Package 'mbest'

April 24, 2025

Version 0.6.1

Title Moment-Based Estimation for Hierarchical Models

Description Fast moment-based hierarchical model fitting. Implements methods from the papers
``Fast Moment-Based Estimation for Hierarchical Models," by Perry (2017) and
``Fitting a Deeply Nested Hierarchical Model to a Large Book Review Dataset Using a Moment-Based Estimator," by Zhang, Schmaus, and Perry (2018).

Depends nlme (>= 3.1-124), R (>= 3.3.0)

Imports abind, bigmemory, foreach, reformulas, logging

Suggests testthat, lme4

License Apache License (== 2.0) | file LICENSE

URL https://github.com/patperry/r-mbest

Encoding UTF-8

NeedsCompilation yes

Author Patrick O. Perry [aut], Timothy Sweetser [ctb], Kyle Schmaus [ctb], Ningshan Zhang [aut, ctb], Ben Bolker [cre] (<https://orcid.org/0000-0002-2127-0443>)

Maintainer Ben Bolker <bolker@mcmaster.ca>

Repository CRAN

Date/Publication 2025-04-24 11:50:09 UTC

Contents

mbest-package																										2
effects						•			•	•				•	•	•	•	•	•		•					3
firthglm.fit						•	•		•	•				•	•	•	•	•	•		•	•				4
mhglm	•	•	•				•		•	•								•	•					•		6

mbest-package

	mhglm.control mhglm_sim model.matrix.mhglr predict	 n.	· ·	•	•	 •	•	•	•	•	•	 	 •	•	•	•	•		•	•	•	•	10 11
Index																							13

mbest-package

Moment-Based Estimation for Hierarchical Models

Description

Fast moment-based hierarchical model fitting. Implements methods from the papers "Fast Moment-Based Estimation for Hierarchical Models," by Perry (2017) and "Fitting a Deeply Nested Hierarchical Model to a Large Book Review Dataset Using a Moment-Based Estimator," by Zhang, Schmaus, and Perry (2018).

Details

Package:	mbest
Version:	0.6.1
Title:	Moment-Based Estimation for Hierarchical Models
Authors@R:	c(person(c("Patrick", "O."), "Perry", role = "aut"), person("Timothy", "Sweetser", role = "ctb"), person("Kyle"
Description:	Fast moment-based hierarchical model fitting. Implements methods from the papers "Fast Moment-Based Esti
Depends:	nlme (>= 3.1-124), R (>= 3.3.0)
Imports:	abind, bigmemory, foreach, reformulas, logging
Suggests:	testthat, lme4
LazyData:	Yes
License:	Apache License (== 2.0) file LICENSE
URL:	https://github.com/patperry/r-mbest
Encoding:	UTF-8
Author:	Patrick O. Perry [aut], Timothy Sweetser [ctb], Kyle Schmaus [ctb], Ningshan Zhang [aut, ctb], Ben Bolker [cr
Maintainer:	Ben Bolker <bolker@mcmaster.ca></bolker@mcmaster.ca>

Index of help topics:

firthglm.fit	Fitting Generalized Linear Models with Firth's
	Bias Reduction
fixef	Mixed Effects
mbest-package	Moment-Based Estimation for Hierarchical Models
mhglm	Fitting Moment Hierarchical Generalized Linear
	Models
mhglm.control	Auxiliary for Controlling Moment Heirarchical
	GLM Fitting
mhglm_sim	Simulate response patterns
<pre>model.matrix.mhglm</pre>	Terms and Model Matrix
predict.mhglm	Prediction

2

effects

Basic usage is to call mhglm.

References

P. O. Perry (2017) "Fast moment-based estimation for hierarchical models."

N. Zhang, K. Schmaus, and P. O. Perry (2018) "Fitting deeply-nested hierarchical models to a large book review dataset using moment-based estimators."

See Also

mhglm, fixef.mhglm, ranef.mhglm, VarCorr.mhglm, predict.mhglm.

Mixed Effects

effects

Description

Get the fixed effects, random effect variances, and empirical Bayes random effect estimates.

Usage

```
## S3 method for class 'mhglm'
fixef(object, ...)
## S3 method for class 'mhglm'
ranef(object, condVar = FALSE, ...)
## S3 method for class 'mhglm'
vcov(object, ...)
## S3 method for class 'mhglm'
VarCorr(x, sigma = 1, ...)
## S3 method for class 'mhglm_ml'
fixef(object, ...)
## S3 method for class 'mhglm_ml'
ranef(object, condVar = FALSE, ...)
## S3 method for class 'mhglm_ml'
vcov(object, ...)
## S3 method for class 'mhglm_ml'
VarCorr(x, sigma = 1, ...)
```

Arguments

object, x	an mhglm object.
sigma	a factor by which to scale the random effect variance-covariance matrix.
condVar	a logical indicating whether conditional covariance matrices for the random effects should be returned.
	further arguments passed to or from other methods.

Details

fixef returnes the fixed effects, while vcov returns the variance-covariance matrix of the fixed effect estimates.

VarCorr returns the random effect covariance matrix. ranef returns the empirical Bayes random effect estimates.

These functions behave like their counterparts in the **nlme** package.

See Also

fixef, ranef, VarCorr, from package nlme.

firthglm.fit

Fitting Generalized Linear Models with Firth's Bias Reduction

Description

A drop-in replacement for glm.fit which uses Firth's bias-reduced estimates instead of maximum likelihood.

Usage

```
firthglm.fit(x, y, weights = rep(1, nobs),
    start = NULL, etastart = NULL, mustart = NULL,
    offset = rep(0, nobs), family = gaussian(),
    control = list(...), intercept = TRUE, singular.ok = TRUE, ...)
firthglm.control(epsilon = 1e-8, maxit = 25, qr.tol = 1e-7,
    improve.tol = 1e-4, curvature.tol = 0.9,
    linesearch.method = "linesearch",
    linesearch.maxit = 20, trace = FALSE)
```

Arguments

x, y, weights, start, etastart, mustart, offset, family, control, intercept, singular.ok, ... arguments that have the same functions as for glm.fit. qr.tol tolerance parameter for determining the rank of x.

firthglm.fit

epsilon, maxit	convergence parameters for the quasi-Newton method.
linesearch.met	nod
	line search methods (one of "linesearch", "backtrack", or "blindsearch")
<pre>improve.tol,cu</pre>	rvature.tol,linesearch.maxit
	tolerance parameters for the linesearch procedure.
trace	logical indicating if output should be produced for each iteration.

Details

Firth's modified score function gives rise to estimates with smaller biases than their maximum likelihood counterparts. Unlike the maximum likelihood estimates, if the design matrix is of full rank, then the Firth bias-reduced estimate is finite.

By default, the fitting procedure uses a quasi-Newton optimization method, with a More-Thuente linesearch.

Value

firthglm.fit returns an object having the same components that a call to glm.fit would produce.

Note

Currently, only families with canonical link functions are supported.

Author(s)

Patrick O. Perry

References

Firth, D. (1993) Bias reduction of maximum likelihood estimates. Biometrika 80, 27--38.

More, J. J. and Thuente, D. J. (1994) Line search algorithms with guaranteed sufficient decrease. *ACM Transactions on Mathematical Software* **20** 286–307.

See Also

logistf (package logistf) and brglm (package brglm) for alternative implementations of Firth's bias-reduced estimators.

Examples

mhglm

Description

mhglm is used to fit a moment hierarchical generalized linear model of one level. mhglm_ml is used to fit a moment hierarchical generalized linear model of arbitrary number of levels (including one level).

Usage

```
mhglm(formula, family = gaussian, data, weights, subset,
    na.action, start = NULL, etastart, mustart, offset,
    control = list(), model = TRUE, method = "mhglm.fit",
    x = FALSE, z = FALSE, y = TRUE, group = TRUE,
    contrasts = NULL)
```

```
mhglm.fit(x, z, y, group, weights = rep(1, nobs),
    start = NULL, etastart = NULL, mustart = NULL,
    offset = rep(0, nobs), family = gaussian(),
    control = list(), intercept = TRUE, dispersion = NULL)
```

```
mhglm_ml.fit(x, z, y, group, weights = rep(1, nobs),
    start = NULL, etastart = NULL, mustart = NULL,
    offset = rep(0, nobs), family = gaussian(),
    control = list(), intercept = TRUE)
```

Arguments

formula, family, data, weights, subset, na.action, start, etastart, mustart, offset, model, contrasts, intercept					
	These arguments are analogous to the similarly-named arguments for the glm and glm.fit functions.				
control	a list of parameters for controlling the fitting process. For mhglm.fit this is passed to mhglm.control.				
method	the method to be used in fitting the model. The default method "mhglm.fit" uses moment-based estimates; the alternative "model.frame" returns the model frame and does no fitting.				

mhglm

x, z, y, group	For mhglm and mhglm_ml: logical values indicating whether the response vec- tor, model matrices, and grouping factor used in the fitting process should be returned as components of the returned value.
	For mhglm.fit: x is a fixed effect design matrix of dimension n * p, z is a random effect design matrix of dimension n * q, y is a vector of observations of length n, and group is a grouping factor vector of length n.
	For $mhglm_ml.fit: x$ is a fixed effect design matrix of dimension $n * p$, z is a list of L elements, with L the depth of nested hierarchies, each element of z is a random effect design matrix of dimension $n * q_i$, with q_i the feature dimension on tree depth i, y is a vector of observations of length n, and group is a list of L elements (same L as z), each element of group is a grouping factor vector of length n.
dispersion	If NULL, will estimate from data; otherwise use this argument as dispersion parameter.

Details

These functions are analogues of glm and glm.fit, meant to be used for fitting hierarchical generalized linear models. A typical predictor has the form response ~ terms + (reterms | group) where response is the (numeric) response vector, terms is a series of terms which specifies a linear predictor for response, reterms is a series of terms with random coefficients (effects), and group is a grouping factor; observations with the same grouping factor share the same random effects.

mhglm and mhglm.fit only allow one random effect term, along with a single level of hierarchy. mghlm_ml and mhglm_ml.fit allow multiple random effect terms so long as levels of random effects are hierarchically nested. If the random effect design matrices are the same for each level, a predictor has the form response ~ terms + (reterms | g1/.../gQ). If the random effects design matrices differ from level to level, colons are used to delineate the nesting structure; for example, response ~ fe + (re1 | g1) + (re2 | g2:g1) + (re3 | g3:g2:g1).

mhglm allows || in the formula response ~ terms + (reterms || group) to indicate that random effects are independent, that is the random effects covariance matrix has non-zero value only on its diagonal. mhglm_ml currently does not support ||, to indicate indpendent random effects, set control=list(diagcov = TRUE).

Value

mhglm returns an object of class inheriting from "mhglm". mhglm_ml returns an object of class inheriting from "mhglm_ml".

The function summary can be used to obtain or print a summary of the results.

The generic accessor functions fixef, ranef, VarCorr, sigma, fitted.values and residuals can be used to extract various useful features of the value returned by mhglm or mhglm_ml.

Note

If the moment-based random effect covariance is not positive-semidefinite, then a warning will be issued, and a projection of the estimate to the positive-semidefinite cone will be used instead.

References

P. O. Perry (2017) "Fast moment-based estimation for hierarchical models."

N. Zhang, K. Schmaus, and P. O. Perry (2018) "Fitting deeply-nested hierarchical models to a large book review dataset using moment-based estimators."

See Also

terms.mhglm, model.matrix.mhglm, and predict.mhglm for mhglm methods, and the generic functions fitted.values, residuals, summary, vcov, and weights.

Generic functions fixef, ranef, VarCorr, and sigma for features related to mixed effect models.

glmer (package lme4) for fitting generalized linear mixed models with likelihood-based estimates.

Examples

mhglm.control Auxiliary for Controlling Moment Heirarchical GLM Fitting

Description

Auxiliary function for mhglm fitting. Typically only used internally by mhglm.fit, but may be used to construct a control argument to either function.

Usage

Arguments

standardize	logitcal indicating if predictors should be standardized before moment-based fitted
steps	number of refinement steps
parallel	fit the group-specific estimates in parallel rather than sequentially
diagcov	estimate random effect covairance matrix with diagonal approximation
fit.method	method for obtaining group-specific effect estimates
fixef.rank.war	n
	if TRUE, print warnings when fixef is unidentifiable
cov.rank.warn	if TRUE, print warnings when covariance matrix is unidentifiable
cov.psd.warn	if TRUE, print warnings when moment based estimates of covariance matrix is not positive semi-definite
fit.control	control parameters for fit.method
	arguments to be used to form the fit.control argument if it is not supplied directly.

Details

Setting standardize = TRUE ensures that the procedure is equivariant, and generally leads to better estimation performance. Right now standardize = TRUE is not allowed for mhglm_ml.

The steps argument gives the number of refinement steps for the moment based parameters. In each step, the previous fixed effect and random effect covariance matrix estimates are used to weight the subpopulation-specific effect estimates. In principle, higher values of steps could lead to more accurate estimates, but in simulations, the differences are negligible.

Value

A list with components named as the arguments.

See Also

mhglm.fit, the fitting procedure used by mhglm.

firthglm.fit, the default subpopulation-specific fitting method.

Examples

if(requireNamespace("lme4")) { # for cbpp data

```
data("cbpp", package = "lme4")
# The default fitting method uses Firth's bias-corrected estimates
(gm.firth <- mhglm(cbind(incidence, size - incidence) ~ period + (1 | herd),</pre>
```

mhglm_sim

Simulate response patterns

Description

Simulate response patterns for generalized linear models of gaussian or binomial families, with both an intercept and slope covariate. Used primarily for testing purposes.

Usage

Arguments

n	an integer scalar, the number of observations at the lowest grouping level.
m_per_level	an integer vector, the number of grouping levels nested under the level above.
<pre>sd_intercept</pre>	a numeric vector, the standard deviations of the intercept random effects.
sd_slope	a numeric vector, the standard deviations of the slope random effects.
family	a character scalar, either "gaussian" or "binomial".
seed	a single value, interpreted as an integer, or NULL as in set.seed.

Details

returns a data.frame with design matrix, response, and group levels.

Examples

model.matrix.mhglm Terms and Model Matrix

Description

Get the terms or model matrix from an mhglm object.

Usage

```
## S3 method for class 'mhglm'
model.matrix(object, type = c("fixed", "random"), ...)
## S3 method for class 'mhglm_ml'
model.matrix(object, type = c("fixed", "random"), ...)
## S3 method for class 'mhglm'
terms(x, type = c("fixed", "random"), ...)
## S3 method for class 'mhglm_ml'
terms(x, type = c("fixed", "random"), ...)
```

Arguments

object, x	an mhglm object.
type	which terms to get (for the fixed or for the random effects).
	further arguments passed to or from other methods.

See Also

model.matrix, terms

predict Prediction

Description

predict gives empirical Bayes predictions of the response, while sigma gives the dispersion parameter.

Usage

```
## S3 method for class 'mhglm'
predict(object, newdata = NULL, type = c("link", "response"),
        se.fit = FALSE, na.action = na.pass, ...)
## S3 method for class 'mhglm'
sigma(object, ...)
```

predict

Arguments

object	an mhglm object
newdata, type	e, se.fit, na.action
	these arguments behave as in predict.glm. See Details, below.
	further arguments passed to or from other methods.

Details

The predict function gives empirical Bayes posterior mean estimates of response values. If se.fit = TRUE, then the conditional variances of the random effects are used along with the fixed effect variance-covariance matrix to estimate the standard errors.

The sigma function gives the square root of the dispersion parameter or the model; for linear models, this is the error standard deviation.

See Also

predict, sigma

Index

```
* datagen
    mhglm_sim, 10
* models
    effects, 3
    firthglm.fit,4
    mhglm, 6
    mhglm.control, 8
    model.matrix.mhglm, 11
    predict, 11
* optimize
    mhglm.control, 8
* package
    mbest-package, 2
* regression
    firthglm.fit,4
    mhglm, 6
brglm, 5
effects, 3
firthglm.control (firthglm.fit), 4
firthglm.fit, 4, 9
fitted.values, 8
fixef, 4, 7, 8
fixef (effects), 3
fixef.mhglm, 3
glm, 6, 7
glm.fit, 4-7
logistf, 5
mbest (mbest-package), 2
mbest-package, 2
mhglm, 3, 6, 8, 9
mhglm.control, 6, 8
mhglm.fit, 8, 9
mhglm_ml (mhglm), 6
mhglm_ml.control (mhglm.control), 8
mhglm_sim, 10
```

model.matrix, 11 model.matrix.mhglm, 8, 11 model.matrix.mhglm_ml (model.matrix.mhglm), 11 predict, 11, 12 predict.glm, 12 predict.mhglm, 3, 8 ranef, 4, 7, 8 ranef (effects), 3 ranef.mhglm, 3 residuals, 8 sigma, 7, 8, 12 sigma (predict), 11 summary, 7, 8 terms, 11 terms.mhglm, 8 terms.mhglm(model.matrix.mhglm), 11 terms.mhglm_ml (model.matrix.mhglm), 11 VarCorr, 4, 7, 8 VarCorr (effects), 3 VarCorr.mhglm, 3 vcov, 8 vcov.mhglm(effects), 3 vcov.mhglm_ml (effects), 3 weights, 8