Morphometric MCMC (meme Package
Ver. 0.9-8)

Leif T. Johnson Charles J. Geyer
November 14, 2023

1 Overview

This is an example how to use morphometric Markov chains as implemented
in the mcmc package in R.

Let X be an R* valued random variable with probability density function,
fx. Let g be a diffeomorphism, and Y = ¢g(X). Then the probability density
function of Y, fy is given by

fy(y) = fx (g7 (v)) det(Vg ' (y)). (1)

Since g is a diffeomorphism, we can draw inference about X from information
about Y (and vice versa).

It is not unusual for fx to either be known only up to a normalizing con-
stant, or to be analytically intractable in other ways — such as being high
dimensional. A common solution to this problem is to use Markov chain Monte
Carlo (MCMC) methods to learn about fx.

When using MCMC, a primary concern of the practitioner should be the
question “Does the Markov chain converge fast enough to be useful?” One very
useful convergence rate is called geometrically ergodic (Johnson, 2011, Chap-
ter 1).

The mcme package implements the Metropolis random-walk algorithm for
arbitrary log unnormalized probability densities. But the Metropolis random-
walk algorithm does not always perform well. As is demonstrated in Johnson
and Geyer (submitted), for fx and fy related by diffeomorphism as in (1),
a Metropolis random-walk for fy can be geometrically ergodic even though a
Metropolis random-walk for fx is not. Since the transformation is one-to-one,
inference about fx can be drawn from the Markov chain for fy .

The morph.metrop and morph functions in the mcmc package provide this
functionality, and this vignette gives a demonstration on how to use them.

2 T Distribution

We start with a univariate example, which is a Student ¢ distribution with
three degrees of freedom. Of course, one doesn’t need MCMC to simulate this
distribution (the R function rt does that), so this is just a toy problem. But it
does illustrate some aspects of using variable transformation.

A necessary condition for geometric ergodicity of a random-walk Metropo-
lis algorithm is that the target density m have a moment generating function
(Jarner and Tweedie, 2003). For a univariate target density, which we have
in this section, a sufficient condition for geometric ergodicity of a random-
walk Metropolis algorithm is that the target density m be exponentially light
Mengersen and Tweedie (1996). Thus if we do not use variable transformation,
the Markov chain simulated by the metrop function will not be geometrically
ergodic. Johnson and Geyer (submitted, Example 4.2) show that a ¢ distribu-
tion is sub-exponentially light. Hence using the transformations described in
their Corollaries 1 and 2 will induce a target density m, for which a Metropolis
random-walk will be geometrically ergodic. using the transformation described
as ho in Johnson and Geyer (submitted, Corollary 2) will induce a target density
for which a Metropolis random-walk will be geometrically ergodic.

Passing a positive value for b to morph function will create the aforemen-
tioned transformation, ho. It’s as simple as

> library(mcmc)
> h2 <- morph(b=1)

We can now see the induced density. Note that morph works for log unnormalized
densities, so we need exponentiate the induced density to plot it on the usual
scale.

> lud <- function(x) dt(x, df=3, log=TRUE)
> Jud.induced <- h2$lud(lud)

We can plot the two densities,

> curve (exp(Vectorize (lud.induced) (x)), from = -3, to = 3, 1ty = 2,
+ xlab = "t", ylab = "density")

> curve(exp(lud(x)), add = TRUE)

> legend("topright", c("t density", "induced density"), lty=1:2)

N — tdensity
/ N ---- induced density

0.4

0.3

density

0.1

0.0

The Vectorize in this example is necessary because the function lud.induced
is not vectorized. Instead, it treats any vector passed as a single input, which is
rescaled (using the specified diffeomorphism) and passed to lud. Compare the
behavior of 1ud and 1lud.induced in the following example.

> 1ud(1:4)

[1] -1.576253 -2.695485 -3.773478 -4.692542
> lud(1)

[1] -1.576253

> foo <- try(lud.induced(1:4))
> class(foo)

[1] "try-error"
> cat(foo, "\n")

Error in lud.induced(1:4)
log unnormalized density function returned vector not scalar

> Jud.induced (1)

[1] -1.479686

Because the function dt is vectorized, the function lud is also vectorized, map-
ping vectors to vectors, whereas the function lud.induced is not vectorized,
mapping vectors to scalars.

Before we start using random numbers, we set the seed of the random number
generator so this document always produces the same results.

> set.seed(42)

To change the results, change the seed or delete the set.seed statement.
Running a Markov chain for the induced density is done with morph.metrop.

> out <- morph.metrop(lud, 0, blen=100, nbatch=100, morph=morph(b=1))

The content of out$batch is on the scale of used by lud. Once the trans-
formation has been set, no adjustment is needed (unless you want to change
transformations). We start by adjusting the scale.

> # adjust scale to find a roughly 20j, acceptance rate
> out$accept

[1] 0.6309

An acceptance rate of 63.1% is probably too high. By increasing the scale of
the proposal distribution we can bring it down towards 20%.

> out <- morph.metrop(out, scale=4)
> out$accept

[1] 0.2339

We now use this Markov chain to estimate the expectation of the target dis-
tribution. But first we need to check whether our batch length is good. The
following code

> acf(out$batch)

makes the autocorrelation plot (Figure 1). It looks like there is no significant
autocorrelation among the batches so the following produces a valid confidence
interval for the true unknown mean of the target distribution (since this is a toy
problem we actually know the true “unknown” mean is zero, but we pretend we
don’t know that for the purposes of the toy problem)

> t.test (out$batch)

One Sample t-test

data: out$batch
t = 1.3684, df = 99, p-value = 0.1743

Series 1

1.0

0.8

ACF
0.4
|

0.2

0.0

Figure 1: Autocorrelation plot for the sequence of batch means.

alternative hypothesis: true mean is not equal to O
95 percent confidence interval:
-0.02565067 0.13963647
sample estimates:
mean of x
0.0569929

If we want a point estimate and a Monte Carlo standard error, those are

> colMeans (out$batch)

[1] 0.0569929

> apply(out$batch, 2, sd) / sqrt(out$nbatch)
[1] 0.04165047

If a shorter confidence interval is desired, the Markov chain can be run longer
(increase either the number of batches or the batch length, or both).

Note that when calculating our estimate and the Monte Carlo standard error
we are not concerned with what was happening on the transformed scale. The
morph.metrop function seamlessly does this for us.

2.1 Comparison of Morphed and Unmorphed

To show the utility of the transformation, we will study the behavior of the
Markov chain with and without the transformation for the same problem as in
the preceding section. We will consider two different estimation methods.

1. Estimate the mean of the target distribution using a random-walk Metropo-
lis algorithm implemented by the metrop function. Jarner and Roberts
(2007) demonstrate that a central limit theorem does not hold for these
estimates.

2. Estimate the mean of the target distribution using a random-walk Metropo-
lis algorithm implemented by the morph.metrop function with argument
morph = morph(b=1). Johnson and Geyer (submitted) demonstrate that
a central limit theorem does hold for these estimates.

For the former, we need to adjust the scale.

> out.unmorph <- metrop(lud, 0, blen=1000, nbatch=1)
> out.unmorph$accept

[1] 0.755

> out.unmorph <- metrop(out.unmorph, scale=4)
> out.unmorph$accept

[1] 0.325

> out.unmorph <- metrop(out.unmorph, scale=6)
> out.unmorph$accept

[1] 0.255

A scale of 6 appears to be about right. Now we do a long run for this sampler.
Because this run takes longer than CRAN vingettes are supposed to take, we
save the results to a file and load the results from this file if it already exists.

.Random.seed <- out.unmorph$final.seed
}

out.unmorph$accept

> lout <- suppressWarnings(try(load("morphl.rda"), silent = TRUE))
> if (inherits(lout, "try-error")) {

+ out.unmorph <- metrop(out.unmorph, blen = 1le5, nbatch = 1e3)
+ save (out.unmorph, file = "morphl.rda")

+ } else {

+

+

>

[1] 0.2579452

Let’s look at the distribution of batch means. The following code

> foo <- as.vector (out.unmorph$batch)
> qqnorm(foo)
> qqline(foo)

makes a Q-Q plot of the batch means (Figure 2). We see bad behavior of
the unmorphed chain. These batch means (or at least some batch means for
sufficiently long batch length) should look normally distributed, and these don’t.
Not even close. We do a formal test just to check our interpretation of the plot

> shapiro.test (foo)

Shapiro-Wilk normality test

data: foo
W = 0.9325, p-value < 2.2e-16

Now for comparison, we check the morphed chain.

lout <- suppressWarnings(try(load('"morph2.rda"), silent = TRUE))
if (inherits(lout, '"try-error")) {
out.morph <- morph.metrop(out, blen = leb, nbatch = 1e3)
save (out.morph, file = "morph2.rda'")
} else {
.Random.seed <- out.morph$final.seed

}
out.morph$accept

V + + + + + VvV

Normal Q-Q Plot

Sample Quantiles
-0.05 0.00 0.05
! !
o

-0.10

-0.15

Theoretical Quantiles

Figure 2: Q-Q plot of batch means (batch length le+05) for the unmorphed
chain.

Normal Q-Q Plot

<
<
o
N
Q
o

[}

Q

2

< o

S ©

(@3 o

Q

Q.

§

v 8
()

|

<
<
?

Theoretical Quantiles

Figure 3: Q-Q plot of batch means (batch length 1e+05) for the morphed chain.

[1] 0.2271819

The following code

> foo <- as.vector (out.morph$batch)
> qqnorm(foo)
> qqline(foo)

makes a Q-Q plot of the batch means (Figure 3). We see good behavior of the
morphed chain. These batch means do look normally distributed. We do a
formal test just to check our interpretation of the plot

> shapiro.test (foo)

Shapiro-Wilk normality test

data: foo
W = 0.99902, p-value = 0.8812

3 Binomial Distribution with a Conjugate Prior

We demonstrate a morphometric Markov chain using the UCBAdmisions data
set included in R, (use help(UCBAdmissions) to see details of this data set).
We will model the probability of a student being admitted or rejected, using the
sex of the student and the department that the student applied to as predictor
variables. For our prior, we naively assume that 30% of all students are admit-
ted, independent of sex or department. As this is a naive prior, we will only
add 5 students to each gender-department combination. This will not give the
prior much weight, most of the information in the posterior distribution will be
from the data.

If we have L observations from a multinomial distribution, then using a

multinomial logit-link, with model matrices M?,..., M, regression parameter
3, observed counts Y1, ..., YN with observed sample sizes N', ..., N* and prior
probabilities €1, ..., &% and prior “sample sizes” v', ..., vY then the posterior

distribution of 3 is given by (Johnson, 2011, Sec. 5.1.2)

L
m(Bly,n, & v) o exp{Z@/ + & MUB) — (o' +) log (3 eMjﬂ)})

=1 J

where (a, b) denotes the usual inner product between vectors a and b. For our
application, we can simplify this in two ways.

First, we use the posterior counts instead of the sum of the prior and data
counts, i.e. use y*! = y! + €' and n* = n! + 1.

Second, to avoid having a direction of recession in 7(53]-), we need to fix the
elements of 3 that correspond with one of the response categories. Since we are
going to fitting a binomial response, if we set these elements of 5 to be 0, we
may then replace the sequence of model matrices with a single model matrix;
M instead of M', ..., M%. The I-th row of M will correspond to M'. Label
the two response categories A and B. Without loss of generality, we will fix the
elements of § corresponding to category B to 0.

Let z1, ...,z represent the posterior counts of category A, and 5* represent
the corresponding elements of 3 — these are the elements of 8 we did not fix as
0. The meaning of n*!, ..., n*” is unchanged. Then our simplified unnormalized
posterior density is

L
w(Blz,n*) x exp{(m,Mﬁ*) - Zn*l log(1 + e(M'B*)l) } (3)

1=1
This can be computed with a very simple R function, we implement it in log

form.

> lud.binom <- function(beta, M, x, n) {

+ MB <- M }*), beta

+ sum(x * MB) - sum(n * log(1l + exp(MB)))
+ }

10

Now that we have a function to calculate a log-unnormalized posterior den-
sity, we can run the Markov chain. To that, we need the model matrix. First
we convert the UCAdmissions data to a data.frame.

> dat <- as.data.frame(UCBAdmissions)
> dat.split <- split(dat, dat$Admit)
> dat.split <- lapply(dat.split,

+ function(d) {
+ val <- as.character(d$Admit[1])

+ d["Admit"] <- NULL

+ names (d) [names (d) == "Freq"] <- val
+ d

+ P

> dat <- merge(dat.split[[1]], dat.split[[2]])

Next we build the model matrix. Our model specification allows for an
interaction between gender and department, even though our prior assumes
that they are independent.

> formula <- cbind(Admitted, Rejected) ~ (Gender + Dept) "2
> mf <- model.frame(formula, dat)
> M <- model.matrix(formula, mf)

As stated above, we will take v = 5 and £ = 0.30. That is, we will add 5
students to each gender-department combination, where each combination has
a 30% acceptance rate.

> xi <- 0.30
> nu <- 5

> lud.berkeley <- function(B)
+ lud.binom(B, M, dat$Admitted + xi * nu, dat$Admitted + dat$Rejected + nu)

This function is suitable for passing to metrop or morph.metrop. We know
that using morph.metrop with morph=morph(p=3) will run a geometrically er-
godic Markov chain (Johnson and Geyer, submitted).

> berkeley.out <- morph.metrop(lud.berkeley, rep(0, ncol(M)), blen=1000,
+ nbatch=1, scale=0.1, morph=morph(p=3))
> berkeley.out$accept

[1] 0.022

> berkeley.out <- morph.metrop(berkeley.out, scale=0.05)
> berkeley.out$accept

[1] 0.021

> berkeley.out <- morph.metrop(berkeley.out, scale=0.02)
> berkeley.out$accept

11

[1] 0.19

> berkeley.out <- morph.metrop(berkeley.out, blen=10000)
> berkeley.out$accept

[1] 0.198
> berkeley.out <- morph.metrop(berkeley.out, blen=1, nbatch=100000)

Estimate the posterior mean acceptance probabilities for each gender-department
combination.

> beta <- setNames (colMeans (berkeley.out$batch), colnames(M))
> MB <- M 7%}, beta

> dat$p <- dat$Admitted / (dat$Admitted + dat$Rejected)

> dat$p.post <- exp(MB) / (1 + exp(MB))

>

dat

Gender Dept Admitted Rejected P p.post
1 Female A 89 19 0.82407407 0.79703538
2 Female B 17 8 0.68000000 0.62207720
3 Female C 202 391 0.34064081 0.33998737
4 Female D 131 244 0.34933333 0.34931647
5 Female E 94 299 0.23918575 0.23986587
6 Female F 24 317 0.07038123 0.07334591
7 Male A 512 313 0.62060606 0.61829688
8 Male B 353 207 0.63035714 0.62826885
9 Male C 120 205 0.36923077 0.36859752
10 Male D 138 279 0.33093525 0.32924029
11 Male E 53 138 0.27748691 0.27517306
12 Male F 22 351 0.05898123 0.06024604

The small difference between the data and posterior probabilities is expected,
our prior was given very little weight. Using morph.metrop with the setting
morph=morph (p=3) in this setting is an efficient way of sampling from the pos-
terior distribution.

We can also compare the posterior distribution of admittance probability for
each gender-department combination. Table 1 gives the 5% and 95% quantiles
for the posterior distribution of the admittance probabilities for each gender-
department combination. Figure 4 gives the same quantiles, plus the mean
posterior-probability for each gender-department combination. From these we
can see that for each department, there is considerable overlap of the distribu-
tions of probabilities for males and females.

> posterior.probabilities <-

+ t(apply(berkeley.out$batch, 1,
+ function(r) {

+ eMB <- exp(M 7%*) r)

12

eMB / (1 + eMB)

1)

quants <- apply(posterior.probabilities, 2, quantile, prob=c(0.05, 0.95))

quants.str <- matrix(apply(quants, 2,
function(r) sprintf("[}0.2f, 70.2f1", r[1], r[2])),
nrow=2, byrow=TRUE)

V + + VvV o+ o+

Table 1: 5% and 95% posterior quantiles for admittance probability for each

gender-department combination

Gender | Dept. A Dept. B Dept. C Dept. D Dept. E. Dept. F
Female | [0.73, 0.85] | [0.46, 0.77] | [0.31, 0.37] | [0.31, 0.39] | [0.21, 0.28] | [0.05, 0.10]
Male | [0.59, 0.65] | [0.59, 0.66] | [0.33, 0.41] | [0.29, 0.37] | [0.23, 0.33] | [0.04, 0.08]

4 Cauchy Location-Scale Model

We are going to do a Cauchy location-scale family objective Bayesianly.

4.1

First we generate some data.

Data

n <- 15

mu0 <- 50

sigma0O <- 10

x <- rcauchy(n, mu0, sigmaO)
round(sort(x), 1)

vV VvV Vv v Vv

34.3
58.3

39.8
60.7

42.1
98.8

46.7
129.4

52.7
149.8

[1] -226.4 52.9

8.2
9] 556.1 55.5

mu0 and sigmaO are the true unknown parameter values (since the data are
simulated we actually know these “unknown” parameter values, but we must
pretend we don’t know them and estimate them).

4.2 Prior

The standard objective prior distribution for this situation (insofar as any
prior distribution can be said to be an objective standard) is the improper prior

1
g(p,0) =~
g

13

1.0

©
s 1 F
© _| M FM
2 o
E
<
Q
[}
& < |
=}
FM FM
M
~ F
=}
Fwm
o |
=}
T I I I I I
A B C D E F
Department

Figure 4: Posterior 5% and 95% quantiles and mean, by department and gender.

14

which is right Haar measure for the location-scale group, and is the standard
prior that comes from the group invariance argument (Kass and Wasserman,
1996, Section 3.2).

4.3

Log Unnormalized Posterior

We need a function whose argument is a two-vector

>
+
+
+
+
+
+
+
+
+
+
+
+

}

4.4

lup <- function(theta) {

if (any(is.na(theta)))
stop("NA or NaN in input to log unnormalized density function')
mu <- theta[1]
sigma <- theta[2]
if (sigma <= 0) return(-Inf)
if (any(! is.finite(theta))) return(-Inf)
result <- sum(dcauchy(x, mu, sigma, log = TRUE)) - log(sigma)
if (! is.finite(result)) {
warning (paste("Oops! mu = ", mu, "and sigma =", sigma))
}

return(result)

Laplace Approximation

To have some idea what we are doing, we first maximize the log unnormalized
posterior. To do it helps to have good starting points for the optimization.
Robust estimators of location and scale are

> mu.twiddle <- median(x)
> sigma.twiddle <- IQR(x)
> c(mu.twiddle, sigma.twiddle)

[1] 52.92081 18.57544

The posterior mode is

oout <- optim(c(mu.twiddle, sigma.twiddle), lup,

control = list(fnscale = -1), hessian = TRUE)

stopifnot (oout$convergence == 0)

sigma.hat <- oout$par[2]

>
+
>
> mu.hat <- oout$par[1]
>
>

c(mu.hat, sigma.hat)

[1] 52.212013 9.581221

and the hessian evaluated at the posterior mode (calculated by optim using
finite differences) is

> oout$hessian

15

[,1] [,2]
[1,] -0.08357941 -0.01845386
[2,] -0.01845386 -0.06892637

The hessian is nearly diagonal and one can check that theoretically is exactly
diagonal. Thus approximate (asymptotic) posterior standard deviations are

> sqrt(- 1 / diag(oout$hessian))

[1] 3.458998 3.808968

4.5 Theory

To use the theory in Johnson and Geyer (submitted) we must verify that
the target distribution (the unnormalized posterior) is everywhere positive, and
it isn’t (it is zero for o < 0). We tried making log(o) the parameter but this
didn’t work either because log(c) goes to infinity so slowly that this stretches
out the tails so much that the transformations introduced by Johnson and Geyer
(submitted) can’t pull them back in again. We do know (Johnson and Geyer,
submitted, Example 3.4) that if we fix o this is a sub-exponentially light target
distribution. Letting o vary can only make this worse. Thus, if we don’t do
anything and just use the metrop function, then performance will be very bad.
So we are going to use the transformations and the morph.metrop function,
even though the theory that motivates them does not hold.

4.6 Morph

We want to center the transformation at the posterior mode, and use a radius
r that doesn’t transform until several approximate standard deviations

> moo <- morph(b = 0.5, r = 7, center = c(mu.hat, sigma.hat))
> mout <- morph.metrop(lup, c(mu.hat, sigma.hat), 1le4,

+ scale = 3, morph = moo)

> mout$accept

[1] 0.4407
> mout <- morph.metrop (mout)

Good enough. An attempt to increase the scale led to error when the trans-
formation functions overflowed. Can’t take steps too big with this stuff. The
following code

> acf (mout$batch)

makes an autocorrelation plot (Figure 5). It looks like lag 10 to 15 is enough to
get near independence.

16

Series 1 Series 1 & Series 2

o] [ee)
c 7] o 7]
" . .
< <
< S ‘ c 7]
o JU“JLIL:.U.._ = —= o Lo |
S Foooooooidbseescsaeras S TFRFAEESSES S e e RS
T T 1T T T T 1 T T 1T T T T 1
0 5 10 20 30 0 5 10 20 30
Lag Lag
Series 2 & Series 1 Series 2
© _] o _]
o o
" . .
< <
< S o 7] “
[o U“Jhlh
o ST A A R P T o [T TTTTEET
T 1T 1 T T T 1 T T 1T T T T 1
-35 -25 -15 -5 0 0 5 10 20 30
Lag Lag

Figure 5: Autocorrelation plot. First component is p, second is o.

17

density(x = mu, bw = out.sub$bw)

<o)
S 4
o
©
o 4
o

P

=

2

[T o

a <+
o
N
o 4
o
o
o 4 — S
o

I I I I I I
30 40 50 60 70 80

N =10000 Bandwidth =1.13

Figure 6: Density plot for the marginal posterior for u.

Now we want to make marginal density plots. If we just feed our MCMC
output to the R function density it undersmooths because it expects indepen-
dent and identically distributed data rather than autocorrelated data. Thus we
feed it subsampled, nearly uncorrelated data to select the bandwidth and then
use that bandwidth on the full data. Here’s how that works. The following code

> mu <- mout$batch[, 1]

> i <- seq(1, mout$nbatch, by = 15)
> out.sub <- density(mul[i])

> out <- density(mu, bw = out.sub$bw)
> plot(out)

makes the density plot (Figure 6). And a similar plot for o (Figure 7)

References

Jarner, S.F.,; and G.O. Roberts (2007). Convergence of heavy-tailed Monte Carlo
Markov chain algorithms. Scandinavian Journal of Statistics, 34, 781-815.

18

Density

density(x = sigma, bw = out.sub$bw)

0.08
|

0.06
|

0.04
|

0.02
|

0.00
|

T T T T T T T
0 10 20 30 40 50 60

N =10000 Bandwidth =1.25

Figure 7: Density plot for the marginal posterior for o.

19

Jarner, S. F., and Tweedie, R. L. (2003). Necessary conditions for geometric
and polynomial ergodicity of random-walk-type Markov chains. Bernoulli, 9,
559-578.

Johnson, L. T. (2011). Geometric Ergodicity of a Random-Walk Metropolis
Algorithm via Variable Transformation and Computer Aided Reasoning in
Statistics. Ph. D. thesis. University of Minesota. http://purl.umn.edu/
113140

Johnson, L. T., and C. J. Geyer (submitted). Variable Transformation to Obtain
Geometric Ergodicity in the Random-walk Metropolis Algorithm. Revised
and resubmitted to Annals of Statistics.

Kass, R. E., and Wasserman, L. (1996). Formal rules for selecting prior dis-
tributions: A review and annotated bibliography. Journal of the American
Statistical Association, 435, 1343-1370.

Mengersen, K.L., ad R. L. Tweedie (1996). Rates of convergence of the Hastings
and Metropolis algorithms. Annals of Statistics, 24, 101-121.

20

