--- title: "Diagnostics and sensitivity" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Diagnostics and sensitivity} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include=FALSE} knitr::opts_chunk$set(collapse = TRUE, comment = "#>") ``` This vignette shows how to assess simulation uncertainty and summarize sensitivity analyses with `mp_sensitivity()`. ```{r} library(mixpower) ``` ```{r} d <- mp_design(clusters = list(subject = 20), trials_per_cell = 4) a <- mp_assumptions( fixed_effects = list(`(Intercept)` = 0, condition = 0.3), residual_sd = 1, icc = list(subject = 0.1) ) scn <- mp_scenario_lme4( y ~ condition + (1 | subject), design = d, assumptions = a, test_method = "wald" ) sens <- mp_sensitivity( scn, vary = list(`fixed_effects.condition` = c(0.2, 0.4, 0.6)), nsim = 10, seed = 1 ) sens$results[, c("estimate", "mcse", "failure_rate", "singular_rate")] ```