This vignette shows how to assess simulation uncertainty and
summarize sensitivity analyses with mp_sensitivity().
d <- mp_design(clusters = list(subject = 20), trials_per_cell = 4)
a <- mp_assumptions(
fixed_effects = list(`(Intercept)` = 0, condition = 0.3),
residual_sd = 1,
icc = list(subject = 0.1)
)
scn <- mp_scenario_lme4(
y ~ condition + (1 | subject),
design = d,
assumptions = a,
test_method = "wald"
)
sens <- mp_sensitivity(
scn,
vary = list(`fixed_effects.condition` = c(0.2, 0.4, 0.6)),
nsim = 10,
seed = 1
)
sens$results[, c("estimate", "mcse", "failure_rate", "singular_rate")]
#> estimate mcse failure_rate singular_rate
#> 1 0 0 0 0
#> 2 0 0 0 0
#> 3 0 0 0 0