Package ‘loggit’

October 13, 2022
Title Modern Logging for the R Ecosystem

Description An effortless 'ndjson' (newline-delimited 'JSON') logger, with two primary
log-writing interfaces. It provides a set of wrappings for base R's
message(), warning(), and stop() functions that maintain identical
functionality, but also log the handler message to an 'ndjson' log file.
'loggit' also exports its internal 'loggit()' function for powerful and
configurable custom logging. No change in existing code is necessary to use
this package, and should only require additions to fully leverage the power
of the logging system. 'loggit' also provides a log reader for reading an
'ndjson' log file into a data frame, log rotation, and live echo of the
'ndjson' log messages to terminal 'stdout' for log capture by external
systems (like containers). 'loggit' is ideal for Shiny apps, data pipelines,
modeling work flows, and more. Please see the vignettes for detailed example
use cases.

Version 2.1.1

Date 2021-02-27

License MIT + file LICENSE

Depends R (>=3.4.0)

Suggests knitr (>= 1.19), rmarkdown (>= 1.8), testthat (>= 2.0.0)

URL https://github.com/ryapric/loggit

BugReports https://github.com/ryapric/loggit/issues
RoxygenNote 7.1.1

Encoding UTF-8

VignetteBuilder knitr

NeedsCompilation no

Author Ryan Price [cre, aut]

Maintainer Ryan Price <ryapric@gmail.com>

Repository CRAN

Date/Publication 2021-02-28 05:30:02 UTC

https://github.com/ryapric/loggit
https://github.com/ryapric/loggit/issues

2

R topics documented:

Index

get_logfile

get_timestamp_format

handlers
loggit
read_logs L.
read_ndjson,
rotate_logs.
sanmitizers e e
set_logfile
set_timestamp_format.
write_ndjson

get_timestamp_format

get_logfile

Get Log File

Description

Return the log file that loggit will write to.

Usage

get_logfile()

Examples

get_logfile()

get_timestamp_format

Get Timestamp Format

Description

Get timestamp format for use in output logs.

Usage

get_timestamp_format ()

Examples

get_timestamp_format()

handlers 3

handlers loggit’s Exception Handlers

Description

These exception handlers are identical to base R’s message, warning, and stop, but with included
logging of the exception messages via loggit ().

Usage
message(..., domain = NULL, appendLF = TRUE, .loggit = TRUE, echo = TRUE)
warning(
call. = TRUE,

immediate. = FALSE,
noBreaks. = FALSE,
domain = NULL,
.loggit = TRUE,

echo = TRUE
)
stop(..., call. = TRUE, domain = NULL, .loggit = TRUE, echo = TRUE)
Arguments
zero or more objects which can be coerced to character (and which are pasted
together with no separator) or (for message only) a single condition object.
domain see gettext. If NA, messages will not be translated, see also the note in stop.
appendLF logical: should messages given as a character string have a newline appended?
.loggit Should loggit function execute? Defaults to TRUE.
echo Should loggit’s log entry be echoed to the console, as well? Defaults to TRUE.
call. logical, indicating if the call should become part of the warning message.
immediate. logical, indicating if the call should be output immediately, even if getOption("warn™)
<=0.
noBreaks. logical, indicating as far as possible the message should be output as a single
line when options(warn=1).
Examples

if (2 < 1) message("Don't say such silly things!")
if (2 < 1) warning(”"You may want to review that math, and so this is your warning"”)

if (2 < 1) stop("This is a completely false condition, which throws an error")

loggit

loggit

Log entries to file

Description

This function executes immediately before the function definitions for the base handler functions
(message, warning, and stop, and logs their timestamped output (a bit more verbosely) to a log file.
The log file is an ndjson file, which is a portable, JSON-based format that is easily parsed by many
line-processing systems.

Usage

loggit(log_1lvl,

Arguments

log_1vl

log_msg

echo

custom_log_1lvl

sanitizer

Examples

loggit("INFO",

log_msg, ..., echo = TRUE, custom_log_lvl = FALSE, sanitizer)

Level of log output. In actual practice, one of "DEBUG", "INFO", "WARN",
and "ERROR" are common, but any string may be supplied if custom_log_lvl
is TRUE. Will be coerced to class character.

Main log message. Will be coerced to class character.

A named list or named vector (each element of length one) of other custom
fields you wish to log. You do not need to explicitly provide these fields as a
formal list or vector, as shown in the example; R handles the coercion.

Should the log file entry be printed to the console as well? Defaults to TRUE, and
will print out the ndjson line to be logged. This argument is passed as FALSE
when called from loggit’s handlers, since they still call base R’s handlers at the
end of execution, all of which print to the console as well.

Allow log levels other than "DEBUG", "INFO", "WARN", and "ERROR"? De-
faults to FALSE, to prevent possible typos by the developer, and to limit the
variation in structured log contents. Overall, setting this to “TRUE® is not rec-
ommended, but is an option for consistency with other frameworks the user may
work with.

Sanitizer function to run over elements in log data. The default sanitizer, if not
specified, is default_ndjson_sanitizer(). See the sanitizers documentation
for information on how to write your own (un)sanitizer functions.

"This is a message”, but_maybe = "you want more fields?",

sure = "why not?”, like = 2, or = 10, what = "ever")

https://github.com/ndjson

read_logs 5

read_logs Return log file as an R data frame

Description

This function returns a data.frame containing all the logs in the provided ndjson log file. If no
explicit log file is provided, calling this function will return a data frame of the log file currently
pointed to by the loggit functions.

Usage

read_logs(logfile, unsanitizer)

Arguments
logfile Path to log file. Will default to currently-set log file.
unsanitizer Unsanitizer function to use. For more info on sanitizers, please see the sanitizers
section of the package documentation.
Value

A data.frame.

Examples

set_logfile(file.path(tempdir(), "loggit.log"), confirm = FALSE)
message("Test log message”)
read_logs()

read_ndjson Read ndJSON-formatted log file

Description

Read ndJSON-formatted log file

Usage

read_ndjson(logfile, unsanitizer)

Arguments

logfile Log file to read from, and convert to a data. frame.

unsanitizer Unsanitizer function passed in from read_logs().

6 rotate_logs

Value

A data.frame

rotate_logs Rotate log file

Description

Truncates the log file to the line count provided as rotate_lines.

Usage

rotate_logs(rotate_lines = 1e+05, logfile)

Arguments

rotate_lines The number of log entries to keep in the logfile. Defaults to 100,000.

logfile Log file to truncate. Defaults to the currently-configured log file.

Details

loggit makes no assumptions nor enforcement of calling this function; that is to say, the onus of
log rotation is up to the developer. You

Examples

Truncate "default” log file to 100 lines
set_logfile()

for (i in 1:150) {loggit("INFQ", i, echo = FALSE)}
rotate_logs(100)

Truncate a different log file to 250 lines
another_log <- file.path(tempdir(), "another.log")
set_logfile(another_log)

for (i in 1:300) {loggit("INFQO", i, echo = FALSE)}
set_logfile() # clears pointer to other log file
rotate_logs(250, another_log)

sanitizers 7

sanitizers Default sanitization for ndJSON.

Description

This is the default ndJSON sanitizer function for log data being read into the R session by read_logs().
This type of function is needed because since loggit reimplements its own string-based JSON
parser, and not a fancy one built from an AST or something, it’s very easy to have bad patterns
break your logs. You may also specify your own sanitizer function to pass to loggit(), which
takes a single string and returns an (optionally-transformed) string, where each string is an individ-
ual element of the log data.

Usage

default_ndjson_sanitizer(string, sanitize = TRUE)

default_ndjson_unsanitizer(string)

Arguments
string Each element of the log data to operate on. Note that this is each element,
not each line in the logs. For example, each entry in the log_msg field across
all logs will be sanitized/unsanitized individually. This is important because if
writing your own sanitizer function, it must take and return a single string as
its argument.
sanitize Whether the operation will sanitize, or unsanitize the log data. Defaults to TRUE,
for sanitization on write.
Details

The default string patterns and their replacements are currently mapped as follows:

Character Replacement in log file

{ __LEFTBRACE__
} __RIGHTBRACE__
" __DBLQUOTE__

, __COMMA__

\r __CR__

\n _LF

Value

A single string.

8 set_timestamp_format

set_logfile Set Log File

Description

Set the log file that loggit will write to. No logs outside of a temporary directory will be written
until this is set explicitly, as per CRAN policy. Therefore, the default behavior is to create a file
named loggit.log in your system’s temporary directory.

Usage
set_logfile(logfile = NULL, confirm = TRUE)

Arguments
logfile Full or relative path to log file. If not provided, will write to <tmpdir>/loggit.log.
confirm Print confirmation of log file setting? Defaults to TRUE.

Details

A suggested use of this function would be to call it early, to log to the current working directory,
as follows: set_logfile(paste@(getwd(), "/loggit.log")). If you are using loggit in your
package, you can wrap this function in .onLoad() so that the logfile is set when your package
loads.

Examples

set_logfile(file.path(tempdir(), "loggit.log"))

set_timestamp_format Set Timestamp Format

Description

Set timestamp format for use in output logs. This function performs no time format validations, but
will echo out the current time in the provided format for manual validation.

Usage
set_timestamp_format(ts_format = "%Y-%m-%dT%H:%M:%S%z", confirm = TRUE)

Arguments

ts_format ISO date format. Defaults to ISO-8601 (e.g. "2020-01-01T00:00:00+0000").

confirm Print confirmation message of timestamp format? Defaults to TRUE.

write_ndjson 9

Details
This function provides no means of setting a timezone, and instead relies on the host system’s time

configuration to provide this. This is to enforce consistency across software running on the host.

Examples

set_timestamp_format ("%Y-%m-%d %H:%M:%S")

write_ndjson Write ndJSON-formatted log file

Description

Write ndJSON-formatted log file

Usage
write_ndjson(log_df, logfile, echo = TRUE, overwrite = FALSE)

Arguments
log_df Data frame of log data. Rows are converted to ndjson entries, with the columns
as the fields.
logfile Log file to write to. Defaults to currently-configured log file.
echo Echo the ndjson entry to the R console? Defaults to TRUE.
overwrite Overwrite previous log file data? Defaults to FALSE, and so will append new log

entries to the log file.

Index

default_ndjson_sanitizer (sanitizers), 7

default_ndjson_sanitizer(), 4

default_ndjson_unsanitizer
(sanitizers), 7

get_logfile, 2
get_timestamp_format, 2
getOption, 3

gettext, 3

handlers, 3

loggit, 4
loggit(), 7

message, 3, 4
message (handlers), 3

read_logs, 5
read_logs(), 5,7
read_ndjson, 5
rotate_logs, 6

sanitizers, 4, 5,7
set_logfile, 8
set_timestamp_format, 8
stop, 3, 4

stop (handlers), 3

warning, 3, 4
warning (handlers), 3
write_ndjson, 9

10

	get_logfile
	get_timestamp_format
	handlers
	loggit
	read_logs
	read_ndjson
	rotate_logs
	sanitizers
	set_logfile
	set_timestamp_format
	write_ndjson
	Index

