Package ‘mcstatsim’

July 29, 2024
Type Package

Title Monte Carlo Statistical Simulation Tools Using a Functional
Approach

Version 0.5.0

Description A lightweight package designed to facilitate statistical
simulations through functional programming. It centralizes the simulation process into a single
higher-
order function, enhancing manageability and usability without adding overhead from external
dependencies. The package includes ready-to-
use functions for common simulation targets. A detailed example can be found on <https:
//github.com/ielbadisy/mcstatsim>.

License AGPL (>=3)
Encoding UTF-8
RoxygenNote 7.3.1
Imports pbapply

Suggests testthat (>= 3.0.0)

URL https://github.com/ielbadisy/mcstatsim
Config/testthat/edition 3

NeedsCompilation no

Author Imad EL BADISY [aut, cre, cph]

Maintainer Imad EL BADISY <elbadisyimad@gmail.com>
Repository CRAN

Date/Publication 2024-07-29 12:30:02 UTC

Contents

calc_bias
calc_Coverage e e e e
calc_MSE e
calc_rejection_rate e e e

https://github.com/ielbadisy/mcstatsim
https://github.com/ielbadisy/mcstatsim
https://github.com/ielbadisy/mcstatsim

2 calc_bias
calc_relative_bias e 5
calc_relative_mse e e 6
calc_relative_Irmse e 7
calc_ rmse L e 8
calc_variance e e e 8
calc_width e 9
combine_df e 10
MCPIMAD .+« + v v e v e v e 11
TUNSIIN & . v v v v v o e e e e e e e e e e e e 12

Index 14

calc_bias Calculate Bias and Bias Monte Carlo Standard Error

Description

This function computes the bias and the Monte Carlo Standard Error (MCSE) of the bias for a set
of estimates relative to a true parameter value. The bias is the difference between the mean of the
estimates and the true parameter. The MCSE of the bias is calculated as the square root of the
variance of the estimates divided by the number of estimates, providing a measure of the precision
of the bias estimate.

Usage

calc_bias(estimates, true_param)

Arguments
estimates A numeric vector of estimates from the simulation or sampling process.
true_param The true parameter value that the estimates are intended to approximate.
Value

A list with two components: ‘bias‘, the calculated bias of the estimates, and ‘bias_mcse*, the Monte
Carlo Standard Error of the bias, indicating the uncertainty associated with the bias estimate.

Examples

estimates <- rnorm(100, mean = 50, sd = 10)
true_param <- 50

bias_info <- calc_bias(estimates, true_param)
print(bias_info)

calc_coverage 3

calc_coverage Calculate Coverage Probability and its Monte Carlo Standard Error

Description

Computes the coverage probability of a confidence interval, defined as the proportion of times the
true parameter value falls within the calculated lower and upper bounds across a set of simulations.
Additionally, calculates the Monte Carlo Standard Error (MCSE) of the coverage probability to
assess the uncertainty associated with this coverage estimate. This function is useful for evaluating
the accuracy and reliability of confidence intervals generated by statistical models or estimation
procedures.

Usage

calc_coverage(lower_bound, upper_bound, true_param)

Arguments
lower_bound A numeric vector of lower bounds of confidence intervals.
upper_bound A numeric vector of upper bounds of confidence intervals, corresponding to
‘lower_bound°.
true_param The true parameter value that the confidence intervals are intended to estimate.
Value

A list with two components: ‘coverage®, the calculated coverage probability of the confidence inter-
vals, and ‘coverage_mcse‘, the Monte Carlo Standard Error of the coverage. This MCSE provides
a measure of the precision of the coverage probability estimate.

Examples

set.seed(123) # For reproducibility

estimates <- rnorm(100, mean = 50, sd = 10)

ci_lower <- estimates - 1.96 * 10

ci_upper <- estimates + 1.96 * 10

true_param <- 50

coverage_info <- calc_coverage(ci_lower, ci_upper, true_param)
print(coverage_info)

4 calc_rejection_rate

calc_mse Calculate Mean Squared Error and its Monte Carlo Standard Error

Description

Computes the Mean Squared Error (MSE) of a set of estimates relative to a true parameter value,
along with the Monte Carlo Standard Error (MCSE) for the MSE. The MCSE takes into account the
variance, skewness, and kurtosis of the estimates to provide a more accurate measure of uncertainty.
This function is useful for assessing the accuracy of simulation or estimation methods by comparing
the squared deviations of estimated values from a known parameter.

Usage

calc_mse(estimates, true_param)

Arguments
estimates A numeric vector of estimates from a simulation or sampling process.
true_param The true parameter value that the estimates are intended to approximate.
Value

A list with two components: ‘mse‘, the calculated Mean Squared Error of the estimates, and
‘mse_mcse‘, the Monte Carlo Standard Error of the MSE, offering insight into the reliability of
the MSE calculation.

Examples

estimates <- rnorm(100, mean = 50, sd = 10)
true_param <- 50
mse_info <- calc_mse(estimates, true_param)
print(mse_info)

calc_rejection_rate Calculate Rejection Rate and its Monte Carlo Standard Error

Description

Computes the rejection rate of hypotheses tests based on a vector of p-values and a specified sig-
nificance level (alpha). The rejection rate is the proportion of p-values that are lower than alpha,
indicating significant results. Additionally, the function calculates the Monte Carlo Standard Er-
ror (MCSE) for the rejection rate, which quantifies the uncertainty associated with the estimated
rejection rate. This function is useful for assessing the overall type I error rate or the power of a
statistical test across multiple simulations or experimental replications.

calc_relative_bias 5

Usage

calc_rejection_rate(p_values, alpha = 0.05)

Arguments
p_values A numeric vector of p-values from multiple hypothesis tests.
alpha The significance level used to determine if a p-value indicates a significant result.
Default is 0.05.
Value

A list with two components: ‘rejection_rate‘, the proportion of tests that resulted in rejection of the
null hypothesis, and ‘rejection_rate_mcse*, the Monte Carlo Standard Error of the rejection rate,
providing an estimate of its variability.

Examples

set.seed(123) # For reproducibility

p_values <- runif(100, min = @, max = 1) # Simulated p-values
rejection_info <- calc_rejection_rate(p_values)
print(rejection_info)

calc_relative_bias Calculate Relative Bias and its Monte Carlo Standard Error

Description

Computes the relative bias of a set of estimates with respect to a true parameter value, along with
the Monte Carlo Standard Error (MCSE) of the relative bias. Relative bias is the ratio of the mean of
the estimates to the true parameter, providing a scale-independent measure of bias. This function is
particularly useful for evaluating the accuracy of estimates in situations where the magnitude of the
true parameter is crucial to the interpretation of bias. The function gracefully handles cases where
the true parameter is zero by returning ‘NA* for both relative bias and its MCSE, avoiding division
by zero errors.

Usage

calc_relative_bias(estimates, true_param)

Arguments
estimates A numeric vector of estimates from a simulation or sampling process.
true_param The true parameter value that the estimates are intended to approximate. Note

that ‘true_param‘ must not be zero, as relative bias calculation involves division
by the true parameter value.

6 calc_relative_mse

Value

A list with two components: ‘rel_bias‘, the calculated relative bias of the estimates, and ‘rel_bias_mcse®,
the Monte Carlo Standard Error of the relative bias. If ‘true_param* is zero, both ‘rel_bias® and
‘rel_bias_mcse* will be ‘NA°.

Examples

estimates <- rnorm(100, mean = 50, sd = 10)

true_param <- 50 # Non-zero true parameter

relative_bias_info <- calc_relative_bias(estimates, true_param)
print(relative_bias_info)

calc_relative_mse Calculate Relative Mean Squared Error and its Monte Carlo Standard
Error

Description

Computes the Relative Mean Squared Error (Relative MSE) of a set of estimates with respect to
a true parameter value, along with the Monte Carlo Standard Error (MCSE) of the Relative MSE.
The Relative MSE is a normalized measure of error that scales the Mean Squared Error (MSE) by
the square of the true parameter value, making it particularly useful for comparing the accuracy
of estimates across different scales. The function also calculates the MCSE for the Relative MSE,
taking into account the variance, skewness, and kurtosis of the estimates to provide a measure of
uncertainty. The function returns ‘NA‘ for both Relative MSE and its MCSE if the true parameter
is zero, to avoid division by zero.

Usage

calc_relative_mse(estimates, true_param)

Arguments
estimates A numeric vector of estimates from a simulation or sampling process.
true_param The true parameter value that the estimates are intended to approximate. Note
that ‘true_param‘ must not be zero, as the calculation involves division by the
true parameter value.
Value

A list with two components: ‘rel_mse*, the calculated Relative Mean Squared Error of the estimates,
and ‘rel_mse_mcse*, the Monte Carlo Standard Error of the Relative MSE. If ‘true_param° is zero,
both ‘rel_mse* and ‘rel_mse_mcse* will be ‘NA°.

calc_relative_rmse 7

Examples

estimates <- rnorm(100, mean = 50, sd = 10)

true_param <- 50 # Non-zero true parameter

relative_mse_info <- calc_relative_mse(estimates, true_param)
print(relative_mse_info)

calc_relative_rmse Calculate Relative Root Mean Squared Error and its Monte Carlo
Standard Error

Description

Computes the Relative Root Mean Squared Error (Relative RMSE) of a set of estimates with respect
to a true parameter value. The Relative RMSE is derived from the Relative Mean Squared Error
(MSE), providing a scale-independent measure of error that facilitates comparisons across differ-
ent scales of the true parameter. This function is especially useful for evaluating the accuracy of
estimates when the magnitude of the true parameter varies significantly across different scenarios.
The function gracefully handles cases where the true parameter is zero by returning ‘NA* for both
Relative RMSE and its MCSE, to avoid division by zero. The MCSE for the Relative RMSE is not
directly computed in this function and is marked as a placeholder for future implementation.

Usage

calc_relative_rmse(estimates, true_param)

Arguments
estimates A numeric vector of estimates from a simulation or sampling process.
true_param The true parameter value that the estimates are intended to approximate. Note
that ‘true_param‘ must not be zero, as the calculation involves division by the
true parameter value.
Value

A list with two components: ‘rel_rmse‘, the calculated Relative Root Mean Squared Error of the
estimates, and ‘rel_rmse_mcse‘, the Monte Carlo Standard Error of the Relative RMSE. The MCSE
is currently not calculated and returned as ‘NA°. This is a placeholder for future implementation.

Examples

estimates <- rnorm(100, mean = 50, sd = 10)

true_param <- 50 # Non-zero true parameter

relative_rmse_info <- calc_relative_rmse(estimates, true_param)
print(relative_rmse_info)

8 calc_variance

calc_rmse Calculate Root Mean Squared Error and its Monte Carlo Standard
Error

Description

Computes the Root Mean Squared Error (RMSE) of a set of estimates relative to a true parameter
value, along with the Monte Carlo Standard Error (MCSE) for the RMSE. The RMSE is a measure
of the accuracy of the estimates, representing the square root of the average squared differences
between the estimated values and the true parameter. The MCSE for the RMSE is calculated using
jackknife estimates, providing an assessment of the uncertainty associated with the RMSE value.

Usage

calc_rmse(estimates, true_param)

Arguments
estimates A numeric vector of estimates from a simulation or sampling process.
true_param The true parameter value that the estimates are intended to approximate.
Value

A list with two components: ‘rmse‘, the calculated Root Mean Squared Error of the estimates, and
‘rmse_mcse*, the Monte Carlo Standard Error of the RMSE. This MCSE is derived from jackknife
estimates, offering insight into the reliability of the RMSE calculation.

Examples

estimates <- rnorm(100, mean = 50, sd = 10)
true_param <- 50

rmse_info <- calc_rmse(estimates, true_param)
print(rmse_info)

calc_variance Calculate Variance and its Monte Carlo Standard Error

Description

Computes the sample variance of a set of estimates and the Monte Carlo Standard Error (MCSE) for
the variance. The MCSE is adjusted by the sample kurtosis to account for the shape of the distribu-
tion of the estimates. This function is particularly useful in simulation studies where understanding
the variability of an estimator and the precision of this variability estimate is crucial.

Usage

calc_variance(estimates)

calc_width 9

Arguments

estimates A numeric vector of estimates from a simulation or sampling process.

Value

A list containing two elements: ‘variance‘, the calculated sample variance of the estimates, and
‘variance_mcse*, the Monte Carlo Standard Error of the variance. The MCSE provides a measure
of the uncertainty associated with the variance estimate, adjusted for kurtosis.

Examples

estimates <- rnorm(100, mean = 50, sd = 10)
variance_info <- calc_variance(estimates)
print(variance_info)

calc_width Calculate Average Width of Confidence Intervals and its Monte Carlo
Standard Error

Description

This function computes the average width of a set of confidence intervals, represented by their
lower and upper bounds, along with the Monte Carlo Standard Error (MCSE) of this average width.
The average width provides insight into the precision of the estimation process, with narrower
intervals typically indicating more precise estimates. The MCSE of the width offers a measure of
the uncertainty associated with the average width calculation, useful for assessing the variability of
interval estimates across simulations or bootstrap samples.

Usage

calc_width(lower_bound, upper_bound)

Arguments
lower_bound A numeric vector of lower bounds of confidence intervals.
upper_bound A numeric vector of upper bounds of confidence intervals, corresponding to
‘lower_bound°.
Value

A list with two components: ‘width°, the average width of the confidence intervals, and ‘width_mcse*,
the Monte Carlo Standard Error of the average width. This MCSE provides a quantification of the
uncertainty in the average width estimate.

10 combine_df

Examples

set.seed(123) # For reproducibility
estimates <- rnorm(100, mean = 50, sd = 10)
ci_lower <- estimates - 1.96 * 10

ci_upper <- estimates + 1.96 x 10
width_info <- calc_width(ci_lower, ci_upper)
print(width_info)

combine_df Combine Dataframes in a Nested List

Description

This function combines dataframes that are nested within a list of lists into a single dataframe.

Usage

combine_df (nested_list)

Arguments

nested_list A list of lists, where each sublist contains dataframes to be combined.

Details

The function first checks if the input is a non-empty list of lists containing dataframes. It then
iterates through each sublist, combining the dataframes and adding an ID column to indicate their
source. Finally, all combined dataframes are row-bound into a single dataframe.

Value

A combined dataframe where each original dataframe is augmented with an ID column indicating
its source list.

Examples
df1 <- data.frame(a = 1:3, b = 4:6)
df2 <- data.frame(a = 7:9, b = 10:12)

nested_list <- list(list(df1, df2), list(df1, df2))
combine_df (nested_list)

mcpmap 11

mcpmap Parallel Map Function using pbapply::pbmapply

Description

This function applies a given function over a list of parameters in parallel using multiple cores.

Usage

mcpmap (
lists,
func,
num_cores = parallel::detectCores() - 1,
show_progress = TRUE

)
Arguments
lists A list of lists containing the parameters for the function.
func The function to be applied.
num_cores The number of cores to use for parallel execution. Default is one less than the

total number of available cores.

show_progress Logical indicating whether to display the progress bar. Default is TRUE.

Details

The function ensures that all elements in the list have the same length and uses ‘pbapply::pbmapply*
for parallel processing. It sets the number of cores based on the operating system and then applies
the function in parallel.

Value

A list of results from applying the function over the parameters.

Examples

params <- list(a = 1:3, b = 4:6)
mcpmap(params, function(a, b) a + b, num_cores = 2)

12 runsim

runsim Run Monte Carlo Simulations in Parallel

Description

This function executes a series of Monte Carlo simulations in parallel, providing detailed progress
updates.

Usage

runsim(
n,
grid_params,
sim_func,
show_progress = TRUE,
num_cores = parallel::detectCores() - 1

)
Arguments
n The number of times the simulation function should be executed for each set of
parameters. Must be a positive integer.
grid_params A dataframe where each row corresponds to a unique combination of parameters
for the simulation. Typically generated using ‘expand.grid°.
sim_func The simulation function to be applied. This function should accept parameters

corresponding to a row in ‘grid_params‘ and return a dataframe or a list that can
be row-bound.

show_progress Logical indicating whether to display progress messages during the execution of
the simulations.

num_cores The number of cores to use for parallel execution. The default is one less than
the total number of cores available on the system.

Details

The function first validates the input parameters. It then uses parallel processing to apply ‘sim_func®
to each combination of parameters specified in ‘grid_params®, repeating each simulation ‘n‘ times.
The results are combined into a single dataframe.

Value

A combined dataframe of all simulation results.

runsim

Examples

Not run:
library(mcstatsim)

Define a simple simulation function

sim_function <- function(a, b) {
Sys.sleep(0.1) # Simulate a time-consuming process
return(data.frame(result = a + b))

}

Generate a grid of parameters
params <- expand.grid(a = 1:3, b = 4:6)

Run simulations
results <- runsim(n = 1, grid_params = params, sim_func

print(results)

End(Not run)

sim_function)

13

Index

calc_bias, 2
calc_coverage, 3
calc_mse, 4
calc_rejection_rate, 4
calc_relative_bias, 5
calc_relative_mse, 6
calc_relative_rmse, 7
calc_rmse, 8
calc_variance, 8
calc_width, 9
combine_df, 10

mcpmap, 11

runsim, 12

14

	calc_bias
	calc_coverage
	calc_mse
	calc_rejection_rate
	calc_relative_bias
	calc_relative_mse
	calc_relative_rmse
	calc_rmse
	calc_variance
	calc_width
	combine_df
	mcpmap
	runsim
	Index

