
matrans-vignette

Xiaonan Hu

2025-03-12

In order to integrate auxiliary information from multiple sources and improve the prediction performance
of the target model of interest, we propose a novel transfer learning framework based on frequentist model
averaging strategy, and provide the implementation of relevant algorithms in this package. In this explanatory
document, we will introduce the model settings and our algorithm in detail, and illustrate the usage of the
functions in the package. The document is summarized as follows:

• Model frameworks

– Partially linear models

• Transfer learning via frequentist model averaging

– Trans-SMAP

• Implementation

• Examples

– Data preparation

– Model fitting and prediction

Model frameworks

Partially linear models

Suppose we have the target data {y
(0)
i , x

(0)
i , z

(0)
i } for i = 1, . . . , n0 and source data {y

(m)
i , x

(m)
i , z

(m)
i } for m =

1, . . . , M , i = 1, . . . , nm. For the mth data set, y
(m)
i are continuous scalar responses, x

(m)
i = (x

(m)
i1 , . . . , x

(m)
ip)T

and z
(m)
i = (z

(m)
i1 , . . . , z

(m)
iqm

)T are p-dimensional and qm-dimensional observations, respectively. Suppose that
the target and source samples follow M + 1 partially additive linear models as

y
(m)
i = µ

(m)
i + ε

(m)
i = (x

(m)
i)T β(m) + g(m)(z

(m)
i) + ε

(m)
i ,

where g
(m)
l is a one-dimensional unknown smooth function, and ε

(m)
i are independent random errors with

E(ε
(m)
i |x

(m)
i , z

(m)
i) = 0 and E{(ε

(m)
i)2|x

(m)
i , z

(m)
i } = σ2

i,m. Here β(m) in different source models are allowed
to be identical or different from the target model, which means source models possibly share parameter
information with the target model. To estimate multiple semiparametric models, a polynomial spline-based
estimator is adopted to approximate nonparametric functions. Assume that there exists a normalized B-spline

basis B
(m)
l (z) = {bl1(z), . . . , b

lv
(m)

l

(z)}T of the spline space, then the estimator can be transformed into a

least squares formula.

1

Transfer learning via frequentist model averaging

Trans-SMAP

First, we construct M + 1 partially linear models for different sources, and define the estimators of µ
(0)
i

corresponding to the M + 1 models by

µ̂
(0)
i,m = (d

(0)
i)T θ̂(0)

m =





(x
(0)
i)T β̂(0) +

q0∑

l=1

{B
(0)
l (z

(0)
il)}T γ̂

(0)
l , m = 0,

(x
(0)
i)T β̂(m) +

q0∑

l=1

{B
(0)
l (z

(0)
il)}T γ̂

(0)
l , m = 1, . . . , M,

where θ̂
(0)
m = {(β̂(m))T , (γ̂

(0)
1)T , . . . , (γ̂

(0)
q0)T }T .

Then, the final prediction is defined as µ̂
(0)
i (w) =

∑M

m=0 wmµ̂
(0)
i,m, where w = (w0, . . . , wM)T is the weight

vector in the space W = {w ∈ [0, 1]M+1 :
∑M

m=0 wm = 1}. To estimate the weights, we adopt the following
J-fold cross-validation based weight choice criterion

CV (w) =
1

n0

J∑

j=1

∑

i∈Gj

{
y

(0)
i − µ̂

(0)
i,[Gc

j
](w)

}2

,

where µ̂
(0)
i,m,[Gc

j
] is similar to µ̂

(0)
i,m except that the estimator is based on data corresponding to the subgroup

Gc
j . The optimal weights are obtained by solving the constrained optimization problem

ŵ = arg min
w∈W

CV (w).

The flowchart of the Trans-SMAP is shown as follows.

Implementation

To implement the estimation of semiparametric models, we apply the cubic B-splines in package splines. The
hyperparameters in B-splines can be specified through the argument bs.para in the R functions trans.smap

and pred.transsmap. The optimization of weights can be formulated as a constrained quadratic programming
problem, which can be implemented by the function solve.QP in package quadprog.

You can install the matrans package with the following codes:

2

library("devtools")

devtools::install_github("XnhuUcas/matrans")

or

install.packages("matrans")

Then you can load the package

library(matrans)

Examples

Data preparation

First, we generate simulation datasets with the same settings for M = 3 as Section 4.1 in Hu and Zhang
(2023) through the function simdata.gen.

set.seed(1)

sample size

size <- c(150, 200, 200, 150)

shared coefficient vectors for different models

coeff0 <- cbind(as.matrix(c(1.4, -1.2, 1, -0.8, 0.65, 0.3)), as.matrix(c(1.4,

-1.2, 1, -0.8, 0.65, 0.3) + 0.02), as.matrix(c(1.4, -1.2, 1, -0.8,

0.65, 0.3) + 0.3), as.matrix(c(1.4, -1.2, 1, -0.8, 0.65, 0.3)))

dimension of parametric component for all models

px <- 6

standard deviation for random errors

err.sigma <- 0.5

the correlation coefficient for covariates

rho <- 0.5

sample size for testing data

size.test <- 500

whole.data <- simdata.gen(px = px, num.source = 4, size = size, coeff0 = coeff0,

coeff.mis = as.matrix(c(coeff0[, 2], 1.8)), err.sigma = err.sigma,

rho = rho, size.test = size.test, sim.set = "homo", tar.spec = "cor",

if.heter = FALSE)

multi-source training datasets

data.train <- whole.data$data.train

testing target dataset

data.test <- whole.data$data.test

Model fitting and prediction

Second, we apply the function trans.smap to estimate the candidate models and model averaging weights
based on the training data.

hyperparameters for B-splines

bs.para <- list(bs.df = rep(3, 3), bs.degree = rep(3, 3))

the second model is misspecified

data.train$data.x[[2]] <- data.train$data.x[[2]][, -7]

fitting the Trans-SMAP

fit.transsmap <- trans.smap(train.data = data.train, nfold = 5, bs.para = bs.para)

weight estimates

3

fit.transsmap$weight.est

[1] 6.268593e-01 3.338169e-19 0.000000e+00 3.731407e-01

computational time of algorithm (sec)

fit.transsmap$time.transsmap

[1] 0.05047202

Finally, we apply the function pred.transsmap to make predictions on new data from the target model
based on the fitting models.

prediction using testing data

pred.res <- pred.transsmap(object = fit.transsmap, newdata = data.test,

bs.para = bs.para)

predicted values for the new observations of predictors

pred.val <- pred.res$predict.val

mean squared prediction risk for Trans-SMAP

sum((pred.val - data.test$data.x %*% data.test$beta.true - data.test$gz.te)ˆ2)/500

[1] 0.02205704

References

• Hu, X., & Zhang, X. (2023). Optimal Parameter-Transfer Learning by Semiparametric Model Averaging.
Journal of Machine Learning Research, 24(358), 1-53.

4

http://jmlr.org/papers/v24/23-0030.html

	Model frameworks
	Partially linear models

	Transfer learning via frequentist model averaging
	Trans-SMAP

	Implementation
	Examples
	Data preparation
	Model fitting and prediction

	References

