
Package ‘matrixprofiler’
January 26, 2023

Type Package

Title Matrix Profile for R

Version 0.1.9

Maintainer Francisco Bischoff <fbischoff@med.up.pt>

Description This is the core functions needed by the 'tsmp' package. The
low level and carefully checked mathematical functions are here.
These are implementations of the Matrix Profile concept that was
created by CS-UCR <http://www.cs.ucr.edu/~eamonn/MatrixProfile.html>.

License GPL-3

URL https://github.com/matrix-profile-foundation/matrixprofiler

BugReports https://github.com/matrix-profile-foundation/matrixprofiler/issues

Depends R (>= 4.1)

Imports checkmate (>= 2.1.0), Rcpp (>= 1.0.9), RcppParallel (>= 5.1.5)

Suggests debugme (>= 1.1.0), spelling (>= 2.2.0), testthat (>= 3.1.4),
xml2 (>= 1.3.3)

LinkingTo Rcpp (>= 1.0.9), RcppParallel (>= 5.1.5), RcppProgress (>=
0.4.2), RcppThread (>= 2.1.3)

Config/testthat/edition 3

Config/testthat/parallel false

Encoding UTF-8

Language en-US

LazyData true

NeedsCompilation yes

RoxygenNote 7.2.3

SystemRequirements GNU make

Author Francisco Bischoff [aut, cre] (<https://orcid.org/0000-0002-5301-8672>),
Michael Yeh [res, ccp, ctb] (<https://orcid.org/0000-0002-9807-2963>),
Diego Silva [res, ccp, ctb] (<https://orcid.org/0000-0002-5184-9413>),
Yan Zhu [res, ccp, ctb] (<https://orcid.org/0000-0002-5952-2108>),

1

http://www.cs.ucr.edu/~eamonn/MatrixProfile.html
https://github.com/matrix-profile-foundation/matrixprofiler
https://github.com/matrix-profile-foundation/matrixprofiler/issues
https://orcid.org/0000-0002-5301-8672
https://orcid.org/0000-0002-9807-2963
https://orcid.org/0000-0002-5184-9413
https://orcid.org/0000-0002-5952-2108

2 contrast

Hoang Dau [res, ccp, ctb] (<https://orcid.org/0000-0003-2439-5185>),
Michele Linardi [res, ccp, ctb]

(<https://orcid.org/0000-0002-3249-2068>)

Repository CRAN

Date/Publication 2023-01-26 12:30:06 UTC

R topics documented:
contrast . 2
mass . 3
matrixprofiler . 5
motifs_discords_small . 6
mov_mean . 6
stamp . 8
znorm . 12

Index 14

contrast Contrast Profile Computation

Description

Computes the contrast profile of two (classes of) time series.

Usage

contrast(
negative_data,
positive_data,
window_size,
positive_matrix = NULL,
exclusion_zone = 0.5,
distance = c("euclidean", "pearson"),
n_workers = 1L,
progress = TRUE

)

Arguments

negative_data Required. Any 1-dimension series of numbers (matrix, vector, ts etc.) where
the pattern is not present

positive_data Required. Any 1-dimension series of numbers (matrix, vector, ts etc.) where
the pattern is present

window_size Required. An integer defining the rolling window size.

https://orcid.org/0000-0003-2439-5185
https://orcid.org/0000-0002-3249-2068

mass 3

positive_matrix

Optional. A precomputed self-similar matrix profile of the positive data.

exclusion_zone A numeric. Defines the size of the area around the rolling window that will be
ignored to avoid trivial matches. Default is 0.5, i.e., half of the window_size.

distance A string. Currently accepts euclidean and pearson. Defaults to euclidean.

n_workers An integer. The number of threads using for computing. Defaults to 1.

progress A logical. If TRUE (the default) will show a progress bar. Useful for long com-
putations.

Details

Constrast Profile:
This algorithm returns the contrast profile of two time series, which shows the position of patters
that are similar in the positive data, but at the same time very dissimilar in the negative data. In
other words, this means that such a pattern represents well positive data and may be taken as a
"signature" of that class. More information can be found in the references.

Value

Returns a list with the contrast_profile, plato, plato_nn, plato_idx, plato_nn_idx, w, ez,
euclidean values

References

• R. Mercer, S. Alaee, A. Abdoli, S. Singh, A. Murillo and E. Keogh, "Matrix Profile XXIII:
Contrast Profile: A Novel Time Series Primitive that Allows Real World Classification,"
2021 IEEE International Conference on Data Mining (ICDM), 2021, pp. 1240-1245, doi:
10.1109/ICDM51629.2021.00151.

Website: http://www.cs.ucr.edu/~eamonn/MatrixProfile.html

Examples

cp <- contrast(motifs_discords_small, rev(motifs_discords_small), 50)

mass Computes the Distance between the ’data’ and the ’query’.

Description

This algorithm will use a rolling window, to computes the distance thorough the whole data. This
means that the minimum distance found is the motif and the maximum distance is the discord on
that time series. Attention you need first to create an object using mass_pre(). Read below.

http://www.cs.ucr.edu/~eamonn/MatrixProfile.html

4 mass

Usage

mass(
pre_obj,
data,
query = data,
index = 1,
version = c("v3", "v2"),
n_workers = 1

)

mass_pre(
data,
window_size,
query = NULL,
type = c("normalized", "non_normalized", "absolute", "weighted"),
weights = NULL

)

Arguments

pre_obj Required. This is the object resulting from mass_pre(). The is no MASS with-
out a pre.

data Required. Any 1-dimension series of numbers (matrix, vector, ts etc.)

query Optional. Accepts the same types as data and is used for join-similarity. De-
faults to data for self-similarity. IMPORTANT Use the same data used on
mass_pre().

index An integer. This is the index of the rolling window that will be used. Must be
between 1 and length(data) - window_size + 1.

version A string. Chooses the version of MASS what will be used. Ignored if mass_pre()
is not the "normalized" type.

n_workers An integer The number of threads using for computing. Defaults to 1.

window_size Required. An integer defining the rolling window size.

type This changes how the MASS algorithm will compare the rolling window and
the data. (See details).

weights Optional. It is used when the type is weighted, and has to be the same size as
the window_size.

Details

There are currently four ways to compare the window with the data:

1. normalized: this normalizes the data and the query window. This is the most frequently used.

2. non_normalized: this won’t normalize the query window. The data still being normalized.

3. absolute: this won’t normalize both the data and the query window.

4. weighted: this normalizes the data and query window, and also apply a weight vector on the
query.

matrixprofiler 5

Value

mass() returns a list with the distance_profile and the last_product that is only useful for
computing the Matrix Profile.

mass_pre() returns a list with several precomputations to be used on MASS later. Attention use
this before mass().

Examples

pre <- mass_pre(motifs_discords_small, 50)
dist_profile <- mass(pre, motifs_discords_small)
pre <- mass_pre(motifs_discords_small, 50)
dist_profile <- mass(pre, motifs_discords_small)

matrixprofiler Matrix Profile for R

Description

This package is derived from the former package tsmp. It is intended to make a clear separation
of what is the Matrix Profile computation and what are the data mining process we can do using
Matrix Profile.

Details

The Matrix Profile, has the potential to revolutionize time series data mining because of its gen-
erality, versatility, simplicity and scalability. In particular it has implications for time series motif
discovery, time series joins, shapelet discovery (classification), density estimation, semantic seg-
mentation, visualization, rule discovery, clustering etc.

Parallel backend

This package uses RcppParallel in order to do multithreading computations. By default it uses
the ’TBB’ backend. If por any reason you want to change the backend to ’tinythread’, you may
use: Sys.setenv(RCPP_PARALLEL_BACKEND = "tinythread"). To configure back to ’TBB’, use
Sys.setenv(RCPP_PARALLEL_BACKEND = "tbb").

References

• Yeh CCM, Zhu Y, Ulanova L, Begum N, Ding Y, Dau HA, et al. Matrix profile I: All pairs
similarity joins for time series: A unifying view that includes motifs, discords and shapelets.
Proc - IEEE Int Conf Data Mining, ICDM. 2017;1317-22.

• Zhu Y, Imamura m, Nikovski D, Keogh E. Matrix Profile VII: Time Series Chains: A New
Primitive for Time Series Data Mining. Knowl Inf Syst. 2018 Jun 2;1-27.

• Zhu Y, Zimmerman Z, Senobari NS, Yeh CM, Funning G. Matrix Profile II : Exploiting a
Novel Algorithm and GPUs to Break the One Hundred Million Barrier for Time Series Motifs
and Joins. Icdm. 2016 Jan 22;54(1):739-48.

6 mov_mean

Website: http://www.cs.ucr.edu/~eamonn/MatrixProfile.html

motifs_discords_small Just a synthetic dataset for testing

Description

Just a synthetic dataset for testing

Usage

motifs_discords_small

Format

A vector with 875 observations

mov_mean Several moving window functions

Description

These functions do not handle NA values

Usage

mov_mean(
data,
window_size,
type = c("ogita", "normal", "weighted", "fading"),
eps = 0.9

)

mov_var(
data,
window_size,
type = c("ogita", "normal", "weighted", "fading"),
eps = 0.9

)

mov_sum(
data,
window_size,
type = c("ogita", "normal", "weighted", "fading"),
eps = 0.9

)

http://www.cs.ucr.edu/~eamonn/MatrixProfile.html

mov_mean 7

mov_max(data, window_size)

mov_min(data, window_size)

mov_std(data, window_size, rcpp = TRUE)

movmean_std(data, window_size, rcpp = TRUE)

muinvn(data, window_size, n_workers = 1)

zero_crossing(data, window_size)

Arguments

data A vector or a column matrix of numeric.

window_size An integer. The size of the rolling window.

type A string. Select between several algorithms. Default is ogita (See details).

eps A numeric. Used only for fading algorithms (See details), otherwise has no
effect.

rcpp A logical. If TRUE will use the Rcpp implementation, otherwise will use the R
implementation, that may or not be slower.

n_workers An integer. The number of threads using for computing. Defaults to 1.

Details

Some functions may use different algorithms to compute the results. The available types are:

1. ogita: This is the default. It uses the Ogita et al., Accurate Sum, and Dot Product for precision.
It is not the fastest algorithm, but the time spent vs. guarantee of precision worth it.

2. normal: This uses the cumsum method that is faster, but unreliable in some situations (I have
to find the references, but is true).

3. weighted: This uses Rodrigues P., et al. algorithm that uses a weighted window for online
purposes. The eps argument controls the factor. (The function is not online yet)

4. fading: This also uses Rodrigues P., et al. algorithm that in this case, uses a fading factor, also
for online purposes. he eps argument controls the factor. (The function is not online yet)

Another important detail is that the standard deviation we use for all computations is the popula-
tion (i.e.: divided by n), not the sample (i.e.: divided by n - 1). That is why we also provide the
internally the :::std() function that computes the population, differently from stats::sd() that
is the sample kind. Further more, movmean_std() shall be used when you need both results in one
computation. This is faster than call mov_mean() followed by mov_std(). Finally, muinvn() is
kept like that for historical reasons, as it is the function used by mpx(). It returns the sig (stable
inverse centered norm) instead of std (sig is equals to 1 / (std * sqrt(window_size))).

8 stamp

Value

mov_mean() returns a vector with moving avg.

mov_var() returns a vector with moving var.

mov_sum() returns a vector with moving sum.

mov_max() returns a vector with moving max.

mov_min() returns a vector with moving min.

mov_std() returns a vector with moving sd.

movmean_std() returns a list with vectors of the moving avg, sd, sig, sum and sqrsum.

muinvn() returns a list with vectors of moving avg and sig.

zero_crossing() returns a vector of times the data crossed the ’zero’ line inside a rolling window.

Examples

mov <- mov_mean(motifs_discords_small, 50)
mov <- mov_var(motifs_discords_small, 50)
mov <- mov_sum(motifs_discords_small, 50)
mov <- mov_max(motifs_discords_small, 50)
mov <- mov_min(motifs_discords_small, 50)
mov <- mov_std(motifs_discords_small, 50)
mov <- movmean_std(motifs_discords_small, 50)
mov <- muinvn(motifs_discords_small, 50)
zero_cross <- zero_crossing(motifs_discords_small, 50)

stamp Matrix Profile Computation

Description

STAMP Computes the best so far Matrix Profile and Profile Index for Univariate Time Series.

STOMP is a faster implementation with the caveat that is not anytime as STAMP or SCRIMP.

SCRIMP is a faster implementation, like STOMP, but has the ability to return anytime results as
STAMP.

MPX is by far the fastest implementation with the caveat that is not anytime as STAMP or SCRIMP.

Usage

stamp(
data,
window_size,
query = NULL,
exclusion_zone = 0.5,
s_size = 1,
n_workers = 1,
progress = TRUE

stamp 9

)

stomp(
data,
window_size,
query = NULL,
exclusion_zone = 0.5,
n_workers = 1,
progress = TRUE,
left_right_profile = FALSE

)

scrimp(
data,
window_size,
query = NULL,
exclusion_zone = 0.5,
s_size = 1,
pre_scrimp = 0.25,
n_workers = 1,
progress = TRUE

)

mpx(
data,
window_size,
query = NULL,
exclusion_zone = 0.5,
s_size = 1,
idxs = TRUE,
distance = c("euclidean", "pearson"),
n_workers = 1,
progress = TRUE

)

Arguments

data Required. Any 1-dimension series of numbers (matrix, vector, ts etc.) (See
details).

window_size Required. An integer defining the rolling window size.

query (not yet on scrimp()) Optional. Another 1-dimension series of numbers for an
AB-join similarity. Default is NULL (See details).

exclusion_zone A numeric. Defines the size of the area around the rolling window that will be
ignored to avoid trivial matches. Default is 0.5, i.e., half of the window_size.

s_size A numeric. Used on anytime algorithms (stamp, scrimp, mpx) if only part of the
computation is needed. Default is 1.0 (means 100%).

n_workers An integer. The number of threads using for computing. Defaults to 1.

10 stamp

progress A logical. If TRUE (the default) will show a progress bar. Useful for long com-
putations. (See details)

left_right_profile

(stomp() only) A boolean. If TRUE, the function will return the left and right
profiles.

pre_scrimp A numeric. If not zero, pre_scrimp is computed, using a fraction of the data.
Default is 0.25. This parameter is ignored when using multithread or AB-join.

idxs (mpx() only) A logical. Specifies if the computation will return the Profile Index
or not. Defaults to TRUE.

distance (mpx() only) A string. Currently accepts euclidean and pearson. Defaults to
euclidean.

Details

The Matrix Profile, has the potential to revolutionize time series data mining because of its gen-
erality, versatility, simplicity and scalability. In particular it has implications for time series motif
discovery, time series joins, shapelet discovery (classification), density estimation, semantic seg-
mentation, visualization, rule discovery, clustering etc.

progress, it is really recommended to use it as feedback for long computations. It indeed adds some
(neglectable) overhead, but the benefit of knowing that your computer is still computing is much
bigger than the seconds you may lose in the final benchmark. About n_workers, for Windows
systems, this package uses TBB for multithreading, and Linux and macOS, use TinyThread++.
This may or not raise some issues in the future, so we must be aware of slower processing due to
different mutexes implementations or even unexpected crashes. The Windows version is usually
more reliable. The data and query parameters will be internally converted to a single vector using
as.numeric(), thus, bear in mind that a multidimensional matrix may not work as you expect,
but most 1-dimensional data types will work normally. If query is provided, expect the same pre-
procesment done for data; in addition, exclusion_zone will be ignored and set to 0. Both data
and query doesn’t need to have the same size and they can be interchanged if both are provided.
The difference will be in the returning object. AB-Join returns the Matrix Profile ’A’ and ’B’ i.e.,
the distance between a rolling window from query to data and from data to query.

stamp:
The anytime STAMP computes the Matrix Profile and Profile Index in such manner that it can
be stopped before its complete calculation and return the best so far results allowing ultra-fast
approximate solutions.

stomp:
The STOMP uses a faster implementation to compute the Matrix Profile and Profile Index. It can
be stopped earlier by the user, but the result is not considered anytime, just incomplete. For a
anytime algorithm, use stamp() or scrimp().

scrimp:
The SCRIMP algorithm was the anytime solution for stomp. It is as fast as stomp but allows the
user to cancel the computation and get an approximation of the final result. This implementa-
tion uses the SCRIMP++ code. This means that, at first, it will compute the pre-scrimp (a very
fast and good approximation), and continue improving with scrimp. The exception is if you use
multithreading, that skips the pre-scrimp stage.

stamp 11

mpx:
This algorithm was developed apart from the main Matrix Profile branch that relies on Fast Fourier
Transform (FFT) at least in one part of the process. This algorithm doesn’t use FFT at all and
is several times faster. It also relies on Ogita’s work for better precision computing mean and
standard deviation (part of the process).

Value

Returns a list with the matrix_profile, profile_index (if idxs is TRUE in mpx()), and some
information about the settings used to build it, like ez and partial when the algorithm is finished
early.

This document

Last updated on 2023-01-25 using R version 4.2.2.

References

• Yeh CCM, Zhu Y, Ulanova L, Begum N, Ding Y, Dau HA, et al. Matrix profile I: All pairs
similarity joins for time series: A unifying view that includes motifs, discords and shapelets.
Proc - IEEE Int Conf Data Mining, ICDM. 2017;1317-22.

• Zhu Y, Imamura m, Nikovski D, Keogh E. Matrix Profile VII: Time Series Chains: A New
Primitive for Time Series Data Mining. Knowl Inf Syst. 2018 Jun 2;1-27.

• Zhu Y, Zimmerman Z, Senobari NS, Yeh CM, Funning G. Matrix Profile II : Exploiting a
Novel Algorithm and GPUs to Break the One Hundred Million Barrier for Time Series Motifs
and Joins. Icdm. 2016 Jan 22;54(1):739-48.

Website: http://www.cs.ucr.edu/~eamonn/MatrixProfile.html

See Also

mass() for the underlying algorithm that finds best match of a query.

mpxab() for the forward and reverse join-similarity.

Examples

mp <- stamp(motifs_discords_small, 50)
mp <- stomp(motifs_discords_small, 50)
mp <- scrimp(motifs_discords_small, 50)
mp <- mpx(motifs_discords_small, 50)

http://www.cs.ucr.edu/~eamonn/MatrixProfile.html

12 znorm

znorm Math Functions

Description

znorm(): Normalizes data for mean Zero and Standard Deviation One

ed_corr(): Converts euclidean distances into correlation values

corr_ed(): Converts correlation values into euclidean distances

mode(): Returns the most common value from a vector of integers

std(): Population SD, as R always calculate with n-1 (sample), here we fix it.

normalize(): Normalizes data to be between min and max.

complexity(): Computes the complexity index of the data

binary_split(): Creates a vector with the indexes of binary split.

Usage

znorm(data, rcpp = TRUE)

ed_corr(data, w, rcpp = TRUE)

corr_ed(data, w, rcpp = TRUE)

mode(x, rcpp = FALSE)

std(data, na.rm = FALSE, rcpp = TRUE)

normalize(data, min_lim = 0, max_lim = 1, rcpp = FALSE)

complexity(data)

binary_split(n, rcpp = TRUE)

Arguments

data a vector of numeric.

rcpp A logical. If TRUE will use the Rcpp implementation, otherwise will use the R
implementation, that may or not be slower.

w the window size

x a vector of integers.

na.rm A logical. If TRUE remove the NA values from the computation.

min_lim A number

max_lim A number

n size of the vector

znorm 13

Value

znorm(): Returns the normalized data

ed_corr(): Returns the converted values from euclidean distance to correlation values.

corr_ed(): Returns the converted values from euclidean distance to correlation values.

mode(): Returns the most common value from a vector of integers.

std(): Returns the corrected standard deviation from sample to population.

normalize(): Returns the normalized data between min and max.

complexity(): Returns the complexity index of the data provided (normally a subset).

complexity(): Returns a vector with the binary split indexes.

Examples

normalized <- znorm(motifs_discords_small)
fake_data <- c(rep(3, 100), rep(2, 100), rep(1, 100))
correlation <- ed_corr(fake_data, 50)
fake_data <- c(rep(0.5, 100), rep(1, 100), rep(0.1, 100))
euclidean <- corr_ed(fake_data, 50)
fake_data <- c(1, 1, 4, 5, 2, 3, 1, 7, 9, 4, 5, 2, 3)
mode <- mode(fake_data)
fake_data <- c(1, 1.4, 4.3, 5.1, 2, 3.6, 1.24, 2, 9, 4.3, 5, 2.1, 3)
res <- std(fake_data)
fake_data <- c(1, 1.4, 4.3, 5.1, 2, 3.6, 1.24, 1, 9, 4.3, 5, 2.1, 3)
res <- normalize(fake_data)
fake_data <- c(1, 1.4, 4.3, 5.1, 2, 3.6, 1.24, 8, 9, 4.3, 5, 2.1, 3)
res <- complexity(fake_data)
fake_data <- c(10)
res <- binary_split(fake_data)

Index

∗ datasets
motifs_discords_small, 6

∗ matrix profile computations
stamp, 8

binary_split (znorm), 12

complexity (znorm), 12
contrast, 2
corr_ed (znorm), 12

ed_corr (znorm), 12

mass, 3
mass_pre (mass), 3
matrixprofiler, 5
mode (znorm), 12
motifs_discords_small, 6
mov_max (mov_mean), 6
mov_mean, 6
mov_min (mov_mean), 6
mov_std (mov_mean), 6
mov_sum (mov_mean), 6
mov_var (mov_mean), 6
movmean_std (mov_mean), 6
mpx (stamp), 8
muinvn (mov_mean), 6

normalize (znorm), 12

scrimp (stamp), 8
stamp, 8
std (znorm), 12
stomp (stamp), 8

zero_crossing (mov_mean), 6
znorm, 12

14

	contrast
	mass
	matrixprofiler
	motifs_discords_small
	mov_mean
	stamp
	znorm
	Index

