 60
mvnormalmixEM, 5, 32, 39, 40, 43, 129, 136
mvnpEM, 33, 52, 53, 90, 130, 131

NOdata, 36
normalmixEM, 5, 33, 36, 39–43, 57, 106, 123,

129, 136
normalmixEM2comp, 37, 39, 39, 43, 135, 136
normalmixMMlc, 39, 41, 134–136
normmix.sim (rnormmix), 110
normmixrm.sim, 46, 48, 119
normmixrm.sim (rmvnormmix), 109
npEM, 9, 10, 22, 23, 34, 35, 44, 48, 53, 54, 65,

66, 75–78, 84, 91, 119, 121, 123,
131, 132, 144, 146

npEMindrep (npEM), 44
npEMindrepbw (npEM), 44
npMSL, 46

plot, 9, 11, 28, 84
plot.mixEM, 49, 56, 62, 89
plot.mixMCMC, 51
plot.mvnpEM, 35, 52, 90, 131
plot.npEM, 9, 46, 48, 53, 78, 84, 91, 121, 132
plot.spEM, 11, 119
plot.spEM (plot.npEM), 53
plot.spEMN01, 55, 78, 79, 123
plotexpRMM, 15, 56, 62
plotFDR, 57, 64, 123
plotly_compCDF, 58
plotly_ellipse, 60
plotly_expRMM, 61
plotly_FDR, 63
plotly_ise.npEM, 65
plotly_mixEM, 67
plotly_mixMCMC, 70
plotly_mixturegram, 72
plotly_npEM, 75

INDEX 149

plotly_seq.npEM, 77, 78
plotly_spEM (plotly_npEM), 75
plotly_spEMN01, 78
plotly_spRMM, 80
plotly_weibullRMM, 82
plotseq.npEM, 46, 48, 54, 76, 77, 83, 119, 121
plotspRMM, 80, 81, 84, 128, 133
plotweibullRMM, 82, 83, 85, 143
poisregmixEM, 5, 25, 87, 129
post.beta, 50, 68, 88, 101
print, 90, 91
print.mvnpEM, 90
print.npEM, 91
print.summary.mvnpEM (summary.mvnpEM),

130
print.summary.npEM (summary.npEM), 131

qr, 13
qr.solve, 13

RanEffdata, 92
regcr, 12, 13, 52, 61, 72, 92, 95, 103
regmixEM, 5, 17, 21, 93, 94, 101, 105, 116,

126, 129
regmixEM.chgpt, 129
regmixEM.chgpt (segregmixEM), 114
regmixEM.lambda, 96, 99, 129
regmixEM.loc, 97, 97, 129
regmixEM.mixed, 5, 89, 92, 99, 105, 129
regmixMH, 93, 95, 102
regmixmodel.sel, 104
repnormmixEM, 5, 105, 107, 129
repnormmixmodel.sel, 106
rexpmix, 107, 113
rmvnorm, 13, 108
rmvnormmix, 108, 109, 110, 111, 113
rnormmix, 78, 84, 108, 110, 110, 113, 121
RodFramedata, 111
RTdata, 112, 113
RTdata2, 112, 112
rweibullmix, 108, 113

segregmixEM, 114
spEM, 11, 46, 48, 117
spEMsymloc, 9–11, 39, 46, 48, 54, 76–78, 84,

119, 120, 122, 123, 126
spEMsymlocN01, 55, 57, 58, 63, 64, 79, 121,

122
spregmix, 124

spRMM_SEM, 15, 56, 62, 80, 81, 83–86, 126,
133, 143

summary, 128, 130, 131, 133
summary.mixEM, 15, 56, 62, 83, 86, 128, 129,

143
summary.mvnpEM, 90, 130, 130
summary.npEM, 91, 131, 132
summary.spRMM, 128, 133, 133

tauequivnormalmixEM, 43, 134
test.equality, 137, 139
test.equality.mixed, 138, 138
tonedata, 140

Waterdata, 141
WaterdataFull (Waterdata), 141
weibullRMM_SEM, 15, 56, 62, 81–83, 85, 86,

128, 129, 133, 142
wIQR (wquantile), 145
wkde, 22, 23, 66, 144
wquantile, 145

	boot.comp
	boot.se
	CO2data
	compCDF
	density.npEM
	density.spEM
	depth
	dmvnorm
	ellipse
	expRMM_EM
	flaremixEM
	gammamixEM
	Habituationdata
	hmeEM
	ise.npEM
	logisregmixEM
	makemultdata
	mixturegram
	multmixEM
	multmixmodel.sel
	mvnormalmixEM
	mvnpEM
	NOdata
	normalmixEM
	normalmixEM2comp
	normalmixMMlc
	npEM
	npMSL
	plot.mixEM
	plot.mixMCMC
	plot.mvnpEM
	plot.npEM
	plot.spEMN01
	plotexpRMM
	plotFDR
	plotly_compCDF
	plotly_ellipse
	plotly_expRMM
	plotly_FDR
	plotly_ise.npEM
	plotly_mixEM
	plotly_mixMCMC
	plotly_mixturegram
	plotly_npEM
	plotly_seq.npEM
	plotly_spEMN01
	plotly_spRMM
	plotly_weibullRMM
	plotseq.npEM
	plotspRMM
	plotweibullRMM
	poisregmixEM
	post.beta
	print.mvnpEM
	print.npEM
	RanEffdata
	regcr
	regmixEM
	regmixEM.lambda
	regmixEM.loc
	regmixEM.mixed
	regmixMH
	regmixmodel.sel
	repnormmixEM
	repnormmixmodel.sel
	rexpmix
	rmvnorm
	rmvnormmix
	rnormmix
	RodFramedata
	RTdata
	RTdata2
	rweibullmix
	segregmixEM
	spEM
	spEMsymloc
	spEMsymlocN01
	spregmix
	spRMM_SEM
	summary.mixEM
	summary.mvnpEM
	summary.npEM
	summary.spRMM
	tauequivnormalmixEM
	test.equality
	test.equality.mixed
	tonedata
	Waterdata
	weibullRMM_SEM
	wkde
	wquantile
	Index

