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Abstract

The metafor package provides functions for conducting meta-analyses in R. The pack-
age includes functions for fitting the meta-analytic fixed- and random-effects models and
allows for the inclusion of moderators variables (study-level covariates) in these models.
Meta-regression analyses with continuous and categorical moderators can be conducted
in this way. Functions for the Mantel-Haenszel and Peto’s one-step method for meta-
analyses of 2× 2 table data are also available. Finally, the package provides various plot
functions (for example, for forest, funnel, and radial plots) and functions for assessing the
model fit, for obtaining case diagnostics, and for tests of publication bias.

Keywords: meta-analysis, R, mixed-effects model, meta-regression, moderator analysis.

1. Introduction

Science is a cumulative process (Shoemaker et al. 2003). Therefore, it is not surprising that
one can often find dozens and sometimes hundreds of studies addressing the same basic
question. Researches trying to aggregate and synthesize the literature on a particular topic
are increasingly conducting meta-analyses (Olkin 1995). Broadly speaking, a meta-analysis
can be defined as a systematic literature review supported by statistical methods where the
goal is to aggregate and contrast the findings from several related studies (Glass 1976).

In a meta-analysis, the relevant results from each study are quantified in such a way that the
resulting values can be further aggregated and compared. For example, we may be able to
express the results from a randomized clinical trial examining the effectiveness of a medication
in terms of an odds ratio, indicating how much higher/lower the odds of a particular outcome
(e.g., remission) were in the treatment compared to the control group. The set of odds ratios
from several studies examining the same medication then forms the data which is used for
further analyses. For example, we can estimate the average effectiveness of the medication
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(i.e., the average odds ratio) or conduct a moderator analysis, that is, we can examine whether
the effectiveness of the medication depends on the characteristics of the studies (e.g., the size
of the odds ratio may depend on the medication dosage used in the various trials).

Meta-analyses can also be used to aggregate estimates of the strength of the relationship
between two variables measured concurrently and/or without manipulation by experimenters
(e.g., gender differences in risk taking behaviors, the relationship between job satisfaction
and job performance). Again, the idea is that the relevant results of each study are expressed
in terms of an outcome measure putting the results on a common scale. Depending on the
types of studies and the information provided therein, a variety of different outcome measures
can be used for a meta-analysis, including the odds ratio, relative risk, risk difference, the
correlation coefficient, and the (standardized) mean difference (e.g., Borenstein 2009; Fleiss
and Berlin 2009). The term “effect size” is used generically throughout this article to denote
the outcome measure chosen for a meta-analysis (and does not imply that we are necessarily
dealing with a measure that indicates the causal influence of one variable on another).

Several standalone software packages dedicated specifically for conducting meta-analyses have
been made available over the recent years. Commercial packages includeMetaWin (Rosenberg
et al. 2000) and Comprehensive Meta-Analysis (Borenstein et al. 2005). The freely available
RevMan (Review Manager) from The Cochrane Collaboration (2008) not only provides func-
tions for conducting meta-analyses, but actually comprises an entire toolset for preparing and
maintaining Cochrane reviews.

Existing software packages have also been extended to provide meta-analytic capabilities.
MIX (Bax et al. 2006) and MetaEasy (Kontopantelis and Reeves 2009) are add-ins for Excel
and meta-analysis functions/macros have been made available for Stata (StataCorp. 2007;
for details, see Sterne 2009) and SPSS (SPSS Inc. 2006; for details, see Lipsey and Wilson
2001). Using the proc mixed command, one can also carry out meta-analyses using SAS

(SAS Institute Inc. 2003; for details, see van Houwelingen et al. 2002). Several meta-analysis
packages are also available for R (R Development Core Team 2010), e.g., meta (Schwarzer
2010) and rmeta (Lumley 2009).

The existing R packages, however, currently only provide limited capabilities for conducting
moderator analyses (Section 5 provides a more detailed comparison between various packages).
The metafor package (Viechtbauer 2010), which is described in the present paper, provides
functions for conducting meta-analyses in R and includes the required methods for conducting
moderator analyses without such limitations. In particular, users can fit so-called meta-
regression models (e.g., Berkey et al. 1995; van Houwelingen et al. 2002), that is, linear
models that examine the influence of one or more moderator variables on the outcomes. With
appropriate coding, such models can handle continuous and categorical moderator variables.

The metafor package grew out of a function called mima() (Viechtbauer 2006), which was
written by the author several years ago and which has since been successfully applied in
several meta-analyses (e.g., Krasopoulos et al. 2008; Petrin et al. 2008; Roberts et al. 2006).
While the mima() function provided the basic functionality for fitting standard meta-analytic
models and conducting meta-regression analyses, the metafor package was written in response
to several requests to expand the mima() function into a full package for conducting meta-
analyses with additional options and support functions.

In particular, the metafor package currently includes functions for fitting the meta-analytic
fixed- and random-effects models and allows for the inclusion of moderator variables in these
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models. Functions for the Mantel-Haenszel and Peto’s one-step method are also available.
Finally, the package provides various plot functions (for example, for forest, funnel, and
radial plots) and functions for assessing the model fit, for obtaining case diagnostics, and for
tests of publication bias.

The purpose of the present article is to provide a general overview of the metafor package and
its current capabilities. Not all of the possibilities and options are described, as this would
require a much longer treatment. The article is therefore a starting point for those interested
in exploring the possibility of conducting meta-analyses in R with the metafor package. Plans
for extending the package are described at the end of the article.

2. Meta-analysis models

In this section, the meta-analytic fixed- and random/mixed-effects models are briefly described
(e.g., Hedges and Olkin 1985; Berkey et al. 1995; van Houwelingen et al. 2002; Raudenbush
2009). These models form the basis for most meta-analyses and are also the models underlying
the metafor package. We start with i = 1, . . . , k independent effect size estimates, each
estimating a corresponding (true) effect size. We assume that

yi = θi + ei, (1)

where yi denotes the observed effect in the i-th study, θi the corresponding (unknown) true
effect, ei is the sampling error, and ei ∼ N(0, vi). Therefore, the yi’s are assumed to be
unbiased and normally distributed estimates of their corresponding true effects. The sampling
variances (i.e., vi values) are assumed to be known. Depending on the outcome measure used,
a bias correction, normalizing, and/or variance stabilizing transformation may be necessary
to ensure that these assumptions are (approximately) true (e.g., the log transformation for
odds ratios, Fisher’s r-to-z transformation for correlations; see Section 3.1 for more details).

2.1. Random-effects model

Most meta-analyses are based on sets of studies that are not exactly identical in their methods
and/or the characteristics of the included samples. Differences in the methods and sample
characteristics may introduce variability (“heterogeneity”) among the true effects. One way
to model the heterogeneity is to treat it as purely random. This leads to the random-effects
model, given by

θi = µ+ ui, (2)

where ui ∼ N(0, τ2). Therefore, the true effects are assumed to be normally distributed
with mean µ and variance τ2. The goal is then to estimate µ, the average true effect and
τ2, the (total) amount of heterogeneity among the true effects. If τ2 = 0, then this implies
homogeneity among the true effects (i.e., θ1 = . . . = θk ≡ θ), so that µ = θ then denotes the
true effect.

2.2. Mixed-effects model

Alternatively, we can include one or more moderators (study-level variables) in the model
that may account for at least part of the heterogeneity in the true effects. This leads to the
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mixed-effects model, given by

θi = β0 + β1xi1 + . . .+ βp′xip′ + ui, (3)

where xij denotes the value of the j-th moderator variable for the i-th study and we assume
again that ui ∼ N(0, τ2). Here, τ2 denotes the amount of residual heterogeneity among
the true effects, that is, variability among the true effects that is not accounted for by the
moderators included in the model. The goal of the analysis is then to examine to what extent
the moderators included in the model influence the size of the average true effect.

2.3. Fixed-effects vs. random/mixed-effects models

The random/mixed-effects models need to be carefully distinguished from fixed-effects models.
When using fixed-effects models, the goal is to make a conditional inference only about the
k studies included in the meta-analysis (Hedges and Vevea 1998). For example, a fixed-effects
model without moderators provides an answer to the question: How large is the average true
effect in the set of k studies included in the meta-analysis?

To be precise, the question addressed by a fixed-effects model depends on the type of esti-
mation method used. If weighted least squares is used to fit the model, then the fixed-effects
model provides an estimate of

θ̄w =

∑
wiθi

∑
wi

, (4)

the weighted average of the true effects, where the weights are typically set equal to wi = 1/vi.
On the other hand, unweighted least squares provides an estimate of

θ̄u =

∑
θi
k

, (5)

the simple (unweighted) average of the true effects (Laird and Mosteller 1990).

In contrast to the fixed-effects model, random/mixed-effects models provide an unconditional
inference about a larger set of studies from which the k studies included in the meta-analysis
are assumed to be a random sample (Hedges and Vevea 1998). We typically do not assume that
this larger set consists only of studies that have actually been conducted, but instead envision
a hypothetical population of studies that comprises studies that have been conducted, that
could have been conducted, or that may be conducted in the future. The random-effects model
then addresses the question: How large is the average true effect in this larger population of
studies (i.e., how large is µ)?

Therefore, contrary to what is often stated in the literature, it is important to realize that the
fixed-effects model does not assume that the true effects are homogeneous. In other words,
fixed-effects models provide perfectly valid inferences under heterogeneity, as long as one is
restricting these inferences (i.e., the conclusions about the size of the average effect) to the
set of studies included in the meta-analysis.1 On the other hand, the random-effects model
provides an inference about the average effect in the entire population of studies from which
the included studies are assumed to be a random selection.

In the special case that the true effects are actually homogeneous, the distinction between
the various models disappears, since homogeneity implies that µ = θ̄w = θ̄u ≡ θ. However,

1More specifically, to sets of k studies with true effects equal to the true effects of the k studies included in
the meta-analysis.
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since there is no infallible method to test whether the true effects are really homogeneous or
not, a researcher should decide on the type of inference desired before examining the data
and choose the model accordingly. For more details on the distinction between fixed- and
random-effects models, see Hedges and Vevea (1998) and Laird and Mosteller (1990).

2.4. Model fitting

In essence, the various meta-analytic models are just special cases of the general linear (mixed-
effects) model with heteroscedastic sampling variances that are assumed to be known. The
random/mixed-effects models can therefore be fitted using a two step approach (Raudenbush
2009). First, the amount of (residual) heterogeneity (i.e., τ2) is estimated with one of the
various estimators that have been suggested in the literature, including the Hunter-Schmidt
estimator (Hunter and Schmidt 2004), the Hedges estimator (Hedges and Olkin 1985; Rau-
denbush 2009), the DerSimonian-Laird estimator (DerSimonian and Laird 1986; Raudenbush
2009), the Sidik-Jonkman estimator (Sidik and Jonkman 2005a,b), the maximum-likelihood
or restricted maximum-likelihood estimator (Viechtbauer 2005; Raudenbush 2009), or the
empirical Bayes estimator (Morris 1983; Berkey et al. 1995). Next, µ or β0, . . . , βp′ are esti-
mated via weighted least squares with weights equal to wi = 1/(vi + τ̂2), where τ̂2 denotes
the estimate of τ2.

Once the parameter estimates have been obtained, Wald-type tests and confidence intervals
(CIs) are then easily obtained for µ or β0, . . . , βp′ under the assumption of normality. For
models involving moderators, subsets of the parameters can also be tested in the same manner.
Based on the fitted model, we can also obtain fitted/predicted values, residuals, and the best
linear unbiased predictions (BLUPs) of the study-specific true effects. The null hypothesis
H0 : τ

2 = 0 in random- and mixed-effects models can be tested with Cochran’s Q-test (Hedges
and Olkin 1985). A confidence interval for τ2 can be obtained with the method described in
Viechtbauer (2007a).

Fixed-effects models can be fitted with either weighted or unweighted least squares, again
taking into consideration the heteroscedastic sampling variances.2 As mentioned above, this
provides either an estimate of the weighted or unweighted average of the true effects when not
including moderators in the model. With moderators in the model, weighted estimation pro-
vides an estimate of the weighted least squares relationship between the moderator variables
and the true effects, while unweighted estimation provides an estimate of the unweighted least
squares relationship.

3. The metafor package

The metafor package provides functions for fitting the various models described above. The
package is available via the Comprehensive R Archive Network (CRAN) at http://CRAN.

R-project.org/package=metafor, the author’s website at http://www.wvbauer.com/, or
can be directly installed within R by typing install.packages("metafor") (assuming an
internet connection and appropriate access rights on the computer). The current version
number is 1.4-0. Once the package has been installed, it should be possible to replicate the

2In principle, one can also choose between weighted and unweighted least squared when fitting
random/mixed-effects models. However, since the parameters remain the same regardless of the method
used, weighted estimation is usually to be preferred since it is more efficient.

http://CRAN.R-project.org/package=metafor
http://CRAN.R-project.org/package=metafor
http://www.wvbauer.com/
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analyses described in this paper.

3.1. Calculating outcome measures

Before beginning with a meta-analysis, one must first obtain a set of effect size estimates with
their corresponding sampling variances. If these have been calculated already, for example by
hand or with the help of other software, then these can be read-in from a text file with the
read.table() function (see help("read.table") for details).

The metafor package also provides the escalc() function, which can be used to calculate
various effect size or outcome measures (and the corresponding sampling variances) that are
commonly used in meta-analyses. There are two different interfaces for using this function, a
default and a formula interface. For the default interface, the arguments of the function are

escalc(measure, ai, bi, ci, di, n1i, n2i, m1i, m2i, sd1i, sd2i, xi, mi, ri,

ni, data = NULL, add = 1/2, to = "only0", vtype = "LS", append = FALSE)

where measure is a character string specifying which outcome measure should be calculated
(see below for the various options), arguments ai through ni are used to supply the needed
information to calculate the various measures (depending on the outcome measure specified
under measure, different arguments need to be supplied), data can be used to specify a data
frame containing the variables given to the previous arguments, add and to are arguments
needed when dealing with 2 × 2 table data that may contain cells with zeros, and vtype is
an argument specifying the sampling variance estimate that should be calculated (see below).
When setting append = TRUE, the data frame specified via the data argument is returned
together with the effect size estimates and corresponding sampling variances.

Outcome measures for 2× 2 table data

Meta-analyses in the health/medical sciences are often based on studies providing data in
terms of 2× 2 tables. In particular, assume that we have k tables of the form:

outcome 1 outcome 2

group 1 ai bi n1i

group 2 ci di n2i

where ai, bi, ci, and di denote the cell frequencies and n1i and n2i the row totals in the
i-th study. For example, in a set of randomized clinical trials, group 1 and group 2 may refer
to the treatment and placebo/control group, with outcome 1 denoting some event of interest
(e.g., remission) and outcome 2 its complement. In a set of case-control studies, group 1 and
group 2 may refer to the group of cases and the group of controls, with outcome 1 denoting,
for example, exposure to some risk factor and outcome 2 non-exposure. The 2× 2 tables may
also be the result of cross-sectional (i.e., multinomial) sampling, so that none of the table
margins (except the total sample size n1i + n2i) are fixed by the study design.

Depending on the type of design (sampling method), a meta-analysis of 2× 2 table data can
be based on one of several different outcome measures, including the odds ratio, the relative
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risk (also called risk ratio), the risk difference, and the arcsine transformed risk difference
(e.g., Fleiss and Berlin 2009). For these measures, one needs to supply either ai, bi, ci, and
di or alternatively ai, ci, n1i, and n2i. The options for the measure argument are then:

❼ "RR": The log relative risk is equal to the log of (ai/n1i)/(ci/n2i).

❼ "OR": The log odds ratio is equal to the log of (ai*di)/(bi*ci).

❼ "RD": The risk difference is equal to (ai/n1i) - (ci/n2i).

❼ "AS": The arcsine transformed risk difference is equal to asin(sqrt(ai/n1i)) -

asin(sqrt(ci/n2i)). See Rücker et al. (2009) for a discussion of this and other out-
come measures for 2× 2 table data.

❼ "PETO": The log odds ratio estimated with Peto’s method (Yusuf et al. 1985) is equal
to (ai - si * n1i/ni)/((si * ti * n1i * n2i)/(ni^2 * (ni - 1))), where si

= ai + ci, ti = bi + di, and ni = n1i + n2i. This measure technically assumes
that the true odds ratio is equal to 1 in all tables.

Note that the log is taken of the relative risk and the odds ratio, which makes these outcome
measures symmetric around 0 and helps to make the distribution of these outcome measure
closer to normal.

Cell entries with a zero can be problematic especially for the relative risk and the odds ratio.
Adding a small constant to the cells of the 2× 2 tables is a common solution to this problem.
When to = "all", the value of add is added to each cell of the 2 × 2 tables in all k tables.
When to = "only0", the value of add is added to each cell of the 2× 2 tables only in those
tables with at least one cell equal to 0. When to = "if0all", the value of add is added to
each cell of the 2 × 2 tables in all k tables, but only when there is at least one 2 × 2 table
with a zero entry. Setting to = "none" or add = 0 has the same effect: No adjustment to
the observed table frequencies is made. Depending on the outcome measure and the presence
of zero cells, this may lead to division by zero inside of the function (when this occurs, the
resulting Inf values are recoded to NA).

Raw and standardized mean differences

The raw mean difference and the standardized mean difference are useful effect size measures
when meta-analyzing a set of studies comparing two experimental groups (e.g., treatment
and control groups) or two naturally occurring groups (e.g., men and women) with respect
to some quantitative (and ideally normally distributed) dependent variable (e.g., Borenstein
2009). For these outcome measures, m1i and m2i are used to specify the means of the two
groups, sd1i and sd2i the standard deviations of the scores in the two groups, and n1i and
n2i the sample sizes of the two groups.

❼ "MD": The raw mean difference is equal to m1i - m2i.

❼ "SMD": The standardized mean difference is equal to (m1i - m2i)/spi, where spi

is the pooled standard deviation of the two groups (which is calculated inside of the
function). The standardized mean difference is automatically corrected for its slight
positive bias within the function (Hedges and Olkin 1985). When vtype = "LS", the
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sampling variances are calculated based on a large sample approximation. Alternatively,
the unbiased estimates of the sampling variances can be obtained with vtype = "UB".

Raw and transformed correlation coefficients

Another frequently used outcome measure for meta-analyses is the correlation coefficient,
which is used to measure the strength of the (linear) relationship between two quantitative
variables (e.g., Borenstein 2009). Here, one needs to specify ri, the vector with the raw
correlation coefficients, and ni, the corresponding sample sizes.

❼ "COR": The raw correlation coefficient is simply equal to ri as supplied to the func-
tion. When vtype = "LS", the sampling variances are calculated based on the large
sample approximation. Alternatively, an approximation to the unbiased estimates of
the sampling variances can be obtained with vtype = "UB" (Hedges 1989).

❼ "UCOR": The unbiased estimate of the correlation coefficient is obtained by correcting
the raw correlation coefficient for its slight negative bias (based on equation 2.7 in
Olkin and Pratt 1958). Again, vtype = "LS" and vtype = "UB" can be used to choose
between the large sample approximation or approximately unbiased estimates of the
sampling variances.

❼ "ZCOR": Fisher’s r-to-z transformation is a variance stabilizing transformation for cor-
relation coefficients with the added benefit of also being a rather effective normalizing
transformation (Fisher 1921). The Fisher’s r-to-z transformed correlation coefficient is
equal to 1/2 * log((1 + ri)/(1 - ri)).

Proportions and transformations thereof

When the studies provide data for single groups with respect to a dichotomous dependent
variable, then the raw proportion, the logit transformed proportion, the arcsine transformed
proportion, and the Freeman-Tukey double arcsine transformed proportion are useful out-
come measures. Here, one needs to specify xi and ni, denoting the number of individuals
experiencing the event of interest and the total number of individuals, respectively. Instead
of specifying ni, one can use mi to specify the number of individuals that do not experience
the event of interest.

❼ "PR": The raw proportion is equal to xi/ni.

❼ "PLO": The logit transformed proportion is equal to the log of xi/(ni - xi).

❼ "PAS": The arcsine transformation is a variance stabilizing transformation for propor-
tions and is equal to asin(sqrt(xi/ni)).

❼ "PFT": Yet another variance stabilizing transformation for proportions was suggested by
Freeman and Tukey (1950). The Freeman-Tukey double arcsine transformed proportion
is equal to 1/2 * (asin(sqrt(xi/(ni + 1))) + asin(sqrt((xi + 1)/(ni + 1)))).
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Again, zero cell entries can be problematic. When to = "all", the value of add is added to
xi and mi in all k studies. When to = "only0", the value of add is added only for studies
where xi or mi is equal to 0. When to = "if0all", the value of add is added in all k studies,
but only when there is at least one study with a zero value for xi or mi. Setting to = "none"

or add = 0 again means that no adjustment to the observed values is made.

Formula interface

The escalc() function also provides an alternative formula interface to specify the data
structure. The arguments for this interface are

escalc(measure, formula, weights, data,

add = 1/2, to = "only0", vtype = "LS")

As above, the argument measure is a character string specifying which outcome measure
should be calculated. The formula argument is then used to specify the data structure as a
multipart formula (based on the Formula package; see Zeileis and Croissant 2010) together
with the weights argument for the group sizes or cell frequencies. The data argument can be
used to specify a data frame containing the variables in the formula and the weights variable.
The add, to, and vtype arguments work as described above.

For 2×2 table data, the formula argument takes the form outcome ~ group | study, where
group is a two-level factor specifying the rows of the tables, outcome is a two-level factor
specifying the columns of the tables, and study is a k-level factor specifying the studies. The
weights argument is then used to specify the frequencies in the various cells. An example to
illustrate the default and the formula interface is given in the following section.

3.2. Example

The metafor package provides the data set object dat.bcg with the results from 13 studies
on the effectiveness of the BCG vaccine against tuberculosis (Colditz et al. 1994).

R> library("metafor")

R> data("dat.bcg", package = "metafor")

R> print(dat.bcg, row.names = FALSE)

trial author year tpos tneg cpos cneg ablat alloc

1 Aronson 1948 4 119 11 128 44 random

2 Ferguson & Simes 1949 6 300 29 274 55 random

3 Rosenthal et al 1960 3 228 11 209 42 random

4 Hart & Sutherland 1977 62 13536 248 12619 52 random

5 Frimodt-Moller et al 1973 33 5036 47 5761 13 alternate

6 Stein & Aronson 1953 180 1361 372 1079 44 alternate

7 Vandiviere et al 1973 8 2537 10 619 19 random

8 TPT Madras 1980 505 87886 499 87892 13 random

9 Coetzee & Berjak 1968 29 7470 45 7232 27 random

10 Rosenthal et al 1961 17 1699 65 1600 42 systematic

11 Comstock et al 1974 186 50448 141 27197 18 systematic

12 Comstock & Webster 1969 5 2493 3 2338 33 systematic

13 Comstock et al 1976 27 16886 29 17825 33 systematic
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Besides the trial number, author(s), and publication year, the data set includes information
about the number of treated (vaccinated) subjects that were tuberculosis positive and neg-
ative (tpos and tneg, respectively) and similarly for the control (non-vaccinated) subjects
(cpos and cneg, respectively). In addition, the absolute latitude of the study location (in
degrees) and the treatment allocation method (random, alternate, or systematic assignment)
are indicated for each trial.

The results of the studies can be expressed in terms of 2× 2 tables, given by

TB+ TB-

Treated tpos tneg

Control cpos cneg

for which one of the previously mentioned outcome measures can be calculated. In the
following examples, we will work with the (log) relative risk as the outcome measure. We can
obtain these values and corresponding sampling variances with:

R> dat <- escalc(measure = "RR", ai = tpos, bi = tneg, ci = cpos,

+ di = cneg, data = dat.bcg, append = TRUE)

R> print(dat[,-c(4:7)], row.names = FALSE)

trial author year ablat alloc yi vi

1 Aronson 1948 44 random -0.88931133 0.325584765

2 Ferguson & Simes 1949 55 random -1.58538866 0.194581121

3 Rosenthal et al 1960 42 random -1.34807315 0.415367965

4 Hart & Sutherland 1977 52 random -1.44155119 0.020010032

5 Frimodt-Moller et al 1973 13 alternate -0.21754732 0.051210172

6 Stein & Aronson 1953 44 alternate -0.78611559 0.006905618

7 Vandiviere et al 1973 19 random -1.62089822 0.223017248

8 TPT Madras 1980 13 random 0.01195233 0.003961579

9 Coetzee & Berjak 1968 27 random -0.46941765 0.056434210

10 Rosenthal et al 1961 42 systematic -1.37134480 0.073024794

11 Comstock et al 1974 18 systematic -0.33935883 0.012412214

12 Comstock & Webster 1969 33 systematic 0.44591340 0.532505845

13 Comstock et al 1976 33 systematic -0.01731395 0.071404660

For interpretation purposes, it is important to note that the log relative risks were calculated
in such a way that values below 0 indicate a lower infection risk for the vaccinated group.
Except for two cases, this is also the direction of the findings in these 13 studies.

To use the formula interface of the escalc() function, we must first rearrange the data into
the required (long) format:

R> k <- length(dat.bcg$trial)

R> dat.fm <- data.frame(study = factor(rep(1:k, each = 4)))

R> dat.fm$grp <- factor(rep(c("T", "T", "C", "C"), k), levels = c("T", "C"))
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R> dat.fm$out <- factor(rep(c("+", "-", "+", "-"), k), levels = c("+", "-"))

R> dat.fm$freq <- with(dat.bcg, c(rbind(tpos, tneg, cpos, cneg)))

R> dat.fm

with the first eight rows of the rearranged data shown below.

study grp out freq

1 1 T + 4

2 1 T - 119

3 1 C + 11

4 1 C - 128

5 2 T + 6

6 2 T - 300

7 2 C + 29

8 2 C - 274

...

With

R> escalc(out ~ grp | study, weights = freq, data = dat.fm, measure = "RR")

we then obtain

yi vi

1 -0.88931133 0.325584765

2 -1.58538866 0.194581121

3 -1.34807315 0.415367965

4 -1.44155119 0.020010032

. . .

13 -0.01731395 0.071404660

For standard meta-analyses using the typical (wide-format) data layout (i.e., one row in the
dataset per study), the default interface is typically easier to use. The advantage of the
formula interface is that it can, in principle, handle more complicated data structures (e.g.,
studies with more than two treatment groups or more than two outcomes). While such
functionality is currently not implemented, this may be the case in the future.

3.3. Fitting models

The various meta-analytic models can be fitted with the rma.uni() function (with alias
rma()). The models are fitted as described in Section 2.4. The arguments of the function are
given by

rma.uni(yi, vi, sei, ai, bi, ci, di, n1i, n2i, m1i, m2i, sd1i, sd2i, xi,

mi, ri, ni, mods = NULL, data = NULL, intercept = TRUE, slab = NULL,

subset = NULL, measure = "GEN", add = 1/2, to = "only0", vtype = "LS",

method = "REML", weighted = TRUE, level = 95, digits = 4, btt = NULL,

tau2 = NULL, knha = FALSE, control = list())
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which are explained below.

Specifying the data

The function can be used in conjunction with any of the usual effect size or outcome mea-
sures used in meta-analyses (e.g., log odds ratios, standardized mean differences, correlation
coefficients). One simply needs to supply the observed outcomes via the yi argument and
the corresponding sampling variances via the vi argument (or the standard errors, the square
root of the sampling variances, via the sei argument). When specifying the data in this way,
one must set measure = "GEN" (which is the default).

Alternatively, the function takes as input the same arguments as the escalc() function and
then automatically calculates the values for the chosen effect size or outcome measure (and
the corresponding sampling variances) when supplied with the needed data. The measure

argument is then used to specify the desired outcome measure (arguments add, to, and
vtype have the same meaning as for the escalc() function).

Specifying the model

Assuming the observed outcomes and corresponding sampling variances are supplied via
yi and vi, the random-effects model is fitted with rma(yi, vi, data = dat). Restricted
maximum-likelihood estimation is used by default when estimating τ2 (the REML estimator
is approximately unbiased and quite efficient; see Viechtbauer 2005). The various (residual)
heterogeneity estimators that can be specified via the method argument are the

❼ "HS": Hunter-Schmidt estimator.

❼ "HE": Hedges estimator.

❼ "DL": DerSimonian-Laird estimator.

❼ "SJ": Sidik-Jonkman estimator.

❼ "ML": Maximum-likelihood estimator.

❼ "REML": Restricted maximum-likelihood estimator.

❼ "EB": Empirical Bayes estimator.

One or more moderators can be included in the model via the mods argument. A single
moderator can be given as a (row or column) vector of length k specifying the values of the
moderator. Multiple moderators are specified by giving an appropriate design matrix with
k rows and p′ columns (e.g., using mods = cbind(mod1, mod2, mod3), where mod1, mod2,
and mod3 correspond to the names of the variables for the three moderator variables). The
intercept is included in the model by default unless the user sets intercept = FALSE.

Many R user will be familiar with the formula syntax used to specify the desired model in
functions such as lm() and glm() (see help("formula") for details). One can also specify the
desired meta-analytic model in this way by setting the mods argument equal to a one-sided
formula of the form ~ model (e.g., mods = ~ mod1 + mod2 + mod3). Interactions, polyno-
mial terms, and factors can be easily added to the model in this manner. When specifying
a model formula via the mods argument, the intercept argument is ignored. Instead, the
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inclusion/exclusion of the intercept term is controlled by the specified formula (e.g., mods =

~ mod1 + mod2 + mod3 - 1 would remove the intercept term).

A fixed-effects model can be fitted with rma(yi, vi, data = dat, method = "FE"). Here,
one must consider carefully whether weighted or unweighed least squares should be used (the
default is weighted = TRUE). Again, moderators can be included in the model via the mods

argument.

Omnibus test of parameters

For models including moderators, an omnibus test of all the model coefficients is conducted
that excludes the intercept β0 (the first coefficient) if it is included in the model (i.e., a test
of H0 : β1 = . . . = βp′ = 0). If no intercept is included in the model, then the omnibus test
includes all of the coefficients in the model including the first. Alternatively, one can manually
specify the indices of the coefficients to test via the btt argument. For example, btt = c(3,

4) would be used to include only the third and fourth coefficient from the model in the test
(if an intercept is included in the model, then it corresponds to the first coefficient in the
model).

Categorical moderator variables

Categorical moderator variables can be included in the model in the same way that appropri-
ately (dummy) coded categorical independent variables can be included in linear models in
general. One can either do the dummy coding manually or use a model formula together with
the factor() function to let R handle the coding automatically. An example to illustrate
these different approaches is provided below.

Knapp and Hartung adjustment

By default, the test statistics of the individual coefficients in the model (and the corresponding
confidence intervals) are based on the normal distribution, while the omnibus test is based on
a χ2 distribution with m degrees of freedom (m being the number of coefficients tested). The
Knapp and Hartung (2003) method (knha = TRUE) is an adjustment to the standard errors
of the estimated coefficients, which helps to account for the uncertainty in the estimate of τ2

and leads to different reference distributions. Individual coefficients and confidence intervals
are then based on the t-distribution with k − p degrees of freedom, while the omnibus test
statistic then uses an F-distribution with m and k − p degrees of freedom (p being the total
number of model coefficients including the intercept if it is present). The Knapp and Hartung
adjustment is only meant to be used in the context of random- or mixed-effects model.

3.4. Example

Random-effects model

We will now start by fitting a random-effects model to the BCG data. Both of the commands

R> res <- rma(yi, vi, data = dat)

R> res

and
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R> res <- rma(ai = tpos, bi = tneg, ci = cpos, di = cneg, data = dat,

+ measure = "RR")

R> res

yield the same output, namely

Random-Effects Model (k = 13; tau^2 estimator: REML)

tau^2 (estimate of total amount of heterogeneity): 0.3132 (SE = 0.1664)

tau (sqrt of the estimate of total heterogeneity): 0.5597

I^2 (% of total variability due to heterogeneity): 92.22%

H^2 (total variability / within-study variance): 12.86

Test for Heterogeneity:

Q(df = 12) = 152.2330, p-val < .0001

Model Results:

estimate se zval pval ci.lb ci.ub

-0.7145 0.1798 -3.9744 <.0001 -1.0669 -0.3622 ***

---

Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

indicating that the estimated average log relative risk is equal to µ̂ = −0.7145 (95% CI:
−1.0669 to −0.3622). For easier interpretation, it may be useful to transform these values
back to the relative risk scale through exponentiation (i.e., exp(µ̂) = 0.49 with 95% CI: 0.34
to 0.70). The results therefore suggest that the risk of a tuberculosis infection in vaccinated
individuals is on average half as large as the infection risk without the vaccination. The null
hypothesis H0 : µ = 0 can be clearly rejected (z = −3.97, p < 0.0001).

The amount of heterogeneity in the true log relative risks is estimated to be τ̂2 = 0.3132.
Various measures for facilitating the interpretation of the estimated amount of heterogeneity
were suggested by Higgins and Thompson (2002). The I2 statistic estimates (in percent) how
much of the total variability in the effect size estimates (which is composed of heterogeneity
and sampling variability) can be attributed to heterogeneity among the true effects (τ̂2 = 0
therefore implies I2 = 0%). The H2 statistic is the ratio of the total amount of variability
in the observed outcomes to the amount of sampling variability (τ̂2 = 0 therefore implies
H2 = 1). It is important to realize, however, that τ̂2, I2, and H2 are often estimated
imprecisely, especially when the number of studies is small. With

R> confint(res)

we can obtain corresponding confidence intervals

estimate ci.lb ci.ub

tau^2 0.3132 0.1197 1.1115

tau 0.5597 0.3460 1.0543

I^2(%) 92.2214 81.9177 97.6781

H^2 12.8558 5.5303 43.0677
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Figure 1: Forest plot showing the results of 13 studies examining the effectiveness of the
BCG vaccine for preventing tuberculosis. The figure shows the relative risk of a tuberculosis
infection in the treated versus the control group with corresponding 95% confidence intervals
in the individual studies and based on a random-effects model.

which are quite wide and therefore indicate that we should not give too much credence to
the exact point estimates. However, even the lower bound values of the confidence intervals
are quite large and the test for heterogeneity (Q = 152.23, df = 12, p < 0.0001) suggests
considerable heterogeneity among the true effects.

A graphical overview of the results so far can be obtained by creating a forest plot (Lewis
and Clarke 2001) with the forest() function. While forest(res) would be sufficient, a
more appealing figure can be produced with some extra code (see Figure 1). By default,
the observed effects are drawn proportional to the precision of the estimates. The summary
estimate based on the random-effects model is automatically added to the figure (with the
outer edges of the polygon indicating the confidence interval limits). The results are shown
using a log scale for easier interpretation. The figure was created with the following code.

R> forest(res, slab = paste(dat$author, dat$year, sep = ", "),

+ xlim = c(-16, 6), at = log(c(0.05, 0.25, 1, 4)), atransf = exp,

+ ilab = cbind(dat$tpos, dat$tneg, dat$cpos, dat$cneg),

+ ilab.xpos = c(-9.5, -8, -6, -4.5), cex = 0.75)

R> op <- par(cex = 0.75, font = 2)

R> text(c(-9.5, -8, -6, -4.5), 15, c("TB+", "TB-", "TB+", "TB-"))

R> text(c(-8.75, -5.25), 16, c("Vaccinated", "Control"))

R> text(-16, 15, "Author(s) and Year", pos = 4)

R> text(6, 15, "Relative Risk [95% CI]", pos = 2)

R> par(op)
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Mixed-effects model

At least part of the heterogeneity may be due to the influence of moderators. For example,
the effectiveness of the BCG vaccine may depend on the study location, as the increased
abundance of non-pathogenic environmental mycobacteria closer to the equator may provide
a natural protection from tuberculosis (Ginsberg 1998). Moreover, the effectiveness of the
vaccine may have changed over time. We can examine these hypotheses by fitting a mixed-
effects model including the absolute latitude and publication year of the studies as moderators.

R> res <- rma(yi, vi, mods = cbind(ablat, year), data = dat)

R> res

and

R> res <- rma(yi, vi, mods = ~ ablat + year, data = dat)

R> res

produce the same results, namely

Mixed-Effects Model (k = 13; tau^2 estimator: REML)

tau^2 (estimate of residual amount of heterogeneity): 0.1108 (SE = 0.0845)

tau (sqrt of the estimate of residual heterogeneity): 0.3328

Test for Residual Heterogeneity:

QE(df = 10) = 28.3251, p-val = 0.0016

Test of Moderators (coefficient(s) 2,3):

QM(df = 2) = 12.2043, p-val = 0.0022

Model Results:

estimate se zval pval ci.lb ci.ub

intrcpt -3.5455 29.0959 -0.1219 0.9030 -60.5724 53.4814

ablat -0.0280 0.0102 -2.7371 0.0062 -0.0481 -0.0080 **

year 0.0019 0.0147 0.1299 0.8966 -0.0269 0.0307

---

Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

The estimated amount of residual heterogeneity is equal to τ̂2 = 0.1108, suggesting that
(0.3132− 0.1108)/.3132 = 65% of the total amount of heterogeneity can be accounted for by
including the two moderators in the model. However, while we can reject H0 : β1 = β2 = 0
based on the omnibus test (QM = 12.20, df = 2, p < 0.01), only absolute latitude appears
to have a significant influence on the effectiveness of the vaccine (i.e., for H0 : β1 = 0, we find
z = −2.74 with p < 0.01, while for H0 : β2 = 0, we find z = 0.13 with p = 0.90). The test for
residual heterogeneity is significant (QE = 28.33, df = 10, p < 0.01), possibly indicating that
other moderators not considered in the model are influencing the vaccine effectiveness.
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The results indicate that a one degree increase in absolute latitude corresponds to a change of
−0.03 (95% CI: −0.01 to −0.05) units in terms of the average log relative risk. To facilitate
the interpretation of the latitude moderator, we can obtain predicted average relative risks for
various absolute latitude values, holding the year constant, for example, at 1970 (one could
also consider dropping the year moderator from the model altogether). For this, we use the
predict() function, using the newmods argument to specify the values of the moderators and
the transf argument to specify a function for transforming the results (here, we use the exp()
function for exponentiation of the predicted log relative risks). By setting addx = TRUE, the
results are printed together with the moderator values used to obtain the predicted values.

R> predict(res, newmods = cbind(seq(from = 10, to = 60, by = 10), 1970),

+ transf = exp, addx = TRUE)

pred se ci.lb ci.ub cr.lb cr.ub X.intrcpt X.ablat X.year

1 0.9345 NA 0.5833 1.4973 0.4179 2.0899 1 10 1970

2 0.7062 NA 0.5149 0.9686 0.3421 1.4579 1 20 1970

3 0.5337 NA 0.4196 0.6789 0.2663 1.0697 1 30 1970

4 0.4033 NA 0.2956 0.5502 0.1958 0.8306 1 40 1970

5 0.3048 NA 0.1916 0.4848 0.1369 0.6787 1 50 1970

6 0.2303 NA 0.1209 0.4386 0.0921 0.5761 1 60 1970

The results show the predicted average relative risks (pred) and the bounds of the corre-
sponding 95% confidence intervals (ci.lb and ci.ub). The standard errors of the predicted
values (se) are only provided when not using the transf argument.3

The average relative risk is not significantly different from 1 at 10◦ absolute latitude (95% CI:
0.58 to 1.50), indicating an equal infection risk on average for vaccinated and non-vaccinated
individuals close to the equator. However, we see increasingly larger effects as we move further
away from the equator. At 40◦, the average infection risk is more than halved (95% CI: 0.30
to 0.55) for vaccinated individuals. At 60◦, the risk of an infection in vaccinated individuals
is on average only about a quarter as large (95% CI: 0.12 to 0.44).

More generally, Figure 2, shows a plot of the relative risk as a function of absolute latitude.
The observed relative risks are drawn proportional to the inverse of the corresponding standard
errors. The predicted effects with corresponding confidence interval bounds are also shown.
For reasons to be discussed later, four studies (i.e., studies 4, 7, 12, and 13) are labeled with
their study numbers in the figure. The figure (except for the labeling of the four studies) was
created with the following code.

R> preds <- predict(res, newmods = cbind(0:60, 1970), transf = exp)

R> wi <- 1/sqrt(dat$vi)

R> size <- 0.5 + 3 * (wi - min(wi))/(max(wi) - min(wi))

R> plot(dat$ablat, exp(dat$yi), pch = 19, cex = size,

3The values under cr.lb and cr.ub denote the bounds of an approximate 95% credibility interval. The
interval estimates where 95% of the true outcomes would fall in the hypothetical population of studies. This
interval is calculated under the assumption that the value of τ2 is known (and not estimated). A method for
calculating a credibility interval that accounts for the uncertainty in the estimate of τ2 will be implemented in
the future.
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Figure 2: Relative risk of a tuberculosis infection versus absolute latitude of study location.

+ xlab = "Absolute Latitude", ylab = "Relative Risk",

+ las = 1, bty = "l", log = "y")

R> lines(0:60, preds$pred)

R> lines(0:60, preds$ci.lb, lty = "dashed")

R> lines(0:60, preds$ci.ub, lty = "dashed")

R> abline(h = 1, lty = "dotted")

Categorical moderator variables

Moderators are often categorical, either inherently or because the information provided in
articles does not allow for more fine-grained coding. Therefore, subgrouping the studies
based on the levels of a categorical moderator is a frequent practice in meta-analyses. One
possibility is to fit a random-effects model separately within each level. For example, we can
fit separate models within each level of the treatment allocation moderator with

R> rma(yi, vi, data = dat, subset = (alloc=="random"))

R> rma(yi, vi, data = dat, subset = (alloc=="alternate"))

R> rma(yi, vi, data = dat, subset = (alloc=="systematic"))

which illustrates the use of the subset argument (which can either be a logical vector as
used here or a numeric vector indicating the indices of the observations to include). However,
unless differences in the amount of heterogeneity are of interest or suspected to be present
within the different levels, this is not an ideal approach (as τ2 needs to be estimated separately
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within each level based on an even smaller number of studies). Instead, we can fit a single
mixed-effects model to these data with a dummy coded factor. First, we create the necessary
dummy variables with

R> dat$a.random <- ifelse(dat$alloc == "random", 1, 0)

R> dat$a.alternate <- ifelse(dat$alloc == "alternate", 1, 0)

R> dat$a.systematic <- ifelse(dat$alloc == "systematic", 1, 0)

and then estimate separate effects for each factor level with

R> rma(yi, vi, mods = cbind(a.random, a.alternate, a.systematic),

+ intercept = FALSE, data = dat)

Instead of doing the coding manually, we can use the factor() function to handle the coding
for us.

R> rma(yi, vi, mods = ~ factor(alloc) - 1, data = dat)

Either way, the following results will be obtained.

estimate se zval pval ci.lb ci.ub

a.random -0.9658 0.2672 -3.6138 0.0003 -1.4896 -0.4420 ***

a.alternate -0.5180 0.4412 -1.1740 0.2404 -1.3827 0.3468

a.systematic -0.4289 0.3449 -1.2434 0.2137 -1.1050 0.2472

According to these results, only random treatment allocation leads to a significant treatment
effect. However, to test whether the allocation factor is actually statistically significant, we
need to use a different parameterization of the model by using

R> rma(yi, vi, mods = cbind(a.alternate, a.systematic), data = dat)

or, equivalently,

R> rma(yi, vi, mods = ~ factor(alloc), data = dat)

yielding the following results.4

Test of Moderators (coefficient(s) 2,3):

QM(df = 2) = 1.7675, p-val = 0.4132

estimate se zval pval ci.lb ci.ub

intrcpt -0.9658 0.2672 -3.6138 0.0003 -1.4896 -0.4420 ***

a.alternate 0.4478 0.5158 0.8682 0.3853 -0.5632 1.4588

a.systematic 0.5369 0.4364 1.2303 0.2186 -0.3184 1.3921

4By default, the factor() function will use alternate instead of random treatment allocation as the reference
level. The relevel() function can be used to set random allocation to the reference level (i.e., rma(yi, vi,

mods = ~ relevel(factor(alloc), ref = "random"), data = dat). However, regardless of which treat-
ment allocation method is used as the reference level, the omnibus test of this factor will yield the same
result.
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Therefore, β̂0 = −0.9658 is the estimated average log relative risk for studies using random
allocation, while β̂1 = 0.4478 and β̂2 = 0.5369 estimate how much larger the average log
relative risks are when using alternate and systematic allocation, respectively (i.e., β̂0 + β̂1 =
−0.9658+0.4478 = −0.5180, the estimated average log relative risk for studies using alternate
allocation and β̂0 + β̂2 = −0.9658+ 0.5369 = −0.4289, the estimated average log relative risk
for studies using systematic allocation). However, the test of H0 : β1 = β2 = 0 is not
significant (QM = 1.77, df = 2, p = 0.41), suggesting that the type of allocation method does
not actually influence the average effectiveness of the vaccine.

Knapp and Hartung adjustment

The next example illustrates the use of the Knapp and Hartung adjustment in the context
of a model that includes both the allocation factor and the continuous absolute latitude
moderator.

R> rma(yi, vi, mods = ~ factor(alloc) + ablat, data = dat, knha = TRUE)

Mixed-Effects Model (k = 13; tau^2 estimator: REML)

tau^2 (estimate of residual amount of heterogeneity): 0.1446 (SE = 0.1124)

tau (sqrt of the estimate of residual heterogeneity): 0.3803

Test for Residual Heterogeneity:

QE(df = 9) = 26.2034, p-val = 0.0019

Test of Moderators (coefficient(s) 2,3,4):

F(df1 = 3, df2 = 9) = 3.4471, p-val = = 0.0650

Model Results:

estimate se tval pval ci.lb ci.ub

intrcpt 0.2932 0.4188 0.7000 0.5016 -0.6543 1.2407

factor(alloc)random -0.2675 0.3624 -0.7381 0.4793 -1.0873 0.5523

factor(alloc)systematic 0.0585 0.3925 0.1490 0.8849 -0.8294 0.9463

ablat -0.0273 0.0095 -2.8669 0.0186 -0.0488 -0.0058

The omnibus test (H0 : β1 = β2 = β3 = 0) is now based on an F-distribution with m = 3
and k − p = 9 degrees of freedom, while a t-distribution with k − p = 9 degrees of freedom
is now used as the reference distribution for tests and confidence intervals for the individual
coefficients. Adding btt = c(2, 3) to the call would provide a test of H0 : β1 = β2 = 0, that
is, an omnibus test only of the allocation factor (while controlling for the influence of absolute
latitude).

Usually, the Knapp and Hartung adjustment will lead to more conservative p values, although
this is not guaranteed in any particular case. In general though, the Type I error rate of
the tests and the coverage probability of the confidence intervals will be closer to nominal
when the adjustment is used. We can easily check this for the given data by repeatedly
simulating a random moderator (which is unrelated to the outcomes by definition), recording
the corresponding p value, and then calculating the empirical Type I error rate.
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R> pval1 <- pval2 <- rep(NA, 10000)

R> for (i in 1:10000) {

+ xi <- rnorm(13)

+ pval1[i] <- rma(yi, vi, mods = xi, data = dat, method = "DL")$pval[2]

+ pval2[i] <- rma(yi, vi, mods = xi, data = dat, method = "DL",

+ knha = TRUE)$pval[2]

+ }

R> mean(pval1 < 0.05)

R> mean(pval2 < 0.05)

Note that the DerSimonian-Laird estimator is used, because it is non-iterative and therefore
faster and guaranteed to provide an estimate for τ2 (the REML estimator requires iterative
estimation and can occasionally fail to converge; see Section 3.6 for some more technical
details). The resulting empirical Type I error rates are approximately equal to 0.09 and 0.06,
respectively. While the difference is not striking in this particular example, it illustrates how
the Knapp and Hartung adjustment results in test statistics with closer to nominal properties.

3.5. Additional functions and methods

Table 1 provides an overview of the various functions and methods that can be used after
fitting a model with the rma() function. Some of these additional functions will now be
discussed.

Fitted/predicted values

The fitted() function can be used to obtain the fitted values for the k studies. The
predict() function provides the fitted values in addition to standard errors and confidence
interval bounds. As illustrated earlier, one can also use the newmods argument together with
the predict() function to obtain predicted values for selected moderator values based on the
fitted model. Note that for models without moderators, the fitted values are the same for all
k studies (e.g., µ̂ in the random-effects model). The predict() function then only provides
the fitted value once instead of repeating it k times.

For example, we can obtain an estimate of the average relative risk by first fitting a random-
effects model to the log relative risks and then transforming the estimated average log relative
risk (i.e., µ̂) back through exponentiation.

R> res <- rma(yi, vi, data = dat)

R> predict(res, transf = exp, digits = 2)

pred se ci.lb ci.ub cr.lb cr.ub

0.49 NA 0.34 0.70 0.15 1.55

Raw and standardized residuals

Many meta-analyses will include at least a few studies yielding observed effects that appear
to be outlying or extreme in the sense of being well separated from the rest of the data.
Visual inspection of the data may be one way of identifying unusual cases, but this approach



22 metafor: Conducting Meta-Analyses in R

Function Description

print() standard print method
summary() alternative print method that also provides fit statistics
coef() extracts the estimated model coefficients, corresponding standard

errors, test statistics, p values, and confidence interval bounds
vcov() extracts the variance-covariance matrix of the model coefficients
fitstats() extracts the (restricted) log likelihood, deviance, AIC, and BIC

fitted() fitted values
predict() fitted/predicted values (with confidence intervals), also for new data
blup() best linear unbiased predictions (BLUPs) of the true outcomes

residuals() raw residuals
rstandard() internally standardized residuals
rstudent() externally standardized (studentized deleted) residuals
hatvalues() extracts the diagonal elements of the hat matrix
weights() extracts the weights used for model fitting
influence() various case and deletion diagnostics
leave1out() leave-one-out sensitivity analyses for fixed/random-effects models

forest() forest plot
funnel() funnel plot
radial() radial (Galbraith) plot
qqnorm() normal quantile-quantile plot
plot() general plot function for model objects
addpoly() function to add polygons to a forest plot

ranktest() rank correlation test for funnel plot asymmetry
regtest() regression tests for funnel plot asymmetry
trimfill() trim and fill method

confint() confidence interval for the amount of (residual) heterogeneity in
random- and mixed-effects models (confidence intervals for the
model coefficients can also be obtained)

cumul() cumulative meta-analysis for fixed/random-effects models
anova() model comparisons in terms of fit statistics and likelihoods
permutest() permutation tests for model coefficients

Table 1: Functions and methods for fitted model objects created by the rma.uni() function.

may be problematic especially when dealing with models involving one or more moderators.
Moreover, the studies included in a meta-analysis are typically of varying sizes (and hence,
the sampling variances of the yi values can differ considerably), further complicating the
issue. A more formal approach is based on an examination of the residuals in relation to their
corresponding standard errors.

Various types of residuals have been defined in the context of linear regression (e.g., Cook and
Weisberg 1982), which can be easily adapted to the meta-analytic models. Most importantly,
rstandard() and rstudent() provide internally and externally standardized residuals, re-
spectively (residuals() provides the raw residuals). If a particular study fits the model, its
standardized residual follows (asymptotically) a standard normal distribution. A large stan-
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dardized residual for a study therefore may suggest that the study does not fit the assumed
model (i.e., it may be an outlier).

For example, Figure 2 indicates that studies 7, 12, and 13 have observed outcomes that deviate
noticeably from the model. However, the size of a residual must be judged relative to the
precision of the predicted average effect for the corresponding study, while taking the amount
of residual heterogeneity and the amount of sampling variability into consideration. Clearly,
this is difficult to do by eye. On the other hand, the externally standardized residuals for this
model can be easily obtained with

R> res <- rma(yi, vi, mods = cbind(ablat, year), data = dat)

R> rstudent(res)

resid se z

1 0.2229 0.7486 0.2978

2 -0.2828 0.6573 -0.4303

3 -0.3826 0.7501 -0.5100

4 -1.0900 0.7768 -1.4032

. . . .

7 -1.4061 0.5416 -2.5961

. . . .

12 1.1864 0.8084 1.4677

13 0.7972 0.3742 2.1302

suggesting that only studies 7 and 13 have relatively ‘large’ residuals (even though the log
relative risk for study 12 deviates considerably from the corresponding predicted average effect
under the fitted model, the estimate for study 12 is also the least precise one of all 13 studies).

Influential case diagnostics

An outlying case may not be of much consequence if it exerts little influence on the results.
However, if the exclusion of a study from the analysis leads to considerable changes in the
fitted model, then the study may be considered to be influential. Case deletion diagnostics
known from linear regression (e.g., Belsley et al. 1980; Cook and Weisberg 1982) can be
adapted to the context of meta-analysis to identify such studies. The influence() function
provides the following diagnostic measures for the various meta-analytic models:

❼ externally standardized residuals,

❼ DFFITS values,

❼ Cook’s distances,

❼ covariance ratios,

❼ DFBETAS values,

❼ the estimates of τ2 when each study is removed in turn,

❼ the test statistics for (residual) heterogeneity when each study is removed in turn,
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❼ the diagonal elements of the hat matrix, and the

❼ the weights (in %) given to the observed outcomes during the model fitting.

For example, for the mixed-effects model with absolute latitude and publication year as mod-
erators, we can obtain these diagnostic measures with

R> res <- rma(yi, vi, mods = cbind(ablat, year), data = dat)

R> inf <- influence(res)

R> inf

Instead of printing these results, we can use

R> plot(inf, plotdfb = TRUE)

to obtain two plots, the first with the various diagnostic measures except the DFBETAS
values and the second with the DFBETAS values.

Figure 3 shows the first of these two plots, which suggests that studies 7 and 13 introduce
some additional residual heterogeneity into the model (i.e., removing these studies in turn
would yield considerably smaller estimates of τ2), but only have a modest influence on the fit
of the model (the plot of the Cook’s distances shows this most clearly). On the other hand,
removing study 4 would yield little change in the amount of residual heterogeneity, but its
influence on the model fit is more considerable. Due to its large Cook’s distance and hat value,
it is also colored in red in the figure (a plot of the absolute latitudes against the publication
years for the 13 studies (i.e., plot(dat$ablat, dat$year)) reveals the reason for the large
influence of the 4th study).

For models without moderators, one can also use the leave1out() function to repeatedly fit
the model, leaving out one study at a time. For example,

R> res <- rma(yi, vi, data = dat)

R> leave1out(res, transf = exp, digits = 3)

estimate se zval pval ci.lb ci.ub Q Qp tau2 I2 H2

1 0.493 NA -3.722 0.000 0.340 0.716 151.583 0.000 0.336 93.226 14.762

2 0.520 NA -3.620 0.000 0.365 0.741 145.318 0.000 0.293 92.254 12.910

3 0.504 NA -3.692 0.000 0.350 0.725 150.197 0.000 0.321 92.935 14.155

4 0.533 NA -3.558 0.000 0.377 0.754 96.563 0.000 0.263 90.412 10.430

5 0.466 NA -3.984 0.000 0.320 0.678 151.320 0.000 0.328 92.763 13.819

6 0.491 NA -3.550 0.000 0.332 0.727 128.187 0.000 0.360 90.912 11.003

7 0.519 NA -3.631 0.000 0.365 0.740 145.830 0.000 0.293 92.278 12.950

8 0.452 NA -4.418 0.000 0.317 0.643 67.986 0.000 0.273 87.031 7.711

9 0.477 NA -3.769 0.000 0.324 0.701 152.205 0.000 0.349 93.213 14.735

10 0.520 NA -3.544 0.000 0.363 0.747 139.827 0.000 0.299 92.232 12.874

11 0.469 NA -3.871 0.000 0.319 0.688 151.466 0.000 0.340 91.811 12.211

12 0.468 NA -4.173 0.000 0.327 0.668 150.787 0.000 0.308 92.678 13.658

13 0.460 NA -4.191 0.000 0.319 0.661 149.788 0.000 0.304 92.344 13.062
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Figure 3: Plot of the externally standardized residuals, DFFITS values, Cook’s distances,
covariance ratios, estimates of τ2 and test statistics for (residual) heterogeneity when each
study is removed in turn, hat values, and weights for the 13 studies examining the effectiveness
of the BCG vaccine for preventing tuberculosis.
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shows the results from the random-effects model, leaving out one study at a time (the transf
argument can again be used to specify a function which transforms the model estimate and
the confidence interval bounds; the standard errors are then NA).

Plot functions (forest, funnel, radial, and Q-Q normal plots)

The metafor package provides several functions for creating plots that are frequently used in
meta-analyses. Several examples are given in this section to illustrate how such plots can be
created.

The use of the forest() function for creating forest plots from fitted model objects was
already illustrated earlier (Figure 1). An additional example of a forest plot is shown in
Figure 4 which shows how to create forest plots from individual effect size estimates and the
corresponding sampling variances and illustrates the use of the addpoly() function for adding
(additional) polygons to such plots. This is particularly useful to indicate the estimated effects
for representative sets of moderator values or for subgroups of studies. The figure was created
with the following code.

R> forest(dat$yi, dat$vi, atransf = exp, ylim = c(-3.5, 16),

+ at = log(c(0.05, 0.25, 1, 4, 20)), xlim = c(-9, 7),

+ slab = paste(dat$author, dat$year, sep = ", "))

R> res <- rma(yi, vi, mods = cbind(ablat), data = dat)

R> preds <- predict(res, newmods = c(10, 30, 50))

R> addpoly(preds$pred, sei = preds$se, atransf = exp,

+ mlab = c("10 Degrees", "30 Degrees", "50 Degrees"))

R> text(-9, 15, "Author(s) and Year", pos = 4, font = 2)

R> text(7, 15, "Relative Risk [95% CI]", pos = 2, font = 2)

R> abline(h = 0)

The funnel() function creates funnel plots (Light and Pillemer 1984; Sterne and Egger 2001),
which can be useful for diagnosing the presence of heterogeneity and certain forms of pub-
lication bias (Rothstein et al. 2005). For models without moderators, the figure shows the
observed outcomes on the horizontal axis against their corresponding standard errors (i.e.,
the square root of the sampling variances) on the vertical axis. A vertical line indicates the
estimate based on the model. A pseudo confidence interval region is drawn around this value
with bounds equal to ±1.96 · SE, where SE is the standard error value from the vertical axis.
For models involving moderators, the plot shows the residuals on the horizontal axis against
their corresponding standard errors. A vertical line is drawn at zero with a pseudo confidence
interval region given by ±1.96 · SE.
Figure 5 shows two funnel plots, the first based on a random-effects model and the second
based on a mixed-effects model with absolute latitude as moderator. These figures were
created with the following code.

R> res <- rma(yi, vi, data = dat)

R> funnel(res, main = "Random-Effects Model")

R> res <- rma(yi, vi, mods = cbind(ablat), data = dat)

R> funnel(res, main = "Mixed-Effects Model")
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Figure 4: Forest plot showing the results of 13 studies examining the effectiveness of the
BCG vaccine for preventing tuberculosis. The estimated average relative risk at 10, 30, and
50 degrees absolute latitude are indicated at the bottom of the figure.
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Figure 5: Funnel plot for a model without moderators (random-effects model) and a model
with absolute latitude as moderator (mixed-effects model).
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Figure 6: Radial plot for a fixed-effects and a random-effects model.

Radial (or Galbraith) plots were suggested by Rex Galbraith (1988a,b, 1994) as a way to assess
the consistency of observed outcomes that have differing precisions (e.g., due to heteroscedastic
sampling variances). For a fixed-effects model, the radial() function creates a plot showing
the inverse of the standard errors on the horizontal axis (i.e., 1/

√
vi) against the individual

observed outcomes standardized by their corresponding standard errors on the vertical axis
(i.e., yi/

√
vi). On the right hand side of the plot, an arc is drawn. A line projected from (0, 0)

through a particular point within the plot onto this arc indicates the value of the observed
outcome for that point. For a random-effects model, the function uses 1/

√
vi + τ̂2 for the

horizontal and yi/
√
vi + τ̂2 for the vertical axis.

Figure 6 shows two examples of radial plots, one for a fixed- and the other for a random-effects
model. The figures were created with the following code.

R> res <- rma(yi, vi, data = dat, method = "FE")

R> radial(res, main = "Fixed-Effects Model")

R> res <- rma(yi, vi, data = dat, method = "REML")

R> radial(res, main = "Random-Effects Model")

The qqnorm() function creates Q-Q normal plots which can be a useful diagnostic tool in
meta-analyses (Wang and Bushman 1998). The plot shows the theoretical quantiles of a
normal distribution on the horizontal axis against the observed quantiles of the (externally)
standardized residuals on the vertical axis. For reference, a line is added to the plot with a
slope of 1, going through the (0, 0) point. By default, a pseudo confidence envelope is also
added to the plot. The envelope is created based on the quantiles of sets of pseudo residuals
simulated from the given model (for details, see Cook and Weisberg 1982). The number of
simulated sets can be controlled with the reps argument (reps = 1000 by default). When
smooth = TRUE (the default), the simulated bounds are smoothed with Friedman’s Super-
Smoother (see help("supsmu") for details). The bass argument can be set to a number
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Figure 7: Q-Q normal plot for a model without moderators (random-effects model) and a
model with absolute latitude as moderator (mixed-effects model).

between 0 and 10, with higher numbers indicating increasing smoothness (bass = 0 by de-
fault).

Figure 7 shows two examples of Q-Q normal plots, the first for a random-effects model and
the second for a mixed-effects model with absolute latitude as a moderator. The figures were
created with the following code.

R> res <- rma(yi, vi, data = dat)

R> qqnorm(res, main = "Random-Effects Model")

R> res <- rma(yi, vi, mods = cbind(ablat), data = dat)

R> qqnorm(res, main = "Mixed-Effects Model")

Tests for funnel plot asymmetry

As mentioned earlier, funnel plots can be a useful graphical device for diagnosing certain
forms of publication bias. In particular, if studies with small and/or non-significant findings
remain unpublished (and therefore are less likely to be included in a meta-analysis), then
this may result in an asymmetric funnel plot (Light and Pillemer 1984; Sterne and Egger
2001; Rothstein et al. 2005). One may be able to detect such asymmetry by testing whether
the observed outcomes (or residuals from a model with moderators) are related to their
corresponding sampling variances, standard errors, or more simply, sample sizes.

Various tests for funnel plot asymmetry of this form have been suggested in the literature,
including the rank correlation test by Begg and Mazumdar (1994) and the regression test by
Egger et al. (1997). Extensions, modifications, and further developments of the regression test
are described (among others) by Macaskill et al. (2001), Sterne and Egger (2005), Harbord
et al. (2006), Peters et al. (2006), Rücker et al. (2008), and Moreno et al. (2009). The various
versions of the regression test differ in terms of the model (either a weighted regression with
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a multiplicative dispersion term or one of the meta-analytic models is used), in terms of the
independent variable that the observed outcomes are hypothesized to be related to when
publication bias is present (suggested predictors include the standard error, the sampling
variance, the sample size, and the inverse of the sample size), and in terms of the suggested
outcome measure to use for the test (e.g., for 2 × 2 table data, one has the choice between
various outcome measures, as described earlier).

The ranktest() and regtest() functions can be used to carry out the rank correlation and
the regression tests. For the regression test, the arguments of the function are

regtest(x, model = "rma", predictor = "sei", ni = NULL, ...)

where x is a fitted model object. One can choose the model used for the test via the model

argument, with model = "lm" for weighted regression with a multiplicative dispersion term
or model = "rma" for the standard meta-analytic model (the default). In the latter case,
arguments such as method, weighted, and knha used during the initial model fitting are also
used for the regression test. Therefore, if one wants to conduct the regression test with a
mixed-effects model, one should first fit a model with, for example, method = "REML" and
then use the regtest() function on the fitted model object.

The predictor is chosen via the predictor argument, with predictor = "sei" for the stan-
dard error (the default), predictor = "vi" for the sampling variance, predictor = "ni"

for the sample size, and predictor = "ninv" for the inverse of the sample size. The fitted
model object will automatically contain information about the sample sizes when measure

was not equal to "GEN" during the initial model fitting. The sample sizes can also be supplied
via the ni argument when measure = "GEN" during the initial model fitting.

For example, to carry out the regression test with a weighted regression model using the
standard error as the predictor, we would use the following code.

R> res <- rma(yi, vi, data = dat)

R> regtest(res, model = "lm")

Regression Test for Funnel Plot Asymmetry

model: weighted regression with multiplicative dispersion

predictor: standard error

t = -1.4013, df = 11, p = 0.1887

We may also want to control for the influence of potential moderators and use a meta-analytic
mixed-effects model together with the sample size of the studies as a potential predictor. The
regression test could then be carried out as follows.

R> res <- rma(ai = tpos, bi = tneg, ci = cpos, di = cneg, data = dat,

+ measure = "RR", mods = cbind(ablat, year))

R> regtest(res, predictor = "ni")

Regression Test for Funnel Plot Asymmetry
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model: mixed-effects meta-regression model

predictor: total sample size

z = 0.7470, p = 0.4550

Neither test suggests asymmetry in the respective funnel plots, although the results must be
treated with some caution. The references given earlier provide more details regarding these
tests.

Trim and fill method

The trim and fill method is a nonparametric (rank-based) data augmentation technique pro-
posed by Duval and Tweedie (2000a; 2000b; see also Duval 2005). The method can be used
to estimate the number of studies missing from a meta-analysis due to the suppression of the
most extreme results on one side of the funnel plot. The method then augments the observed
data so that the funnel plot is more symmetric. The trim and fill method can only be used in
the context of the fixed- or random-effects model (i.e., in models without moderators). The
method should not be regarded as a way of yielding a more “valid” estimate of the overall
effect or outcome, but as a way of examining the sensitivity of the results to one particular
selection mechanism (i.e., one particular form of publication bias).

After fitting either a fixed- or a random-effects model, one can use the trimfill() function
to carry out the trim and fill method on the fitted model object. The syntax of the function
is given by

trimfill(x, estimator = "L0", side = NULL, maxit = 50, verbose = FALSE, ...)

where x again denotes the fitted model object, estimator is used to choose between the "L0"
or "R0" estimator for the number of missing studies (see references), side is an argument
to indicate on which side of the funnel plot the missing studies should be imputed (if side
= NULL, the side is chosen within the function depending on the results of the regression
test), maxit denotes the maximum number of iterations to use for the trim and fill method,
and verbose can be set to TRUE to obtain information about the evolution of the algorithm
underlying the trim and fill method.

To illustrate the use of the function, we can fit a fixed-effects model to the BCG vaccine data
and then use the trim and fill method to obtain the estimated number of missing studies. The
model object is automatically augmented with the missing data and can then be printed.

R> res <- rma(yi, vi, data = dat, method = "FE")

R> rtf <- trimfill(res)

R> rtf

Estimated number of missing studies on the right side: 4

Fixed-Effects Model (k = 17)

Test for Heterogeneity:

Q(df = 16) = 262.7316, p-val < .0001
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Figure 8: Funnel plot with filled-in data based on the trim and fill method.

Model Results:

estimate se zval pval ci.lb ci.ub

-0.2910 0.0383 -7.6057 <.0001 -0.3660 -0.2160 ***

Even though the estimated effect of the vaccine is smaller with the missing studies filled in,
the results still indicate that the effect is statistically significant. A funnel plot with the
filled-in studies can now be obtained with

R> funnel(rtf)

Figure 8 shows the resulting funnel plot with the filled-in data.

As a final note to the issue of funnel plot asymmetry and publication bias, it is worth mention-
ing the copas package (Carpenter and Schwarzer 2009), which can be used together with the
meta package (Schwarzer 2010) and provides additional methods for modeling and adjusting
for bias in a meta-analysis via selection models (Copas 1999; Copas and Shi 2000, 2001).

Cumulative meta-analysis

In a cumulative meta-analysis, an estimate of the average effect is obtained sequentially as
studies are added to the analysis in (typically) chronological order (Chalmers and Lau 1993;
Lau et al. 1995). Such analyses are usually conducted retrospectively (i.e., after all of the
studies have already been conducted), but may be planned prospectively (Whitehead 1997).
The method exemplifies how evidence regarding a particular effect evolves over time.
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Figure 9: Forest plot, showing the results from a cumulative meta-analysis of 13 studies
examining the effectiveness of the BCG vaccine for preventing tuberculosis.

Cumulative meta-analyses can also be carried out with themetafor package using the cumul()
function. The function takes as its first argument a fitted model object (either a fixed- or a
random-effects model) and then refits the same model k times adding one study at a time.
The order argument of the function can be set equal to a vector with indices giving the
desired order for the cumulative meta-analysis. The results can either be printed or passed
on to the forest() function, which then creates a cumulative forest plot. For example,

R> res <- rma(yi, vi, data = dat, slab = paste(author, year, sep=", "))

R> rcu <- cumul(res, order = order(dat$year))

R> forest(rcu, xlim = c(-6, 3), atransf = exp,

+ at = log(c(0.10, 0.25, 0.5, 1, 2)))

R> text(-6, 15, "Author(s) and Year", pos = 4, font = 2)

R> text(3, 15, "Relative Risk [95% CI]", pos = 2, font = 2)

results in the forest plot shown in Figure 9. Note that the study labels must already be
specified via the rma() function (via argument slab), so that they can be properly ordered
by the cumul() function. Although the effectiveness of the vaccine appears to be decreasing
over time, this finding is related to the fact that the more recent studies were conducted closer
to the equator.

Model fit statistics

Model fit statistics can be obtained via the fitstats() function. In particular, the (re-
stricted) log likelihood, deviance (−2 times the log likelihood), AIC, and BIC are provided.
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The unrestricted log likelihood is computed (and used for calculating the deviance, AIC, and
BIC), unless REML estimation is used to estimate τ2 (in which case the restricted log likeli-
hood is used). Note that τ2 is counted as an additional parameter in the calculation of the
AIC and BIC in random/mixed-effects models.

Likelihood ratio tests

As an alternative to Wald tests, one can conduct full versus reduced model comparisons via
likelihood ratio tests with the anova() function. The function provides information about
the fit statistics of two models and the corresponding results from a likelihood ratio test.
Obviously, the two models must be based on the same set of data and should be nested
for the likelihood ratio test to make sense. Also, likelihood ratio tests are not meaningful
when using REML estimation and the two models differ with respect to their fixed effects.
Therefore, to test moderator variables via likelihood ratio tests, one must switch to maximum
likelihood (ML) estimation.

To illustrate the use of the anova() function, suppose that we would like to conduct a likeli-
hood ratio test of the absolute latitude moderator.

R> res1 <- rma(yi, vi, mods = cbind(ablat), data = dat, method = "ML")

R> res2 <- rma(yi, vi, data = dat, method = "ML")

R> anova(res1, res2)

df AIC BIC logLik LRT pval QE tau^2 VAF

Full 3 21.3713 23.0662 -7.6857 30.7331 0.0344

Reduced 2 29.3302 30.4601 -12.6651 9.9588 0.0016 152.2330 0.2800 87.73%

The null hypothesis H0 : β1 = 0 is rejected (LRT = 9.96, df = 1, p < 0.002), again suggesting
that absolute latitude does have an influence on the average effectiveness of the vaccine.
The function also provides the estimates of τ2 from both models and indicates how much
of the (residual) heterogeneity in the reduced model is accounted for in the full model (i.e.,
100%× (τ̂2R − τ̂2F )/τ̂

2

R, where τ̂2F and τ̂2R are the estimated values of τ2 in the full and reduced
model, respectively). In this example, approximately 88% of the total heterogeneity in the
true effects is accounted for by the absolute latitude moderator.

In principle, one can also consider likelihood ratio tests for (residual) heterogeneity (i.e., for
testing H0 : τ

2 = 0) in random- and mixed-effects models. The full model should then be
fitted with either method = "ML" or method = "REML" and the reduced model with method

= "FE" (while keeping the fixed effects the same in both models). The p value from the test
would then be based on a χ2 distribution with 1 degree of freedom, but actually needs to be
adjusted for the fact that the parameter (i.e., τ2) falls on the boundary of the parameter space
under the null hypothesis. However, the Q-test usually keeps better control of the Type I
error rate anyway and therefore should be preferred (see Viechtbauer 2007b for more details).

Permutation tests

Follmann and Proschan (1999) and Higgins and Thompson (2004) have suggested permutation
tests of the model coefficients in the context of meta-analysis as an alternative approach to the
standard (Wald and likelihood ratio) tests which assume normality of the observed effects (as
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well as the true effects in random/mixed-effects models) and rely on the asymptotic behavior
of the test statistics.

For models without moderators, the permutation test is carried out by permuting the signs
of the observed effect sizes or outcomes. The (two-sided) p value of the permutation test is
then equal to twice the proportion of times that the test statistic under the permuted data is
as extreme or more extreme than under the actually observed data.

For models with moderators, the permutation test is carried out by permuting the rows of
the design matrix. The (two-sided) p value for a particular model coefficient is then equal
to twice the proportion of times that the test statistic for the coefficient under the permuted
data is as extreme or more extreme than under the actually observed data. Similarly, for the
omnibus test, the p value is the proportion of times that the test statistic for the omnibus
test is more extreme than the actually observed one.

Permutation tests can be carried out with the permutest() function. The function takes
as its first argument a fitted model object. If exact = TRUE, the function will try to carry
out an exact permutation test. An exact permutation test requires fitting the model to each
possible permutation once. However, the number of possible permutations increases rapidly
with the number of outcomes/studies (i.e., k), especially with respect to the possible number
of permutations of the design matrix. For example, for k = 5, there are only 120 possible
permutations of the design matrix (32 possible permutations of the signs). For k = 8, there
are already 40,320 (256). And for k = 10, there are 3,628,800 (1024). Therefore, going
through all possible permutations may become infeasible.

Instead of using an exact permutation test, one can set exact = FALSE (which is also the
default). In that case, the function approximates the exact permutation-based p value(s) by
going through a smaller number (as specified by the iter argument) of random permutations
(iter = 1000 by default). Therefore, running the function twice on the same data will then
yield (slightly) different p values. Setting iter sufficiently large ensures that the results
become stable. For example,

R> res <- rma(yi, vi, data = dat)

R> permutest(res, exact = TRUE)

Running 8192 iterations for exact permutation test.

Model Results:

estimate se zval pval* ci.lb ci.ub

intrcpt -0.7145 0.1798 -3.9744 0.0015 -1.0669 -0.3622 **

---

Signif. codes: 0 ✬**✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

indicates that the null hypothesis H0 : µ = 0 can be rejected with p = 0.0015 after carrying
out an exact permutation test for the random-effects model. Similarly, for a mixed-effects
model,

R> res <- rma(yi, vi, mods = cbind(ablat, year), data = dat)
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R> permres <- permutest(res, iter = 10000, retpermdist = TRUE)

R> permres

Running 10000 iterations for approximate permutation test.

Test of Moderators (coefficient(s) 2,3):

QM(df = 2) = 12.2043, p-val* = 0.0232

Model Results:

estimate se zval pval* ci.lb ci.ub

intrcpt -3.5455 29.0959 -0.1219 0.9150 -60.5724 53.4814

ablat -0.0280 0.0102 -2.7371 0.0224 -0.0481 -0.0080 *

year 0.0019 0.0147 0.1299 0.8950 -0.0269 0.0307

---

Signif. codes: 0 ✬**✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

shows the results for an approximate permutation test with 10000 iterations (an exact test is
not feasible here, as it would require more than 6× 109 model fits). Although the conclusions
are unchanged for the random- and the mixed-effects models, we see that the permutation-
based p values are larger (i.e., more conservative) when compared to the corresponding results
presented earlier.

By setting retpermdist = TRUE, the permutation distributions of the test statistics for the
individual coefficients and the omnibus test are returned together with the object. These
elements are named zval.perm and QM.perm and can be used to examine the permutation
distributions. For example, Figure 10 shows a histogram of the permutation distribution of
the test statistic for absolute latitude, together with the standard normal density (in red) and
a kernel density estimate of the permutation distribution (in blue). The figure shows that
the tail area under the permutation distribution is larger than under the standard normal
density (hence, the larger p value in this case). Figure 10 was created with the following code
(leaving out the code for the annotations):

R> hist(permres$zval.perm[,2], breaks = 140, freq = FALSE, xlim = c(-5, 5),

+ ylim = c(0, 0.4), main = "", xlab = "Value of Test Statistic")

R> abline(v = res$zval[2], lwd = 2, lty = "dashed")

R> abline(v = 0, lwd = 2)

R> curve(dnorm, from = -5, to = 5, add = TRUE, lwd = 2,

+ col = rgb(1, 0, 0, alpha = 0.7))

R> lines(density(permres$zval.perm[,2]), lwd = 2,

+ col = rgb(0, 0, 1, alpha = 0.7))

Like the Knapp and Hartung adjustment, permutation tests lead to test statistics with bet-
ter control of the Type I error rate. To examine this, a simulation was conducted like in
Section 3.4, randomly generating values for an unrelated moderator and then testing its sig-
nificance via a permutation test. This was repeated 10000 times with 5000 iterations for the
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Figure 10: Permutation distribution of the test statistic for absolute latitude.

permutation test (for a total of 5 × 107 model fits). The empirical Type I error rate of the
test was equal to 0.05, indicating nominal performance of the test for the BCG vaccine data.

Best linear unbiased predictions

For random/mixed-effects models, the blup() function calculates the best linear unbiased
predictions (BLUPs) of the true outcomes by combining the fitted values (which are based only
on the fixed effects of the model) and the estimated contributions of the random effects (e.g.
Morris 1983; Raudenbush and Bryk 1985; Robinson 1991). Corresponding standard errors
and prediction interval bounds are also provided.5 There are various ways of interpreting
these values. Essentially, the BLUPs are the predicted θi values in the random- and mixed-
effects models (Equations 2 and 3) for the k studies included in the meta-analysis. From a
Bayesian perspective, the BLUPs can also be regarded as the means (and due to normality
also the modes) of the posterior distributions of the θi values under vague priors on the model
coefficients.

What is most notable about the BLUPs is their “shrinkage” behavior, which is most easily
illustrated in the context of a random-effects model. Suppose that τ2 = 0 and we want to
obtain estimates of the study-specific θi values. Then the best estimates would all be equal
to µ̂ ≡ θ̂, since homogeneity implies that there is only one true effect. On the other hand,
when τ2 is very large, then µ̂ contains very little information about the location of the study-
specific true effects. Instead, we should then place more emphasis on the observed estimates,
especially for studies with small sampling variances (where the observed estimates will tend
to be close to the corresponding θi values). In general, the BLUPs will fall somewhere in
between yi and µ̂, depending on the size of τ2 and the amount of sampling variability. In that

5To be precise, it should be noted that the function actually calculates empirical BLUPs (eBLUPs), since
the predicted values are a function of τ2, which must be estimated based on the data. Following Kackar and
Harville (1981), we know however that the eBLUPs are unbiased and approach the real BLUPs asymptotically.
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Figure 11: Plot showing the observed log relative risks and the corresponding best linear un-
biased predictions (BLUPs) for the 13 studies examining the effectiveness of the BCG vaccine
for preventing tuberculosis (with the observed values drawn proportional to the precision of
the estimates).

sense, the observed data are “shrunken” towards µ̂.

To demonstrate this point, we can obtain the BLUPs based on a random-effects model with

R> res <- rma(yi, vi, data = dat)

R> blup(res)

pred se pi.lb pi.ub

1 -0.8002 0.4099 -1.6037 0.0032

2 -1.2517 0.3532 -1.9440 -0.5594

3 -0.9869 0.4348 -1.8392 -0.1346

4 -1.3979 0.1376 -1.6675 -1.1283

5 -0.2874 0.2113 -0.7015 0.1268

. . . . .

13 -0.1467 0.2434 -0.6239 0.3304

A plot of the observed log relative risks and the corresponding BLUPs is shown in Figure 11,
clearly demonstrating the shrinkage behavior of the BLUPs, especially for the smaller studies
(i.e., studies with larger sampling variances).

3.6. Technical details

This section concludes with some technical details about the algorithms and methods used in
the metafor package, in particular with respect to the rma() function. Some issues related to
the assumptions of the model underlying the rma() function are also touched on.

While the HS, HE, DL, and SJ estimators of τ2 are based on closed-form solutions, the
ML, REML, and EB estimators must be obtained numerically. For this, the rma() function
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makes use of the Fisher scoring algorithm, which is robust to poor starting values and usually
converges quickly (Harville 1977; Jennrich and Sampson 1976). By default, the starting value
is set equal to the value of the Hedges estimator and the algorithm terminates when the
change in the estimated value of τ2 is smaller than 10−5 from one iteration to the next. The
maximum number of iterations is 100 by default (which should be sufficient in most case).
A different starting value, threshold, and maximum number of iterations can be specified via
the control argument by setting

control = list(tau2.init = value, threshold = value, maxiter = value)

when calling the rma() function. The step length of the Fisher scoring algorithm can also
be manually adjusted by a desired factor with control = list(stepadj = value) (values
below 1 will reduce the step length). Information on the evolution of the algorithm can be
obtained with control = list(verbose = TRUE).

All of the heterogeneity estimators except SJ can in principle yield negative estimates for
the amount of (residual) heterogeneity. However, negative estimates of τ2 are outside of
the parameter space. For the HS, HE, and DL estimators, negative estimates are therefore
truncated to zero. For ML, REML, and EB estimation, the Fisher scoring algorithm makes
use of step halving to guarantee a non-negative estimate. For those brave enough to step into
risky territory, there is the option to set the lower bound of τ2 equal to some other value
besides zero with control = list(tau2.min = value).6

The Hunter-Schmidt estimator for the amount of heterogeneity is defined in Hunter and
Schmidt (2004) only in the context of the random-effects model when analyzing correlation
coefficients. A general version of this estimator for the random-effects model not specific to
any particular outcome measure is described in Viechtbauer (2005). The same idea can be
easily extended to the mixed-effects model and is implemented in the rma() function.

Outcomes with non-positive sampling variances are problematic. If a sampling variance is
equal to zero, then its weight will be 1/0 for fixed-effects models when using weighted esti-
mation. Switching to unweighted estimation is a possible solution then. For random/mixed-
effects model, some estimators of τ2 are undefined when there is at least one sampling vari-
ance equal to zero. Other estimators may work, but it may still be necessary to switch to
unweighted model fitting, especially when the estimate of τ2 turns out to be zero.

A “singular matrix” error when using the function indicates that there is a linear relationship
between the moderator variables included in the model. For example, two moderators that
correlated perfectly would cause this error. Deleting (redundant) moderator variables from
the model as needed should solve this problem.

Finally, some words of caution about the assumptions underlying the models are warranted:

❼ The sampling variances (i.e., the vi values) are treated as if they were known con-
stants. Since this is usually only asymptotically true, this implies that the distributions
of the test statistics and corresponding confidence intervals are only exact and have
nominal coverage when the within-study sample sizes are large (i.e., when the error in

6Technically, the random/mixed-effects models only require vi + τ
2 to be larger than zero to avoid

marginal variances that are negative. Therefore, one could consider setting tau2.min just slightly larger than
-min(dat$vi). However, since τ

2 is usually of inherent interest for interpretational purposes, we generally
prefer to avoid the possibility of a negative variance estimate.
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the sampling variance estimates is small). Certain outcome measures (e.g., the arcsine
transformed risk difference and Fisher’s r-to-z transformed correlation coefficient) are
based on variance stabilizing transformations that also help to make the assumption of
known sampling variances more reasonable.

❼ When fitting a mixed/random-effects model, τ2 is estimated and then treated as a
known constant thereafter. This ignores the uncertainty in the estimate of τ2. As
a consequence, the standard errors of the parameter estimates tend to be too small,
yielding test statistics that are too large and confidence intervals that are not wide
enough. The Knapp and Hartung adjustment can be used to counter this problem,
yielding test statistics and confidence intervals whose properties are closer to nominal.

❼ Most effect size measures are not exactly normally distributed as assumed under the
various models. However, the normal approximation usually becomes more accurate
for most effect size or outcome measures as the within-study sample sizes increase.
Therefore, sufficiently large within-study sample sizes are (usually) also needed to be
certain that the tests and confidence intervals have nominal levels/coverage. Again,
certain outcome measures (e.g., Fisher’s r-to-z transformed correlation coefficient) may
be preferable from this perspective as well.

These concerns apply in particular to the standard (i.e., Wald and likelihood ratio) tests (and
the corresponding confidence intervals). Permutation tests may provide better control of the
Type I error rate when some of these assumptions are violated, but more research is needed
to determine the properties of such tests for different outcome measures.

4. Validation of the package

The functions in the metafor package have been validated to the extent possible (i.e., when
corresponding analyses could be carried out) by comparing the results provided by themetafor

package with those provided by other software packages for several data sets (including the
BCG vaccine data set described in the present article).

In particular, results were compared with those provided by the metan, metareg, metabias,
and metatrim commands in Stata (StataCorp. 2007; see Sterne 2009 for more details on these
commands). Results were also compared with those provided by SAS (SAS Institute Inc. 2003)
using the proc mixed command (van Houwelingen et al. 2002), by SPSS (SPSS Inc. 2006)
using the macros described in Lipsey and Wilson (2001), and by the meta (Schwarzer 2010)
and rmeta (Lumley 2009) packages in R (R Development Core Team 2010). Results either
agreed completely or fell within a margin of error expected when using numerical methods.

5. Comparison between packages

Several packages for conducting meta-analyses are currently available for R via CRAN. These
include the metafor (Viechtbauer 2010), meta (Schwarzer 2010), and rmeta (Lumley 2009)
packages, all of which could be considered “general purpose” meta-analysis packages (i.e.,
they can be used for arbitrary effect size or outcome measures).7 This section provides a brief

7Other packages include catmap, metaMA, metacor, MADAM, MAMA, MAc, MAd, and psychometric.
These packages are restricted to special types of meta-analytic applications or particular outcome measures.
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metafor meta rmeta

Model fitting :

Fixed-effects models yes yes yes
Random-effects models yes yes yes
Heterogeneity estimators various DL DL
Mantel-Haenszel method yes yes yes
Peto’s method yes yes no

Plotting :

Forest plots yes yes yes
Funnel plots yes yes yes
Radial plots yes yes no
L’Abbé plots no yes no
Q-Q normal plots yes no no

Moderator analyses:

Categorical moderators multiple single1 no
Continuous moderators multiple no no
Mixed-effects models yes no no

Testing/Confidence Intervals:

Knapp & Hartung adjustment yes no no
Likelihood ratio tests yes no no
Permutation tests yes no no

Other :

Leave-one-out analysis yes yes no
Influence diagnostics yes no no
Cumulative meta-analysis yes yes yes
Tests for funnel plot asymmetry yes yes no
Trim and fill method yes yes no
Selection models no yes2 no

Table 2: Comparison of the capabilities of the metafor, meta, and rmeta packages for con-
ducting meta-analyses in R. Notes: (1) Only fixed-effects with moderators model. (2) When
used together with the copas (Carpenter and Schwarzer 2009) package.

comparison between these packages in terms of their current capabilities.

All three packages allow the user to fit fixed- and random-effects models (without moderators).
The user can either specify the observed outcomes and the corresponding sampling variances
(or standard errors) directly (via the metagen() function in meta and the meta.summaries()
function in rmeta) or can provide the necessary information (e.g., 2×2 table data) so that the
outcomes (e.g., log relative risks) and sampling variances are automatically computed inside of
the functions (metabin(), metacont(), and metaprop() inmeta; meta.DSL() and meta.MH()
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in rmeta). For random-effects models, the meta and rmeta packages allow estimation of
τ2 only via the DerSimonian-Laird estimator, while the metafor package provides several
estimator choices (see Section 3.3).

Forest and funnel plots can be created with all three packages. Radial plots are implemented
in the metafor and meta packages. The meta package also provides L’Abbé plots (L’Abbé
et al. 1987) (which will be added to the metafor package in the future). Q-Q normal plots
can be obtained with the metafor package.

Themeta package allows the user to specify a categorical moderator (via the byvar argument),
which is then used for a moderator analysis based on a fixed-effects model. Mixed-effects
models (involving a single or multiple categorical and/or continuous moderators) can only
be fitted with the metafor package. Advanced methods for testing model coefficients and
obtaining confidence intervals (i.e., the Knapp and Hartung adjustment and permutation
tests) are also implemented only in this package.

A more detailed comparison of the capabilities of the packages can be found in Table 2.

6. Conclusions

The present article is meant to provide a general overview of the capabilities of the metafor

package for conducting meta-analyses with R. The discussion was focused primarily on the
rma() function, which allows for fitting fixed- and random/mixed-effects models with or
without moderators via the usual mechanics of the general linear (mixed-effects) model.

Alternative methods for fitting the fixed-effects model for 2 × 2 table data are the Mantel-
Haenszel and Peto’s one-step method (Mantel and Haenszel 1959; Yusuf et al. 1985). The
Mantel-Haenszel method is implemented in the rma.mh() function. It can be used to obtain an
estimate of the overall odds ratio, relative risk, or risk difference. The method is particularly
advantageous when aggregating a large number of tables with small sample sizes (the so-called
sparse data or increasing strata case). When analyzing odds ratios, the Cochran-Mantel-
Haenszel test (Mantel and Haenszel 1959; Cochran 1985) and Tarone’s test for heterogeneity
(Tarone 1985) are also provided.

Yet another method that can be used in the context of a meta-analysis of 2 × 2 tables is
Peto’s method (Yusuf et al. 1985), implemented in the rma.peto() function. The method
provides a fixed-effects model estimate of the overall odds ratio. In sparse data situations and
under certain conditions, the method has been shown to produce the least biased results with
the most accurate confidence interval coverages (Bradburn et al. 2007), but can also be quite
biased in other situations (Greenland and Salvan 1990).

It is important to note that all of these model fitting functions assume that the observed
outcomes (or tables) are independent. At the very least, this implies that a particular par-
ticipant should only contribute data once when calculating the observed outcomes. More
complex models are necessary to deal with correlated outcomes and multivariate analyses.
Functions to handle such situations are currently under development and will be included in
the package at a later point.

Although the present article discusses only some of the functions and options of the metafor

package, it should provide a starting point for those interested in exploring the capabilities of
the package in more detail.
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L’Abbé KA, Detsky AS, O’Rourke K (1987). “Meta-Analysis in Clinical Research.” Annals
of Internal Medicine, 107(2), 224–233.

Laird NL, Mosteller F (1990). “Some Statistical Methods for Combining Experimental Re-
sults.” International Journal of Technology Assessment in Health Care, 6(1), 5–30.

Lau J, Schmid CH, Chalmers TC (1995). “Cumulative Meta-Analysis of Clinical Trials Builds
Evidence for Exemplary Medical Care.” Journal of Clinical Epidemiology, 48(1), 45–57.

Lewis S, Clarke M (2001). “Forest Plots: Trying to See the Wood and the Trees.” British
Medical Journal, 322(7300), 1479–1480.

Light RJ, Pillemer DB (1984). Summing Up: The Science of Reviewing Research. Harvard
University Press, Cambridge, MA.

http://www.jstatsoft.org/v30/i07/


46 metafor: Conducting Meta-Analyses in R

Lipsey MW, Wilson DB (eds.) (2001). Practical Meta-Analysis. Sage, Thousand Oaks, CA.

Lumley T (2009). “rmeta: Meta-Analysis.” R package version 2.16, URL http://CRAN.

R-project.org/package=rmeta.

Macaskill P, Walter SD, Irwig L (2001). “A Comparison of Methods to Detect Publication
Bias in Meta-Analysis.” Statistics in Medicine, 20(4), 641–654.

Mantel N, Haenszel W (1959). “Statistical Aspects of the Analysis of Data from Retrospective
Studies of Disease.” Journal of the National Cancer Institute, 22(4), 719–748.

Moreno SG, Sutton AJ, Ades AE, Stanley TD, Abrams KR, Peters JL, Cooper NJ (2009).
“Assessment of Regression-Based Methods to Adjust for Publication Bias Through a
Comprehensive Simulation Study.” BMC Medical Research Methodology, 9(2). URL
http://www.biomedcentral.com/1471-2288/9/2.

Morris CN (1983). “Parametric Empirical Bayes Inference: Theory and Applications.” Journal
of the American Statistical Association, 78(381), 47–55.

Olkin I (1995). “Meta-Analysis: Reconciling the Results of Independent Studies.” Statistics
in Medicine, 14(5-7), 457–472.

Olkin I, Pratt JW (1958). “Unbiased Estimation of Certain Correlation Coefficients.” Annals
of Mathematical Statistics, 29(1), 201–211.

Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L (2006). “Comparison of Two
Methods to Detect Publication Bias in Meta-Analysis.” Journal of the American Medical
Association, 295(6), 676–680.

Petrin Z, Englund G, Malmqvist B (2008). “Contrasting Effects of Anthropogenic and Natural
Acidity in Streams: A Meta-Analysis.” Proceedings of the Royal Society B: Biological
Sciences, 275(1639), 1143–1148.

Raudenbush SW (2009). “Analyzing Effect Sizes: Random Effects Models.” In H Cooper,
LV Hedges, JC Valentine (eds.), The Handbook of Research Synthesis and Meta-Analysis,
2nd edition, pp. 295–315. Russell Sage Foundation, New York.

Raudenbush SW, Bryk AS (1985). “Empirical Bayes Meta-Analysis.” Journal of Educational
Statistics, 10(2), 75–98.

R Development Core Team (2010). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. URL
http://www.R-project.org/.

Roberts BW, Walton KE, Viechtbauer W (2006). “Patterns of Mean-Level Change in Person-
ality Traits Across the Life Course: A Meta-Analysis of Longitudinal Studies.”Psychological
Bulletin, 132(1), 1–25.

Robinson GK (1991). “That BLUP is a Good Thing: The Estimation of Random Effects.”
Statistical Science, 6(1), 15–32.

http://CRAN.R-project.org/package=rmeta
http://CRAN.R-project.org/package=rmeta
http://www.biomedcentral.com/1471-2288/9/2
http://www.R-project.org/


Journal of Statistical Software 47

Rosenberg MS, Adams DC, Gurevitch J (2000). MetaWin: Statistical Software for Meta-
Analysis Version 2. Sinauer Associates, Sunderland, MA. URL http://www.metawinsoft.

com/.

Rothstein HR, Sutton AJ, Borenstein M (eds.) (2005). Publication Bias in Meta-Analysis:
Prevention, Assessment, and Adjustments. John Wiley & Sons, Chichester, England.
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