Package ‘logr’

March 26, 2025

Title Creates Log Files

Version 1.3.9

Description Contains functions to help create log files. The
package aims to overcome the difficulty of the base R sink() command. The
log_print() function will print to both the console and the file log,
without interfering in other write operations.

License CCO
Encoding UTF-8

URL https://logr.r-sassy.org, https://github.com/dbosak@1/logr

BugReports https://github.com/dbosakd1/logr/issues
Depends R (>=3.4.0), common (>=1.1.3)
Suggests knitr, rmarkdown, testthat, tidylog, dplyr, covr

Imports withr, utils

VignetteBuilder knitr
RoxygenNote 7.3.2

NeedsCompilation no

Author David Bosak [aut, cre],
Rikard Isaksson [ctb]

Maintainer David Bosak <dbosak@1@gmail.com>
Repository CRAN
Date/Publication 2025-03-26 17:30:05 UTC

Contents

GEELLWAININGS « . . v v v v e e e e e e e e e e e e e e e e

log_close

log_code
log_error
log_info

log_open

https://logr.r-sassy.org
https://github.com/dbosak01/logr
https://github.com/dbosak01/logr/issues

get_warnings

log_path e e 10
log print. L 10
log_resume e e e e e e 12
log status e e 13
log_suspend e 14
log warning e 15

Index 17

get_warnings Gets warnings from most recent log
Description

Returns a vector of warning messages from the most recent logging session. The function takes no
parameters. The warning list will be cleared the next time log_open is called.

Usage

get_warnings()

See Also

log_warning to write a warning message to the log.

Examples

library(logr)

Create temp file location
tmp <- file.path(tempdir(), "test.log")

Open log
1f <- log_open(tmp)

Send warning message to log
log_warning("Here is a warning")

Close log
log_close()

Retrieve warnings
res <- get_warnings()

View results

res

[1] "Warning: Here is a warning”

log_close 3

log_close Close the log

Description

The log_close function closes the log file.

Usage
log_close(footer = TRUE)

Arguments
footer Whether or not to print the log footer. Valid values are TRUE and FALSE.
Default is TRUE.
Details

The log_close function terminates logging. The function also prints the log footer. The log footer
contains a date-time stamp of when the log was closed.

Value

None

See Also

log_open to open the log, and log_print for printing to the log.

Examples

library(logr)

Create temp file location
tmp <- file.path(tempdir(), "test.log")

Open log
1f <- log_open(tmp)

Send message to log
log_print("High Mileage Cars Subset")

Perform operations
hmc <- subset(mtcars, mtcars$mpg > 20)

Print data to log
log_print(hmc)

Close log

4 log_code

log_close()

View results
writelLines(readLines(1f))

log_code Log the current program code

Description

A function to send the program/script code to the currently opened log. The log must be opened
first with log_open. Code will be prefixed with a right arrow (">") to differentiate it from standard
logging lines. The 1og_code function may be called from anywhere within the program. Code will
be inserted into the log at the point where it is called. The log_code function will log the code as
it is saved on disk. It will not capture any unsaved changes in the editor. If the current program file
cannot be found, the function will return FALSE and no code will be written.

Usage
log_code()

Value

A TRUE or FALSE value to indicate success or failure of the function.

See Also

log_open to open the log, and log_close to close the log.

Examples

Create temp file location
tmp <- file.path(tempdir(), "test.log")

Open log
1f <- log_open(tmp)

Write code to the log
log_code()

Send message to log
log_print("High Mileage Cars Subset")

Perform operations
hmc <- subset(mtcars, mtcars$mpg > 20)

Print data to log
log_print(hmc)

log_error 5

Close log
log_close()

View results
writeLines(readLines(1f))

log_error Logs an error

Description
Writes an error message to the log. Error will be written both to the log and the message file. For
the log, the error will be written at the point the function is called. This function is used internally.
Usage

log_error(msg = NULL)

Arguments

msg The message to log.

See Also

log_warning to write a warning message to the log.

Examples

library(logr)

Create temp file location
tmp <- file.path(tempdir(), "test.log")

Open log
1f <~ log_open(tmp)

Send error message to log
log_error("Here is a error")

Close log
log_close()

View results
writeLines(readLines(1f))

6 log_info

log_info Logs an informational message

Description

Writes an informational message to the log. Message will be written to the log at the point the
function is called.

Usage
log_info(msg, console = TRUE, blank_after = NULL, hide_notes = FALSE)

Arguments
msg The message to log. The message must be a character string.
console Whether or not to print to the console. Valid values are TRUE and FALSE.

Default is TRUE.

blank_after Whether or not to print a blank line following the printed message. The blank
line helps readability of the log. Valid values are TRUE and FALSE. Default is
TRUE.

hide_notes If notes are on, this parameter gives you the option of not printing notes for a
particular log entry. Default is FALSE, meaning notes will be displayed. Used
internally.

Value

The object, invisibly

See Also

log_warning to write a warning message to the log.
Examples
library(logr)

Create temp file location
tmp <- file.path(tempdir(), "test.log")

Open log
1f <- log_open(tmp)

Send info to log
log_info("Here is an info message")

Close log
log_close()

log_open

View results

writeLines(readLines(1f))

log_open

Open a log

Description

A function to initialize the log file.

Usage
log_open(

file_name =
TRUE,
TRUE,

logdir =

show_notes

nn

’

autolog = NULL,
compact = FALSE,
traceback = TRUE,

header =

TRUE,

stdout = FALSE,

line_size

Arguments

file_name

logdir

show_notes

autolog

compact

traceback

80

The name of the log file. If no path is specified, the working directory will be
used. As of v1.2.7, the name and path of the program or script will be used as a
default if the file_name parameter is not supplied.

Send the log to a log directory. If the log directory does not exist, the function
will create it. Valid values are TRUE, FALSE, or a quoted directory name. The
default is TRUE. The default log directory is named "log".

If true, will write notes to the log. Valid values are TRUE and FALSE. Default
is TRUE.

Whether to turn on autolog functionality. Autolog automatically logs functions
from the dplyr, tidyr, and sassy family of packages. To enable autolog, either
set this parameter to TRUE or set the "logr.autolog" option to TRUE. A FALSE
value on this parameter will override the global option. The global option will
override a NULL on this parameter. Default is that autolog is disabled.

When the compact option is TRUE, logr will minimize the number of blank
spaces in the log. This option generates the same logging information, but in
less space. The "logr.compact” global option does the same thing.

By default, if there is an error in the program being logged, logr will print a
traceback of the error. You may turn this feature off by setting the traceback
parameter to FALSE.

8 log_open

header Whether or not to print the log header. Value values are TRUE and FALSE.
Default is TRUE.
stdout If TRUE, the log will print to stdout instead of a file. Default is FALSE, which

means the log will normally print to a file. This behavior can also be set with
the global option globals("logr.stdout” = TRUE).

line_size The maximum character width for a line in the log. If the line exceeds the
maximum width, the line will be broken and wrapped to the next line. Default
is 80 characters.

Details

The log_open function initializes and opens the log file. This function must be called first, before
any logging can occur. The function determines the log path, attaches event handlers, clears existing
log files, and initiates a new log.

The file_name parameter may be a full path, a relative path, or a file name. An relative path or file
name will be assumed to be relative to the current working directory. If the file_name does not
have a ’.log’ extension, the 1log_open function will add it.

As of v1.2.7, if the file_name parameter is not supplied, the function will use the program/script
name as the default log file name, and the program/script path as the default path.

If requested in the logdir parameter, the log_open function will write to a subdirectory of the path
specified in the file_name. If the subdirectory does not exist, the function will create it. By default,
the subdirectory is named "log". If you want to name it something else, pass the desired name as
a quoted string on the logdir parameter. If you don’t want to send the log to a subdirectory, set
logdir to FALSE.

The log file will be initialized with a header that shows the log file name, the current working
directory, the current user, and a timestamp of when the 1og_open function was called.

All errors, the last warning, and any log_print output will be written to the log. The log file will
exist in the location specified in the file_name parameter, and will normally have a *.log’ extension.

If errors or warnings are generated, a second file will be written that contains only error and warning
messages. This second file will have a .msg’ extension and will exist in the specified log directory.
If the log is clean, the msg file will not be created. The purpose of the msg file is to give the user
a visual indicator from the file system that an error or warning occurred. This indicator msg file is
useful when running programs in batch.

To use logr, call 1log_open, and then make calls to log_print as needed to print variables or data
frames to the log. The log_print function can be used in place of a standard print function. Any-
thing printed with log_print will be printed to the log, and to the console if working interactively.

This package provides the functionality of sink, but in much more user-friendly way. Recom-
mended usage is to call log_open at the top of the script, call log_print as needed to log interim
state, and call log_close at the bottom of the script.

Logging may be controlled globally using the "logr.on" option. This option accepts a TRUE or
FALSE value. If the option is set to FALSE, logr will print to the console, but not to the log.
Example: options("”logr.on"” = TRUE)

Notes may be controlled globally using the "logr.notes" option. This option also accepts a TRUE
or FALSE value, and determines whether or not to print notes in the log. The global option will

log_open 9

override the show_notes parameter on the log_open function. Example: options(”logr.notes”
= FALSE)

Version v1.2.0 of the logr package introduced autolog. The autolog feature provides automatic log-
ging for dplyr, tidyr, and the sassy family of packages. To use autolog, set the autolog parameter
to TRUE, or set the global option logr.autolog to TRUE. To maintain backward compatibility
with prior versions, autolog is disabled by default.

The "compact" parameter will remove all the blank lines between log entries. The downside of a
compact log is that it makes the log harder to read. The benefit is that it will take up less space. The
global option "logr.compact" will achieve the same result.

If an error is encountered, a traceback of the error message is printed to the log and message files by
default. This traceback helps in finding the source of the error, particularly in situations where you
have deeply nested functions. If you wish to turn the traceback off, set the traceback parameter of
the log_open function to FALSE. You may also use the global option logr. traceback to control
printing of this information.

Value

The path of the log.

See Also

log_print for printing to the log (and console), and log_close to close the log.

Examples

library(logr)

Create temp file location
tmp <- file.path(tempdir(), "test.log")

Open log
1f <- log_open(tmp)

Send message to log
log_print("High Mileage Cars Subset")

Perform operations
hmc <- subset(mtcars, mtcars$mpg > 20)

Print data to log
log_print(hmc)

Close log
log_close()

View results
writeLines(readLines(1f))

10 log_print

log_path Get the path of the current log

Description

The log_path function gets the path to the currently opened log. This function may be useful when

you want to manipulate the log in some way, and need the path. The function takes no parameters.
Usage

log_path()

Value

The full path to the currently opened log, or NULL if no log is open.

Examples

Create temp file location
tmp <- file.path(tempdir(), "test.log")

Open log
log_open(tmp)

Get path
1f <- log_path()

Close log
log_close()

1f

log_print Print an object to the log

Description

The log_print function prints an object to the currently opened log.

Usage
log_print(x, ..., console = TRUE, blank_after = NULL, msg = FALSE, hide_notes = FALSE)
put(x, ..., console = TRUE, blank_after = NULL, msg = FALSE, hide_notes = FALSE)

sep(x, console = TRUE)

log_hook(x)

log_print 11

Arguments
X The object to print.
Any parameters to pass to the print function.
console Whether or not to print to the console. Valid values are TRUE and FALSE.

Default is TRUE.

blank_after Whether or not to print a blank line following the printed object. The blank
line helps readability of the log. Valid values are TRUE and FALSE. Default is

TRUE.
msg Whether to print the object to the msg log. This parameter is intended to be used
internally. Value values are TRUE and FALSE. The default value is FALSE.
hide_notes If notes are on, this parameter gives you the option of not printing notes for a
particular log entry. Default is FALSE, meaning notes will be displayed. Used
internally.
Details

The log is initialized with log_open. Once the log is open, objects like variables and data frames
can be printed to the log to monitor execution of your script. If working interactively, the function
will print both to the log and to the console. The log_print function is useful when writing and
debugging batch scripts, and in situations where some record of a scripts’ execution is required.

If requested in the log_open function, log_print will print a note after each call. The note will
contain a date-time stamp and elapsed time since the last call to log_print. When printing a data
frame, the log_print function will also print the number and rows and column in the data frame.
These counts may also be useful in debugging.

Notes may be turned off either by setting the show_notes parameter on log_open to FALSE, or by
setting the global option "logr.notes" to FALSE.

The put function is a shorthand alias for log_print. You can use put anywhere you would use
log_print. The functionality is identical.

The sep function is also a shorthand alias for log_print, except it will print a separator before and
after the printed text. This function is intended for documentation purposes, and you can use it to
help organize your log into sections.

The log_hook function is for other packages that wish to integrate with logr. The function prints
to the log only if autolog is enabled. It will not print to the console.

Value

The object, invisibly

See Also

log_open to open the log, and log_close to close the log.

12 log_resume

Examples

library(logr)

Create temp file location
tmp <- file.path(tempdir(), "test.log")

Open log
1f <- log_open(tmp)

Send message to log
log_print("High Mileage Cars Subset”)

Perform operations
hmc <- subset(mtcars, mtcars$mpg > 20)

Print data to log
log_print(hmc)

Close log
log_close()

View results
writeLines(readLines(1f))

log_resume Resume writing to a log

Description

A function to reopen and resume writing to a log file that has been suspended.

Usage

log_resume(file_name = NULL)

Arguments
file_name The name of the log file to resume. If the file_name parameter is not supplied,
the function will look in the current session for the original name and path of
the log. If that name and path is not found, an error will be generated.
Value
The path of the log.
See Also

log_suspend for suspending the log, and 1log_close to close the log.

log_status 13

Examples
library(logr)

Create temp file location
tmp <- file.path(tempdir(), "test.log")

Open log
1f <- log_open(tmp)

Send message to log
log_print("Before suspend”)

Suspend log
log_suspend()

View suspended log
writeLines(readLines(1f))

Resume log
log_resume(1f)

Print data to log
log_print("After suspend”)

Close log
log_close()

View results
writeLines(readLines(1f))

log_status Get the status of the log

Description

The log_status function gets the status of the log. Possible status values are *on’, ’off’, *open’, or
“closed’. The function takes no parameters.

Usage

log_status()

Value

The status of the log as a character string.

14 log_suspend

Examples

Check status before the log is opened
log_status()
[1] "closed”

Create temp file location
tmp <- file.path(tempdir(), "test.log")

Open log
1f <- log_open(tmp)

Check status after log is opened
log_status()
[1] "open”

Close log
log_close()

log_suspend Suspends the log

Description

The log_suspend function function suspends printing to the log, but does not close it. The function
will not print the log footer. To reopen the log, call log_resume.

Usage
log_suspend()

Value

None

See Also

log_resume to continue logging.
Examples
library(logr)

Create temp file location
tmp <- file.path(tempdir(), "test.log")

Open log
1f <- log_open(tmp)

Send message to log

log_warning 15

log_print("Before suspend”)

Suspend log
log_suspend()

View suspended log
writeLines(readLines(1f))

Resume log
log_resume(1f)

Print data to log
log_print("After suspend”)

Close log
log_close()

View results
writeLines(readLines(1f))

log_warning Logs a warning

Description

Writes a warning message to the log. Warning will be written both to the log at the point the function
is called, and also written to the message file. This function is used internally.

Usage
log_warning(msg = NULL)

Arguments

msg The message to log.

See Also

log_error to write an error message to the log.
Examples
library(logr)

Create temp file location
tmp <- file.path(tempdir(), "test.log")

Open log
1f <- log_open(tmp)

16

Send warning message to log
log_warning("Here is a warning")

Close log
log_close()

View results
writeLines(readLines(1f))

log_warning

Index

get_warnings, 2

log_close,3,4,9,11, 12
log_code, 4

log_error, 5,15
log_hook (log_print), 10
log_info, 6

log_open, 24,7, 11
log_path, 10
log_print, 3,9, 10
log_resume, 12, 14
log_status, 13
log_suspend, 12, 14
log_warning, 2, 5, 6, 15

put (log_print), 10

sep (log_print), 10

17

	get_warnings
	log_close
	log_code
	log_error
	log_info
	log_open
	log_path
	log_print
	log_resume
	log_status
	log_suspend
	log_warning
	Index

