A Bootstrap Based Multiple Hypothesis
Testing Procedure

Abhirup Mallik
October 30, 2016

We propose a new methodology for multiple hypothesis testing based on
bootstrap distribution of p values. We know that under null hypothesis p
value is an uniform(0, 1) random variable. If the hypothesis are independent,
then so are the p values. We use this intuition to construct a statistic that
can be used to test multiple hypothesis.

We consider the case of coordinate wise testing of a data vector. If the
data matrix X is of dimension I x J then without loss of generality, we
consider the following set of hypothesis for j =1,2,--- ,J.

HY -2, =0
Hl(j) cx; #0

Where z; denotes the jth coordinate of X. This set of tests can be performed
in a variety of ways, for the purpose of illustration, we choose to use one
sample t-tests.

The general procedure for testing multiple hypothesis is testing indepen-
dently then use a correction method to correct for family wise error rate.
Here we are not using any such correction, as we are using a bootstrap based
approach.

We first generate bootstrap samples of our data, let us denote the boot-
strap samples by X1 for b € {1,2,--- , B}, where B is the bootstrap sample
size. For each of these samples we can perform J tests in parallel and collect
the p values. We denote the p values from jth coordinate of bth bootstrap
sample by p;{b}. We then use a monotone transformation of the p values for
better visualizing. The transformed order statistics are collected as shown.

(b} det
zi) =0

25 = —log(1 - p!")

@G
{b} det ,{b} {b} -1
Wim =24 =25y~ (n+1-j)
We demonstrate the proceedure below with a simulated example. The
function datgen is used to simulate data from a multivariate normal distri-
bution.

set.seed(12345)

suppressMessages (library(mhtboot))

n = 50;m = 500;m0 = 20;

sigeff = 1;

Sigma <- 0.25%diag(m)

X <- datgen(n,m,m0,sigeff,Sigma = Sigma)
plot(density(X[,1]) ,main="density plot of coord 1")

density plot of coord 1

0.6

0.4

Density

0.2

0.0

I I I I I I I
-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5

N =50 Bandwidth = 0.2099

We then generate the distribution of the p values using bootstrap. This
is impleemnted in the function series pboot. Here we are using the one
sample version of the function. The plotpboot function is used to generate
the quantile plot of the distribution of the p values.

porder <- pboot.lsample(X=X,B=250,ncpus = 1)
plotpboot (porder = porder)

0.06 -

/

percentile
— 10%
— 20%
0.04 - — 30%
[} — 40%
=
S — 50%
— 60%
— 70%
— 80%
— 90%
0.02
0.00 -
0 25 50 75
index

This approach can be extended to any set of hypothesis, in the package
we also provide a function for two sample tests. Both of these functions can
be used for user given tests as they accept test statistic as a parameter.

We can transform the order statistics of the p values using a monotone
transformation. We show here the transformation using inverse normal cdf
function.

porder.tr <- ptrans(porder,trans="normal")
plotpboot (porder.tr)

percentile
— 10%
— 20%
— 30%
— 40%
— 50%
—61 — 60%
— 70%
— 80%
— 90%

value

0 100 200 300
index

We can also look at the points where each coordinates hit a certain prob-
ability.

porder <- ptrans(porder = porder)
hitplots(porder = porder,alpha = 0.005)

[1] 28

e
—
@ _|
(@]

z

: ©

A

(2]

0

e}

[&]

2

(2]

L

e}

e X

2 o
N
o

I I I I I I
0 10 20 30 40 50

Index

Once we have the distribution of the p values, we can use them to detect
the change point in their distribution. This is done through gelbow function.

out <- gelbow(porder = porder)

out
dav dlm
34 21

All the above process is implemented in one single function for all one
sample tests. The final cut off point is chosen by taking a minimum of two

detection methods.

outl <- mht.lsample(X,ncpus = 1)
outl$cutoff

[1] 26
out1$signal

[1] 13 20 23 26 33 47 54 61 70 108 111 116 131 162 205 219 276 387 A4:
[22] 462 467 471 477 494

