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Abstract

Maximum likelihood estimation of a log-concave density has attracted considerable
attention over the last few years. Several algorithms have been proposed to estimate such
a density. Two of those algorithms, an iterative convex minorant and an active set algo-
rithm, are implemented in the R package logcondens. While these algorithms are discussed
elsewhere, we describe in this paper the use of the logcondens package and discuss func-
tions and datasets related to log-concave density estimation contained in the package. In
particular, we provide functions to (1) compute the maximum likelihood estimate (MLE)
as well as a smoothed log-concave density estimator derived from the MLE, (2) evaluate
the estimated density, distribution and quantile functions at arbitrary points, (3) compute
the characterizing functions of the MLE, (4) sample from the estimated distribution, and
finally (5) perform a two-sample permutation test using a modified Kolmogorov-Smirnov
test statistic. In addition, logcondens makes two datasets available that have been used
to illustrate log-concave density estimation.

Keywords: log-concave, density estimation, Kolmogorov-Smirnov test, R.

1. Introduction

1.1. About this document

Although first uploaded to CRAN in 2006, a detailed description (beyond the package manual)
of the functionality of the R package logcondens (Rufibach and Dümbgen 2010) had been
lacking so far. This document is an introduction to logcondens, based on Dümbgen and
Rufibach (2010), that not only discusses and illustrates the use of the implemented iterative
convex minorant (ICMA) and the active set algorithm (ASA), but more functions that
are useful in connection with univariate log-concave density estimation. The package also
provides functions to evaluate quantities whose explicit computations are not immediate,
such as distribution and quantile functions, the smoothed log-concave density estimator and
the corresponding distribution function, sampling from the different estimators, and a two-
sample permutation test. In addition, the data sets analyzed in Dümbgen and Rufibach
(2009) and Koenker and Mizera (2010) are provided as part of logcondens. Using the former
of these datasets we illustrate how logcondens can be used to explore data. The package
is available from the Comprehensive R Archive Network at http://CRAN.R-project.org/

package=logcondens.

http://CRAN.R-project.org/package=logcondens
http://CRAN.R-project.org/package=logcondens
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This document was created using Sweave (Leisch 2002), LATEX (Knuth 1984; Lamport 1994),
and R (R Development Core Team 2010). This means that all of the code has been checked
by R.

1.2. Log-concave density estimation

One way to nonparametrically estimate a density from univariate i.i.d. data is imposing
a qualitative constraint such as monotonicity, convexity, or log-concavity. In contrast to
smoothing methods such as kernel estimation or roughness penalization, methods relying
on shape constraints are fully automatic, i.e. they do not necessitate any choice of tuning
parameters such as a bandwidth or a penalty parameter. Choosing these tuning parameters is
notoriously involved, since typically their optimal values depend on properties of the unknown
density to be estimated. To fix notation, let f be a probability density on R. We call f log-

concave if it may be written as
f(x) = exp ϕ(x)

for some concave function ϕ : R → [−∞, ∞). Based on a sample of i.i.d. random variables
X1, . . . , Xn ∈ R from f we seek to estimate this density via maximizing the normalized
log-likelihood function

`(ϕ) = n−1
n∑

i=1

log f(Xi) = n−1
n∑

i=1

ϕ(Xi)

over all concave functions ϕ : R → [−∞, ∞) such that
∫

exp ϕ(x) dx = 1. The resulting max-
imum likelihood estimators (MLEs) of ϕ and f are denoted by ϕ̂ and f̂ = exp ϕ̂, respectively.

Dümbgen and Rufibach (2009) show that the maximizer ϕ̂ of ` is unique, piecewise linear
on the interval [X(1), X(n)] with knots only at (some of the) observations X(i), and ϕ̂ = −∞
elsewhere. Here X(1) ≤ X(2) ≤ · · · ≤ X(n) are the ordered observations, and a “knot” of ϕ̂

is a location where this function changes slope. The MLEs ϕ̂, f̂ and F̂ are consistent with
certain rates of convergence, see Dümbgen and Rufibach (2009) and Balabdaoui, Rufibach,
and Wellner (2009).

The merits of using a log-concave density have been extensively described in Balabdaoui
et al. (2009), Cule, Gramacy, and Samworth (2009), and Walther (2009). The most relevant
properties, in our opinion, are:

• Many parametric models consist of log–concave densities, at least for large parts of
the parameter space. Examples include: Normal, Uniform, Gamma(r, λ) for r ≥ 1,
Beta(a, b) for a, b ≥ 1, generalized Pareto, Gumbel, Fréchet, logistic or Laplace, to
mention only some of these models. Therefore, assuming log–concavity offers a flexi-
ble non–parametric alternative to purely parametric models. Note that a log–concave
density need not be symmetric.

• Given that log-concavity seems to be a plausible assumption for many datasets one
encounters in applications, we also advocate the use of this package in routine data
analysis. Instead of looking at a histogram (via hist()) or a kernel density estimate
when exploring data we propose to additionally display the log-concave estimate, or
its smoothed version described below, to get an idea about the distribution of the
data. Especially for small sample sizes, kernel estimates are prone to artifacts, but
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assuming additional structure on the underlying distribution reduces the influence of
single observations on the estimated density. To illustrate this point we added the
estimate resulting from invoking density() to Figure 1 (black line).

• Every log–concave density is automatically unimodal.

• The nonparametric MLE of a continuous unimodal density does not exist (see e.g. Birgé
1997) but the nonparametric MLE of a log-concave density does. Thus the class of log-
concave densities may be a useful and valuable surrogate for the larger class of unimodal
densities.

• Using a standard EM algorithm, mixtures with log-concave component densities can be
computed, see Chang and Walther (2007) and Cule, Samworth, and Stewart (2010).

• Log-concavity turns out to be a valuable assumption in dimensions higher than 1 as
well, see Cule et al. (2009, 2010); Koenker and Mizera (2010); Schuhmacher, Hüsler,
and Dümbgen (2009); Seregin and Wellner (2010).

Figure 1 provides an introductory example based on simulated data. Namely, we generated
a random sample of size n = 40 from a standard normal distribution (the corresponding
density function is in fact log-concave) and estimated the density of these observations under
a log-concavity restriction. In the left plot of Figure 1 we provide plots of the true density
the observations are sampled from, the estimated density, and the kernel density estimate
as provided by density(). Given the small sample size of n = 40, both the log-concave
and kernel estimate capture the shape of the truth quite accurately. The features of the log-
concave MLE are visible: The support of f̂ is [X(1), X(n)] and the knots, marked by vertical
lines at the bottom of the plot, are indeed at some of the observations. On the other hand,
the notorious bumpy behavior of the kernel estimate appears in the tails, especially on the
left hand side. Piecewise linearity of the estimated log-density is visualized in the right plot
of Figure 1.

We will illustrate the main functions of logcondens on this simulated dataset and then discuss
their merits in analyzing a real-world dataset. To generate the data, invoke:

R> library("logcondens")

R> set.seed(1)

R> n.sim <- 40

R> x.sim <-sort(rnorm(n.sim))

Then, we compute and display the log-concave density estimate, the density we sampled from,
and a standard kernel estimate:

R> res <- logConDens(x.sim, smoothed = FALSE, print = FALSE)

R> xs <- seq(-5, 5, by = 0.01)

R> f.true <- dnorm(xs)

R> par(las = 1, oma = c(0, 0, 3, 0), mar = c(3, 3.5, 0.5, 0.5),

+ mfrow = c(1, 2))

R> plot(res, which = "density", add.title = FALSE, legend.pos = "none")

R> title(main = "Log-concave density estimation from i.i.d. data",
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Figure 1: Introductory example based on simulated data.

+ outer = TRUE)

R> mtext("Dashed vertical lines indicate knots of the log-density", 3,

+ outer = TRUE)

R> lines(xs, f.true, col = 4, lwd = 2)

R> lines(density(x.sim), lwd = 2)

R> legend("topleft", c("Kernel", "Estimated", "True"), lty = 1, lwd = 2,

+ col = c(1, 2, 4), bty = "n")

R> plot(res, which = "log-density", add.title = FALSE, legend.pos = "none")

R> lines(xs, log(f.true), col = 4, lwd = 2)

In Sections 2 and 3 we briefly review some theory behind log-concave density estimation.
The use of the smoothed log-concave density estimator introduced in Dümbgen and Rufibach
(2009) is illustrated in Section 4. After explaining the implementation of the main functions
of the package logcondens in Section 5, sampling from both estimators is discussed briefly in
Section 6. In Section 7 we take up the simulated data from the introduction and use it to
illustrate the package’s main functions. How to apply log-concave densities for the analysis of
a real world dataset is shown in Section 8. We conclude in Section 9 with a small simulation
study illustrating the use of log-concave estimates to improve the power of a two-sample
Kolmogorov-Smirnov test.

Explicit formulae for the distribution, integrated distribution, quantile function, the smoothed
estimator as well as for the computation of the difference between two log-concave CDFs are
postponed to the appendix.
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2. Computing the log-concave estimator

The general log-likelihood. As discussed in the introduction, our goal is to maximize
the functional `(ϕ) over all log-concave functions ϕ : R → [−∞, ∞) such that exp(ϕ) is a
probability density. Let us first modify ` somewhat: For given support points x1 < x2 <
· · · < xm and probability weights w1, w2, . . . , wm > 0 we consider

`(ϕ) =
m∑

j=1

wjϕ(xj).

The standard setting. By default, x1 < x2 < . . . < xm are the different elements of
{X1, X2, . . . , Xn}, and wj := n−1#{i ≤ n : Xi = xj}. In the idealized setting of i.i.d.
observations Xi from a density f , the numbers m and n coincide, while xj = X(j) and
wj = n−1. However, there could be tied observations, e.g. due to rounding errors, resulting
in m < n support points.

An alternative setting. In case of very large sample sizes one may wish to reduce com-
putation time and storage space by approximating the raw data Xi. Let x1 < x2 < · · · <
xm be given support points such that [x1, xm] ⊃ [X(1), X(n)]. Then we define probability
weights wj , 1 ≤ j ≤ m, as follows: If a raw observation Xi falls into [xj , xj+1], we add
n−1(xj+1 − Xi)/(xj+1 − xj) to wj and n−1(Xi − xj)/(xj+1 − xj) to wj+1. That way we ap-
proximate the empirical distribution of the raw data Xi by a discrete distribution

∑m
j=1 wjδxj

having the same mean and possibly larger variance. However one can show that the increase
in variance is no larger than maxj<m(xj+1 − xj)2/4. Finally, pairs (xj , wj) with wj = 0 are
removed to reduce the dimension as much as possible.

We implemented automatic computation of weights and the binning algorithm described
above in the function preProcess in logcondens. This function is automatically invoked by
those functions that take the raw data as argument, specifically activeSetLogCon, icmaLogCon

and the functions that depend on them, most importantly logConDens. For a description of
how to specify a user-defined grid we refer to the respective help files in logcondens.

The modified log-likelihood. To relax the constraint of f being a density and to get
a criterion function to maximize over all concave functions, we employ the standard trick
(cf. Silverman 1982, Theorem 3.1) of adding a Lagrange term to `, leading to the modified
functional

L(ϕ) =
m∑

j=1

wjϕ(xj) −
∫

R

exp ϕ(t) dt. (1)

With the same arguments as Dümbgen and Rufibach (2009) one can show that there ex-
ists a unique concave function ϕ̂ maximizing this functional L(·). It satisfies the equation∫

exp ϕ̂(t) dt = 1 and has the following additional properties: ϕ̂ = −∞ on R \ [x1, xm], and ϕ̂
is continuous and piecewise linear on [x1, xm] with knots only in {x1, x2, . . . , xm}. Any such
function ϕ is fully specified by the vector ϕ = (ϕ(xj))m

j=1. We therefore restrict attention to
the set P(x1, x2, . . . , xm) of vectors ϕ ∈ R

m such that

ϕj+1 − ϕj

xj+1 − xj
≥ ϕj − ϕj−1

xj − xj−1
for i = 2, . . . , m − 1.



6 logcondens: Computations Related to Univariate Log-Concave Density Estimation

This allows to rewrite the integral (1) as

L(ϕ) =
m∑

j=1

wjϕj −
m−1∑

j=1

(xj+1 − xj)J(ϕj , ϕj+1)

with the auxiliary function

J(r, s) =

{(
exp(r) − exp(s)

)/
(r − s) if r 6= s,

exp(r) if r = s.

The constrained optimization problem we are now aiming to solve reads

ϕ̂ = arg max
ϕ∈P(x1,x2,...,xm)

L(ϕ),

where L is a strictly concave functional on R
m, see Dümbgen, Hüsler, and Rufibach (2010,

Section 2). For more details on the computations leading to the final form of L we refer to
Dümbgen and Rufibach (2009). It is important to note that (iterative) maximization of the
functional L yields the vector (ϕ̂(xj))m

j=1 and not the density estimate directly. However, due
to the piecewise linearity of the function ϕ̂ the maximizing vector (ϕ̂(xj))m

j=1 can be identified
with

ϕ̂(x) =

{
ϕ̂j + (x − xj)ŝj+1 for x ∈ [xj , xj+1], 1 ≤ j < m

−∞ for x ∈ R \ [x1, xm]

for x ∈ R, where ŝj+1 = ∆ϕ̂j+1/∆xj+1 and ∆vj+1 := vj+1 − vj , 1 ≤ j < m, for any vector

v ∈ R
m. Finally, the density estimate at x is then simply f̂ = exp ϕ̂, i.e. f̂ = 0 outside

[x1, xm]. These two functions are implemented in evaluateLogConDens. Computation of
additional functions at a given point x is discussed in Section 5.2.

Approximation. From the definitions of L(ϕ) and J(r, s) above it is clear that numerical
inaccuracies may occur whenever two consecutive components ϕj , ϕj+1 of the vector ϕ under
consideration are getting very close. This means that the argument ϕ has “flat” stretches.
To avoid these numerical inaccuracies in computations, we approximate J and its derivatives
in the implementation in logcondens by Taylor polynomials of degree four if |r − s| is small.
Exact bounds and formulae for these polynomials are worked out in Dümbgen et al. (2010,
Section 6). Similar approximations are also used to compute

∫
F̂ and F̂ ∗, see the appendix.

An iterative convex minorant algorithm. First attempts to compute ϕ̂ are described in
Rufibach (2007): Four different algorithms were proposed that all reliably found the maximum
of L. However, not all are equally efficient. As a clear winner in the contest arranged in that
paper in terms of speed came off the ICMA. For this reason, this algorithm was chosen to be
implemented in logcondens, as the function icmaLogCon. First proposed by Groeneboom and
Wellner (1992) and further detailed by Jongbloed (1998), the ICMA is especially tailored to
maximize a smooth objective function over particular convex cones by maximizing quadratic
approximations to the objective function via the pool-adjacent-violaters algorithm (PAVA).
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An active set algorithm. For a description of active set algorithms see e.g. Fletcher
(1987, Section 10.3) or Nocedal and Wright (1999, Section 16.4). The application to log-
concave density estimation is discussed in considerable generality by Dümbgen et al. (2010,
Section 3) and therefore omitted here. A key feature of an ASA is that it solves a finite

number of unconstrained optimization problems. The function activeSetLogCon estimates a
log-concave density via an ASA.

Related work. Note also the implementations of the above two algorithms for isotonic

estimation in the R package isotone and the description in de Leeuw, Hornik, and Mair
(2009). In a similar context, an ASA was used to compute an estimate in the ordered factor
regression problem, see Rufibach (2010) and the R package OrdFacReg (Rufibach 2009).

Range of applicability. The minimal sample size that allows estimation of a log-concave
density is n = 2. Estimating a log-concave density for n in the millions causes no problems
on a laptop computer and depending on the resources may take a few minutes. Alternatively,
to speed up computation time for large n, one can approximate the empirical distribution of
the raw data by a discrete distribution with m << n support points as indicated before.

3. Characterization and properties of the estimator

In what follows let F̂ be the distribution function corresponding to the density f̂ = exp ϕ̂,
and let F be the distribution function of the discrete measure

∑m
j=1 wjδxj

. Using suitable
directional derivatives of the log-likelihood function, Dümbgen and Rufibach (2009) derive
various useful facts about ϕ̂. Here are the two most relevant ones in the present context:

A characterization. Let ϕ̃ be a concave function which is linear on all intervals [xj , xj+1],
1 ≤ j < m, while ϕ̃ = −∞ on R \ [x1, xm]. Defining F̃ (x) :=

∫ x
−∞ exp ϕ̃(r) dr, we assume

further that F̃ (xm) = 1. Then ϕ̃ = ϕ̂ and F̃ = F̂ if, and only if, for arbitrary t ∈ [x1, xm],

∫ t

x1

F̃ (r) dr ≤
∫ t

x1

F(r) dr

with equality in case of t being a knot of ϕ̃, i.e.

t ∈ S(ϕ̃) := {x1, xm} ∪
{
t ∈ (x1, xm) : ϕ̃′(t −) > ϕ̃′(t +)

}
.

This characterization entails that F̂ is rather close to F in the sense that F(t −) ≤ F̂ (t) ≤ F(t)
for any knot t of ϕ̂. It is also relevant for our algorithms, because

H(t, ϕ̃) :=

∫ t

x1

(F̃ − F)(r) dr =
d

du

∣∣∣
u=0

L(ϕ̃ + u∆t) (2)

with ∆t(x) := min(x − t, 0). Suitable functions to compute H = H(·, ϕ̂) are implemented in
logcondens, see Section 5.
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Further properties. Another remarkable property of F̂ and F is the inequality

∫
h(x) dF̂ (x) ≤

∫
h(x) dF(x) for arbitrary convex h : R → R.

In particular, setting h(x) = ±x and h(x) = x2 yields

Mean(F̂ ) = Mean(F) =
m∑

j=1

wjxj = X̄ (3)

and

Var(F̂ ) ≤ Var(F). (4)

4. Smoothing the log-concave density estimator

From Dümbgen and Rufibach (2009, Theorem 2.1) we know that ϕ̂ is equal to 0 outside
[x1, xm], i.e. ϕ̂ has potentially sharp discontinuities at both ends of its support. In addition,
the estimator ϕ̂ may have quite sharp kinks; compare the mode of f̂ in Figure 1. To over-
come these minor inconveniences and for additional reasons elaborated in the analysis of the
reliability data in Section 8, Dümbgen and Rufibach (2009) introduce a smoothed log-concave

density estimator f̂∗, defined for some bandwidth γ > 0 as

f̂∗(x) =

∫ ∞

−∞
φγ(x − y)f̂(y) dy,

i.e. the convolution of f̂ with a Gaussian kernel φγ with mean 0 and standard deviation γ.
By virtue of a celebrated result of Prékopa (1971), it is known that the class of log-concave
densities is closed under convolution, whence f̂∗ is log-concave, too. Due to the simple
structure of ϕ̂ and our restriction to Gaussian kernels, one can deduce explicit formulae for
f̂∗(x) and its distribution function F̂ ∗(x) at any x, see Section 5.2 and Appendix C.

Choice of bandwidth. Let F̂ ∗ be the distribution function of the smoothed density f̂∗.
Note that F̂ ∗ is the distribution function of X +Z with independent random variables X ∼ F̂
and Z ∼ N(0, γ2). Thus it follows from (3) that all distribution functions F̂ ∗, F̂ ,F have the
same mean X̄, whereas

Var(F̂ ∗) = Var(F̂ ) + γ2 ≤ Var(F) + γ2,

according to (4). Now consider the estimator

σ̂2 = n(n − 1)−1 Var(F) = n(n − 1)−1
m∑

j=1

wj
(
xj − X̄

)2
.

In the standard setting, this is an unbiased estimator of Var(Xi). Hence, as proposed by
Dümbgen and Rufibach (2009, Section 3), the default value for γ is the square root of

γ̂2 = σ̂2 − Var(F̂ ).
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This yields an estimated distribution function F̂ ∗ with standard deviation σ̂. Using γ = γ̂
also makes f̂∗ a fully automatic estimator.

The variance of F̂ can be computed explicitly as follows:

Var(F̂ ) =

∫ xm

x1

(x − X̄)2f̂(x) dx

=
m∑

j=2

∆xj

(
(xj−1 − X̄)2J10(ϕ̂j−1, ϕ̂j) + (xj − X̄)2J10(ϕ̂j , ϕ̂j−1)

− (∆xj)2J11(ϕ̂j−1, ϕ̂j)
)
.

Here J10 equals the partial derivative of J(r, s) with respect to r, while J11 is the partial
derivative of J with respect to r and s, see Dümbgen et al. (2010, Section 2) for a derivation
and computational details.

5. Implementation and main functions

5.1. Function to compute the estimate

Using the simulated data from the introduction we now describe the function to estimate a
log-concave density and the corresponding summary and plot methods.

The primary function of the package is logConDens which returns an object of class dlc. A
dlc object is a list consisting of

• xn: the vector (Xi)
n
i=1 of original observations,

• x: the vector (xj)m
j=1 of support points,

• w: the vector (wj)m
j=1 of weights,

• phi: the estimated vector ϕ̂ = (ϕ̂(xj))m
j=1,

• IsKnot: the vector (1{xj is a knot of ϕ̂})m
j=1,

• L: the value L(ϕ̂),

• Fhat: a vector (F̂ (xj))m
j=1 with values of the c.d.f. of f̂ ,

• H: a vector (H(xj))m
j=1 of directional derivatives (cf. (2) in Section 3),

as generated by activeSetLogCon. If smoothed = TRUE in the call of logConDens then dlc

additionally contains the entries

• f.smoothed: A vector that contains the values of f̂∗ either at an equidistant grid of
500 values ranging from x − 0.1r to x + 0.1r for x = minj=1,...,m xj , x = maxj=1,...,m xj ,

and r = x − x if xs = NULL or the value of f̂∗ at the values of xs if a vector is provided
as the latter argument.

• F.smoothed: The values of F̂ ∗
n on the grid.
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• gam: The computed value of γ̂.

• xs: Either the vector of 500 grid points or the initial vector xs of points at which
f.smoothed is to be computed.

Finally, the entry smoothed returns the value of the initial argument. Note that the knots
collected in IsKnot are not derived from ϕ̂ but appear as a direct by-product of the active set
algorithm. The quantities Hj can be used to verify the characterization of the estimator in
terms of distribution function as elaborated in Dümbgen and Rufibach (2009). See Section 3
for an illustration.

A summary and plot method are available for the class dlc. The summary method provides
some basic quantities of the estimates whereas the plot method is intended to provide a quick
way of standard plotting ϕ̂, f̂ , and F̂ and f̂∗, F̂ ∗ (optional). For more tailor-made plots we
recommend to extract the necessary quantities from the dlc object and plot them with the
desired modifications, as we do when generating Figure 3.

Note that to plot f̂ and F̂ we do not simply linearly interpolate the points exp ϕ̂(t) for
t ∈ Ŝm(ϕ̂) but we rather compute f̂ and F̂ on a sufficiently fine grid of points using the
function evaluateLogConDens, to display the shape of the estimated density and distribution
function between knot points correctly.

5.2. Evaluation of the fitted estimators

Thanks to the simple structure of ϕ̂, closed formulae can be derived for ϕ̂, f̂ , F̂ , F̂ −1 as well
as f̂∗, F̂ ∗ on their respective domain, see Section 2 and the appendix for details. These
formulae are implemented in logcondens via the two functions evaluateLogConDens and
quantilesLogConDens.

To compute the process H = H(·, ϕ̂) in (2) one needs to be able to compute the integral of the
distribution functions F̂ and F, at an arbitrary point t. Again, exploiting the structure of ϕ̂ a
closed formula can be derived for

∫ t
x1

F̂ (r) dr, see Appendix B. This formula is implemented
in the function intF in the package logcondens, and we use this function together with its
companion intECDF (ECDF: empirical cumulative distribution function) for the empirical
distribution function to compute the process D.

6. Sampling from the different estimators

Cule et al. (2010) describe Monte Carlo estimation of functionals of f̂ (which may be one-
or multidimensional) by sampling from a random vector (variable) X̂ that has density f̂ and
plugging in these samples into the functionals of interest. In order to sample from f̂ , they
use a rejection sampling procedure, see Cule et al. (2010, Section 7.1), implemented as the
function rlcd in Cule et al. (2009). In logcondens we implemented sampling not only from
f̂ , but also from f̂∗ as the function rlogcon, using the quantile function F̂ −1 implemented
in quantilesLogConDens. Note that by making use of the quantile function F̂ −1 in rlogcon

we generate a sample of a given size from f̂ directly, without the need of rejecting (some of)
the generated numbers. There is no need to implement the quantile function F̂ ∗ for the sake
of simulating samples from F̂ ∗, thanks to the fact that f̂∗ is the density of the convolution of
f̂ with a given normal kernel.
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Sampling from the estimate may serve at least two purposes: First, as described above,
generated samples can be used to approximate functionals of f̂ or f̂∗, as described in Cule
et al. (2010). Second, in certain applications it may be the explicit goal to get simulated
samples from an estimated density, see Section 8 below and Dümbgen and Rufibach (2009,
Section 3).

7. Illustration of main functions on simulated example

To demonstrate the code in logcondens we take up the sample generated in Section 1.2
(denoted as the object x.sim). Note that the plot method for a dlc object is already
illustrated in that introductory example. Here, we detail application of the functions discussed
in Section 5. To get a summary of the estimated densities invoke

R> res <- logConDens(x.sim, smoothed = TRUE, print = FALSE)

R> summary(res)

Estimation of a log-concave density from i.i.d. data

Number of initial observations: n = 40

Number of unique observations (or grid points): m = 40

log-likelihood: -2.18

Maximum likelihood estimate:

Mode: x[16] = -0.056

Value of log-density at mode: -0.76

Value of density at mode: 0.47

Smoothed maximum likelihood estimate:

Mode: 0.27

Value of log-density at mode: -0.81

Value of density at mode: 0.45

Number of knots of the MLE: 4

Knots of the MLE:

x[1, 16, 31, 40] =

-2.215, -0.056, 0.763, 1.595

Compare the displayed numbers, such as mode, value at the mode, and knots of the log-density
to Figure 1. To compute the value of all the estimated functions we invoke:

R> evaluateLogConDens(xs = -1, res, which = 1:5)

xs log-density density CDF smooth.density smooth.CDF

[1,] -1 -1.765 0.1712 0.1164 0.1793 0.124
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R> quantilesLogConDens(ps = 0.5, res)

ps quantile

[1,] 0.5 0.1688

To illustrate the characterization of the estimators provided in Section 3, we use the functions
intF and intECDF to compute the process H(t), see Figure 2. The upper plot in Figure 2
displays F and F̂ whereas in the lower plot H is provided. The graphs illustrate that (1) F̂
closely approximates F, a fact that can be made precise, see Dümbgen and Rufibach (2009,
Corollary 2.5 and Theorem 4.4), (2) the kinks of ϕ̂ occur where the process H is equal to zero
as postulated in Section 3 (compare Figures 1 and 2).

R> n <- res$n

R> xn <- res$xn

R> ss <- sort(unique(c(x.sim, seq(min(x.sim), max(x.sim), length = 200))))

R> H1 <- intF(ss, res)

R> H2 <- intECDF(ss, xn)

R> Ht <- H1 - H2

R> ED <- 0 : (n + 1) / n

R> par(mfrow = c(2, 1), mar = c(0, 5, 2, 1), mex = 1, las = 1)

R> plot(x.sim, res$Fhat, type = 'n', xaxt = 'n', ylab = 'Distribution

+ functions')

R> rug(x.sim); lines(x.sim, res$Fhat, col = 2, lwd = 1.5)

R> lines(c(min(xn) - 10, xn, max(xn) + 10), ED, type = 's', lwd = 1.5)

R> abline(v = res$knots, lty = 3); par(mar = c(4.5, 5, 0, 1))

R> legend(-2.1, 1, c("empirical distribution function", expression("CDF based

+ on "*hat(f)[m])), lty = 1, col = 1:2, lwd = 2, bty = "n")

R> plot(ss, Ht, type = 'n', xlab = "generated random sample x",

+ ylab = "process H(t)", yaxt = "n")

R> lines(ss, Ht, col = 2, lwd = 1.5)

R> ax <- -c(0.02, 0.01, 0); axis(2, at = ax , labels = ax, cex.axis = 0.8)

R> rug(x.sim); abline(v = res$knots, lty = 3); abline(h = 0, lty = 1)

8. Exemplary analysis of reliability dataset

To further demonstrate the functions in logcondens we will apply them to analyze a real-
life dataset that had previously been used to illustrate log-concave density estimation. The
reliability data was collected as part of a consulting project at the Institute for Mathematical
Statistics and Actuarial Science at the University of Bern, see also Dümbgen and Rufibach
(2009, Section 3). Basic descriptive statistics of the dataset are provided in Table 1. Note that
in this dataset we have n = 786 original observations. However, pooling tied observations
and introducing weights as described in Section 2 we end up with only m = 535 unique
observations.
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Figure 2: Distribution functions and the process H(t) for the simulated data. Vertical bars
at the bottom of the plots indicate observations.

A company asked for Monte Carlo experiments to predict the reliability of a certain device
they produce, where the reliability depended in a certain deterministic way on five different
and independent random input parameters. The dataset reliability in logcondens contains
only data on the first of these input parameters. The goal was to fit a suitable distribution to
this sample that can be used to simulate from. As elaborated in Dümbgen and Rufibach (2009,
Section 3) we first considered two standard approaches to estimate the unknown density f :
namely

(i) fitting a Gaussian density f̂par with mean µ(F) and variance σ̂2 = n(n − 1)−1 Var(F),

(ii) the kernel density estimator

f̂ker(x) :=

∫
φ

σ̂/
√

n
(x − y) dF(y),
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Variable n Minimum 1
st Quartile Median 3

rd Quartile Maximum IQR

reliability 786 1404.2 1632.2 1688.2 1735.6 1853.6 103.4

Table 1: Descriptive statistics of reliability data.

where φσ denotes the Normal density with mean 0 and variance σ2.

The very small bandwidth σ̂/
√

n was chosen to obtain a density with variance σ̂2 and to avoid
putting too much weight into the tails, which was crucial in the engineers’ application. We
think that in general such undersmoothed density estimators are a simple way of depicting
the empirical distribution of raw data.

Looking at the data, approach (i) is clearly inappropriate because the reliability sample of
size n = 786 reveals a skewed and pronouncedly non-gaussian distribution. This can be seen
in Figure 3, where the multimodal curve corresponds to f̂ker, while the dashed line depicts
f̂par. Approach (ii) yielded Monte Carlo results agreeing well with measured reliabilities, but

the engineers were not satisfied with the multimodality of f̂ker. Choosing a kernel estimator
with larger bandwidth would overestimate the variance and put too much weight into the
tails. Thus we agreed on a third approach and estimated f by the smoothed log-concave
estimator f̂∗ introduced in Section 4.

This density estimator is the skewed unimodal curve in Figure 3. Apart from the advantages
described above – unimodality, variance equal to σ̂2, and not too heavy tails – it yielded
convincing results in the Monte Carlo simulations, too. In addition and as expected, the
kinks and the discontinuities at x1 and xm of f̂ are smoothed out by f̂∗. Note that both
estimators f̂ and f̂∗ are fully automatic.

Now, the primary goal of this data analysis was to provide simulated samples from the
estimated densities f̂ and f̂∗. The function rlogcon that implements sampling from the
distribution that corresponds to f̂ in the package logcondens is based on the quantile function
F̂ −1, derived in Appendix A and implemented as quantilesLogConDens. Thanks to the fact
that f̂∗ is the density of the convolution of f̂ with a Gaussian kernel with standard deviation
γ, a random number X∗ from f̂∗ can easily be obtained by computing X∗ = X + Y with
independent random variables X ∼ F̂ and Y ∼ N(0, γ2).

To illustrate how the functions in logcondens can be used to explore different estimates, we
provide below the code that is used to generate Figure 3. Note that this is the same Figure
already displayed in Dümbgen and Rufibach (2009, Figure 2).

R> x.rel <- sort(reliability)

R> n <- length(x.rel)

R> mu <- mean(x.rel); sig <- sd(x.rel)

R> xs <- seq(1350, 1950, length.out = 500)

R> res <- logConDens(x.rel, smoothed = TRUE, print = FALSE, xs = xs)

R> f.smoothed <- res$f.smoothed

R> xs2 <- xs[(xs >= min(x.rel)) & (xs <= max(x.rel))]

R> f <- rep(NA, length(xs2))

R> for (i in 1:length(xs2)){f[i] <- evaluateLogConDens(xs2[i],

+ res)[, "density"]}

R> h <- sig / sqrt(n)
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Figure 3: Different estimates of the density of the reliability data.

R> f.kernel <- rep(NA, length(xs))

R> for (i in 1:length(xs)){f.kernel[i] <- mean(dnorm(xs[i], mean =

+ x.rel, sd = h))}

R> f.normal <- dnorm(xs, mean = mu, sd = sig)

R> par(las = 1, mar = c(3, 3.5, 0.5, 0.5))

R> plot(0, 0, type = 'n', xlim = c(1390, 1900), ylim =

+ c(0, 6.5 * 10^-3), ylab = "")

R> rug(x.rel)

R> lines(xs, f.normal, col = 3)

R> lines(xs, f.kernel, col = 4)

R> lines(xs, f.smoothed, lwd = 4, col = 5)

R> lines(xs2, f, col = 2)

R> segments(c(-1300, max(x.rel)), c(0, 0), c(min(x.rel), 2000),

+ c(0, 0), col = 2)

R> legend("topleft", c(expression("log-concave "*hat(f)[n]),

+ expression("normal "*hat(f)[nor]), expression("kernel "*hat(f)[ker]),

+ expression("log-concave smoothed "*hat(f)[n]*"*")),

+ lty = 1, lwd = 3, col = 2:5, bty = "n")

R> segments(res$knots, 0, res$knots, 0.002, lty = 2)

Finally, we illustrate how we can efficiently generate samples from f̂ and f̂∗ and thus content
the engineers that initiated this research. In addition, samples from the estimators could be
used to approximate some functional of f̂ or f̂∗, as described in Cule et al. (2010).

R> set.seed(1977)
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R> rel_samples <- rlogcon(n = 20, x0 = x.rel)

The sorted sample of size n = 20 from the log-concave density estimator can be extracted
using

R> sort(rel_samples$X)

[1] 1511.954 1594.168 1621.873 1645.044 1663.611 1673.327 1674.606

[8] 1675.477 1689.173 1689.405 1696.573 1697.265 1710.816 1712.501

[15] 1716.976 1724.642 1730.252 1783.473 1792.702 1807.486

and one from the smoothed log-concave density estimator via

R> sort(rel_samples$X_star)

[1] 1514.480 1599.645 1615.953 1648.505 1662.295 1663.369 1677.193

[8] 1677.583 1685.057 1686.471 1689.579 1705.722 1707.009 1712.771

[15] 1718.095 1727.095 1727.765 1780.637 1785.171 1813.476

9. Smooth two-sample permutation test

Dümbgen and Rufibach (2009, Theorem 4.4) have shown that the distribution function esti-
mators F and F̂ are, under mild assumptions, asymptotically equivalent and F̂ acts in this
sense as a smoother of F. However, by imposing log-concavity efficiency gains in estimation
seem plausible for small to moderate sample sizes. This leads us to the proposal of a smooth

test for distribution functions which we now describe.

Suppose the researcher is given two samples (Xi)
n1

i=1 and (Yi)
n2

i=1 of independent random
variables Xi ∼ FX and Yj ∼ FY with unknown distribution functions FX , FY .

To test whether H0 : FX = FY versus H1 : FX 6= FY , a commonly used two-sample test
statistic is the Kolmogorov-Smirnov statistic, comparing the empirical distribution functions
FX and FY of the two samples:

K = K(FX ,FY ) :=
(
n1n2/(n1 + n2))

)1/2‖FX − FY ‖∞

where ‖f‖∞ := supx∈R |f(x)| for any function f : R → R. The limiting distribution of Kn

and the corresponding asymptotic test can be found in Durbin (1973).

If one imposes that FX and FY both have log-concave density functions, we propose the
following modified test statistic:

K̂ = K̂(F̂X , F̂Y ) =
(
n1n2/(n1 + n2))

)1/2‖F̂X − F̂Y ‖∞

where F̂X and F̂Y are the log-concave distribution function estimators of FX and FY . Deriving
the limiting distribution of this statistic is a difficult task, but if one assumes that under H0 the
pooled sample (Z1, Z2, . . . , Zn1+n2

) := (X1, . . . , Xn1
, Y1, . . . , Yn2

) has the same distribution as

(ZΠ1
, . . . , ZΠn1

, ZΠn1+1
, . . . , ZΠn1+n2

)
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where Π is a random permutation of {1, . . . , n1 + n2} not depending on the data one can
perform a Monte Carlo permutation test of H0 as follows: Generate M independent copies
of Π and calculate the corresponding values of the test statistic K̂(1), K̂(2), . . . , K̂(M). Then
a nonparametric p-value for H0 is given by

p̂ =
1 + #{i ≤ M : K̂(i) ≥ K̂}

1 + M
.

The null hypothesis H0 is rejected if p is not larger than the pre-specified significance level α.

Details on the computation of K̂(F̂X , F̂Y ) as well as for K̂∗
n(F̂X , F̂Y ), the statistic based on

the smoothed log-concave distribution function estimates, are provided in Appendix E.

Computation of differences between distribution functions is implemented in the function
maxDiffCDF in the logcondens package. To generate two samples from a Gamma distribution
and invoke the smooth two sample test that is based on the function maxDiffCDF use the
code:

R> set.seed(1)

R> n1 <- 20

R> n2 <- 25

R> x <- sort(rgamma(n1, 2, 1))

R> y <- sort(rgamma(n2, 2, 1) + 0.5)

R> twosample <- logconTwoSample(x, y, M = 5, display = FALSE)

R> twosample$p.value

[1] 0.3333 0.3333

R> twosample$test.stat.orig

[1] 0.3716 0.3652

R> twosample$test.stats[1:5, ]

[,1] [,2]

[1,] 0.1453 0.07292

[2,] 0.1606 0.08579

[3,] 0.2418 0.23463

[4,] 0.3336 0.33189

[5,] 0.6606 0.64047

So in this example we get p-values of 0.33 and 0.33, respectively, quantifying the evidence
against the null hypothesis of equal distribution functions. The first of these p-values results
from a permutation test based on the log-concave MLE whereas the latter is computed via the
smoothed log-concave density estimate. Note that we have chosen the (too) small number of
permutations M = 5 only in this illustrative example. Clearly, in applications we recommend
to set M to at least 1000, as we do in our simulations below.

To assess the performance of this nonparametric permutation test in terms of power compared
to the Kolmogorov-Smirnov test we conducted a simulation study considering the following
settings:
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Setting 1: n1 = 20 n2 = 25 X ∼ N(0, 1) vs. Y ∼ N(µ, 1)
Setting 2: n1 = 20 n2 = 25 X ∼ Gam(2, 1) vs. Y ∼ Gam(2, 1) + µ
Setting 3: n1 = 20 n2 = 25 X ∼ Gam(2, 1) vs. Y ∼ Gam(τ, 1)

for µ ∈ {0, 0.5, 1, 1.5, 2} and τ ∈ {1, 1.5, 2, 2.5, 3}. We simulated each setting 1000 times
and M = 999 was used as argument in logconTwoSample. The number of rejected null
hypothesis when adopting a significance level of α = 0.05 are displayed in Figure 4. We find,
in accordance with Cule et al. (2010, Section 9, Remark (ii)), that the test based on the log-
concave CDF uniformly outperforms, for the rather moderate sample sizes we consider, the
Kolmogorov-Smirnov test. For very large sample sizes the difference in power between the two
tests decreases (not shown). We therefore recommend to use the function logconTwoSample

to assess the null hypothesis of two identical distribution functions, especially when only few
or moderately many observations are available.

Note that this modified test is valid even if the assumption of log-concavity of the density
functions is violated. Such a violation would only affect the power.
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Figure 4: Proportion of rejected null hypothesis at α = 0.05 for the null hypothesis of equal
distribution functions for two samples of size n1 = 20 and n2 = 25. Horizontal offset of points
only to increase legibility.
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10. Final remarks

In Koenker and Mizera (2010, Figure 3) quasi-concave density estimation, a generalization
of log-concave density estimation, was illustrated on radial and rotational velocities of the
Bright Star Catalog, see Hoffleit and Warren (1991). For convenience, we also included this
dataset in logcondens as a dataframe named brightstar.

A. Density, distribution and quantile function

Formulas to compute the log-density and density function at a given point x0 ∈ R are provided
in Section 2. The distribution function estimator F̂ and its integral I(t) :=

∫ t
x1

F̂ (r) dr are
implemented in the functions evaluateLogConDens and intF. For completeness, we provide
here the corresponding formulas. Note that (5) is also provided in Dümbgen et al. (2010,
Theorem 2.1). Recall from Section 2 the function J . Here, we use a slightly generalized
version, defined as

J̃(r, s, v) :=

∫ v

0
exp

(
(1 − t)r + ts

)
dt

for arbitrary r, s ∈ R and v ∈ [0, 1]. The relation J̃(r, s, v) = exp(r)J̃(0, s − r, v) holds, and

J̃(r, s, v) =

{ (
exp(r) − exp(r + v(s − r))

)/
(r − s) if r 6= s,

v exp(r) if r = s,

see also the manual of logcondens, especially the help file Jfunctions.

In what follows, we will use a simple generic parametric model. Namely, define for θ ∈ R a
probability density on [0, 1] as

gθ(x) := J(0, θ)−1 exp(θx) =

{
θeθx/(eθ − 1) if θ 6= 0

1 if θ = 0.

The distribution and quantile function corresponding to gθ are given as

Gθ(r) =

{
(eθr − 1)/(eθ − 1) if θ 6= 0

r if θ = 0

and

G−1
θ (u) =

{
log

(
1 + (eθ − 1)u

)
/θ if θ 6= 0

u if θ = 0

for r, u ∈ [0, 1], respectively. Note that G−1
θ is implemented as qloglin in logcondens. For

|θ| ≤ 10−6 a Taylor approximation is used, because

G−1
θ (u) = u + θu(1 − u)/2 + O(θ2)

as θ → 0, uniformly in u ∈ [0, 1]. Now, let ϕ ∈ R
m where this vector is identified with a

function ϕ : R → [−∞, ∞) via

ϕ(x) :=





−∞ for x 6∈ [x1, xm] ,

ϕj +
x − xj

∆xj+1
∆ϕj+1 for x ∈ [xj , xj+1], 1 ≤ j < m ,
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where ∆vj+1 := vj+1 − vj for any v ∈ R
m. Suppose further that f := exp(ϕ) is a probability

density on R and let F be the corresponding distribution function. Then F (x1) = F1 := 0,
and

F (xj) = Fj :=
j−1∑

i=1

∆xj+1J(ϕi, ϕi+1) for 2 ≤ j ≤ m

with Fm = 1. For a proof we refer to Dümbgen et al. (2010, Theorem 2.1). To compute
the quantile function of F , note that for any x ∈ [xj , xj+1] by again exploiting the special
structure of ϕ,

F (x) − F (xj) =

∫ x

xj

exp(ϕ(t)) dt

=

∫ x

xj

exp
(
ϕj +

x − xj

∆xj+1
∆ϕj+1

)
dt

= ∆xj+1

∫ (x−xj)/∆xj+1

0
exp

(
(1 − v)ϕj + vϕj+1

)
dv

= ∆xj+1J̃
(
ϕj , ϕj+1,

x − xj

∆xj+1

)
. (5)

Some tedious computations lead to the corresponding quantile function

F −1(u) = xj + ∆xj+1G−1
∆xj+1∆ϕj+1

(
(u − Fj)/∆Fj+1

)
for u ∈ [Fj , Fj+1], 1 ≤ j < m .

This function is the basis of quantilesLogConDens in logcondens.

B. The integral of F at an arbitrary x0

Recall the definition sj = ∆ϕj/∆xj from Section 2. In addition, we define fj = f(xj) for
j = 1, . . . , m. To be able to compute the process H = H(·, ϕ̂) introduced in (2) the aim is to
derive an explicit formula for

Ij(x) =

∫ x

xj

F (r) dr

for any j = 1, . . . , m − 1 and x ∈ [xj , xj+1]. Using (5) we can write

Ij(x) =

∫ x

xj

(
Fj + ∆xj+1J̃

(
ϕj , ϕj+1,

r − xj

∆xj+1

))
dr

= (x − xj)Fj + ∆xj+1

∫ x

xj

J̃
(
ϕj , ϕj+1,

r − xj

∆xj+1

)
dr.

But,

∫ x

xj

J̃
(
ϕj , ϕj+1,

r − xj

∆xj+1

)
dr = ∆xj+1

∫ (x−xj)/∆xj+1

0
J̃(ϕj , ϕj+1, y) dy (6)

= −s−1
j+1

∫ (x−xj)/∆xj+1

0
(exp(ϕj) − exp(ϕj + y∆ϕj+1)) dy

= − x − xj

∆ϕj+1
fj + s−1

j+1J̃
(
ϕj , ϕj+1,

x − xj

∆xj+1

)
.
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Putting the pieces together we receive

Ij(x) = (x − xj)Fj + ∆xj+1

(
s−1

j+1J̃
(
ϕj , ϕj+1,

x − xj

∆xj+1

)
− x − xj

∆ϕj+1
fj

)
.

Specifically, for x = xj+1,

Ij(xj+1) = ∆xj+1

[
Fj + s−1

j+1

(
J̃(ϕj , ϕj+1, 1) − fj

)]
.

We finally get

I(t) =

∫ t

x1

F (r) dr =
( i0∑

i=1

Ii(xi+1)
)

+ Ii0
(t)

where i0 = min{m − 1 , max{i : xi ≤ t}}.

Approximation for sj+1 → 0. Since we divide by sj+1 in the compuation of Ij(x) this ex-
pression becomes numerically unstable or even undefined once the slope sj+1 of ϕ approaches
or even equals 0. To avoid these problems, we compute the limit for a := sj+1 → 0 in the
integral in (6):

lim
a→0

∫ x

xj

J̃
(
ϕj , ϕj+1,

r − xj

∆xj+1

)
dr = lim

a→0

∫ (x−xj)/∆xj+1

0

exp(ϕj + y∆ϕj+1) − exp ϕj

a
dy

= fj lim
a→0

∫ (x−xj)/∆xj+1

0

exp(ya∆xj+1) − 1

a
dy

= fj

∫ (x−xj)/∆xj+1

0
y∆xj+1 dy

= fj
(x − xj)2

2∆xj+1
.

This approximation is used in intF once sj+1 ≤ 10−6.

C. The smoothed log-concave density estimator

For γ > 0 and x ∈ R recall the density function φγ of a centered normal density as

φγ(x) =
1√
2πγ

exp(−x2/(2γ2)).

Its distribution function is denoted by Φγ . Elementary calculations reveal that for arbitrary
numbers a, x and γ > 0,

eayφγ(x − y) = exp(ax + a2γ2/2)φγ(y − x − aγ2),

so that for real boundaries u < v,

qγ(x, a, u, v) :=

∫ v

u
ea(y−u)φγ(x − y) dy

= exp(a(x − u) + a2γ2/2)
(
Φγ(v − x − aγ2) − Φγ(u − x − aγ2)

)

= exp(a(x − u) + a2γ2/2)
(
Φγ(x − u + aγ2) − Φγ(x − v + aγ2)

)
. (7)
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The smoothed log-concave density estimator then amounts to

f̂∗(x) =

∫ ∞

−∞
φγ(x − y)f̂(y) dy

=
m∑

j=2

∫ xj

xj−1

φγ(x − y)f̂(y) dy

=
m∑

j=2

f̂j−1

∫ xj

xj−1

exp(ŝj(y − xj−1))φγ(x − y) dy

=
m∑

j=2

f̂j−1 qγ(x, ŝj , xj−1, xj).

The function evaluateLogConDens implements f̂∗ in logcondens. However, note that it is
most convenient to compute f̂∗ via specifying smoothed = TRUE in logConDens.

In extreme situations, e.g. data sets containing extreme spacings, numerical problems may
occur in (7). For it may happen that the exponent is rather large while the difference of
Gaussian CDFs is very small. To moderate these problems, we are using the following bounds
in the function Q00 implementing qγ in logcondens:

exp(−m2/2)
(
Φ(δ) − Φ(−δ)

)
≤ Φ(b) − Φ(a) ≤ exp(−m2/2) cosh(mδ)

(
Φ(δ) − Φ(−δ)

)

for arbitrary numbers a < b and m := (a + b)/2, δ := (b − a)/2.

D. The smoothed log-concave CDF estimator

Using partial integration, we get for arbitrary numbers x, a 6= 0 and real boundaries u < v:

Qγ(x, a, u, v) :=

∫ v

u
ea(y−u)Φγ(x − y) dy

=
[
a−1ea(y−u)Φγ(x − y)

]v

y=u
+ a−1

∫ v

u
ea(y−u)φγ(x − y) dy

= +a−1(
ea(v−u)Φγ(x − v) − Φγ(x − u)

)
+ a−1qγ(x, a, u, v)

with qγ(x, a, u, v) as in (7). As a → 0, this converges to

Qγ(x, 0, u, v) :=

∫ v

u
Φγ(x − y) dy

=
[
(y − x)Φγ(x − y)

]v

y=u
+

∫ v

u
(y − x)φγ(x − y) dy

=
[
(y − x)Φγ(x − y) − γ2φγ(x − y)

]v

y=u

= (x − u)Φγ(x − u) − (x − v)Φγ(x − v) + γ2(
φγ(x − u) − φγ(x − v)

)
.
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This leads to the formula

F̂ ∗(x) =

∫ ∞

−∞
Φγ(x − y)f̂(y) dy

=
m∑

j=2

∫ xj

xj−1

Φγ(x − y)f̂(y) dy

=
m∑

j=2

f̂j−1

∫ xj

xj−1

exp(ŝj(y − xj−1))Φγ(x − y) dy

=
m∑

j=2

f̂j−1 Qγ(x, ŝj , xj−1, xj).

This representation is implemented in evaluateLogConDens and logConDens, where for nu-
merical reasons, Qγ(x, ŝj , xj−1, xj) is replaced with Qγ(x, 0, xj−1, xj) in case of |ŝj | ≤ 10−6.

E. Computation of the two-sample test statistic

To calculate K, the built-in R function ks.test was used. This function computes an exact p-
value in a two-sample problem if the product of the respective sample size is smaller than 104,
as fulfilled in our simulation examples. As to the computation of K̂n, define D := F̂X − F̂Y ,
and let z1 < . . . < zN denote the sorted pooled observations X1, . . . , Xn1

, Y1, . . . , Yn2
, i.e.

N = n1 + n2. The goal is to find

x∗ := arg max
x∈R

|D(x)|,

enabling us to compute K̂ = |D(x∗)|. Note that in general D is not unimodal, let alone con-
cave. However, again thanks to the special structure of the log-density estimate computation
of xX is possible according to the following scheme. With the order statistics X(i) and Y(j)

of the two samples define

L := max{X(1), Y(1)} and R := min{X(n), Y(n)}.

First, we sort out a simple pathological case: If R ≤ L, then any point x between R and L
yields |D(x)| = 1, yielding K̂ = (n1n2/(n1 + n2)))1/2. Otherwise, due to the monotonicity of
distribution functions one has

arg max
x∈R

|D(x)| = arg max
x∈[L,R]

|D(x)|.

A necessary condition for a x ∈ (L, R) to be a maximum of |D(·)| is D′(x) = 0, which is
equivalent to ϕ̂X(x) = ϕ̂Y (x). As for the computation of x, proceed as follows:

1. Identify all k ∈ {1, . . . , N − 1} such that there exists a yk ∈ [zk, zk+1] := Ik with
ϕ̂X(yk) = ϕ̂Y (yk). Let K denote the set of these k’s.

2. Since both ϕ̂X and ϕ̂Y are linear on every interval Ik, we can find for each k the point
yk where these two functions intersect via the equality

(
1 − yk − zk

zk+1 − zk

)
ϕ̂X(zk) +

yk − zk

zk+1 − zk
ϕ̂X(zk+1) =

(
1 − yk − zk

zk+1 − zk

)
ϕ̂Y (zk) +

yk − zk

zk+1 − zk
ϕ̂Y (zk+1)
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Figure 5: Estimated empirical and log-concave distribution functions for Gam(2, 1) and
Gam(2, 1) + 0.5. Horizontal and vertical lines indicate location of largest difference between
CDFs.

yielding

yk = zk − (ϕ̂Y (zk) − ϕ̂X(zk))
( ϕ̂X(zk+1) − ϕ̂X(zk)

zk+1 − zk
− ϕ̂Y (zk+1) − ϕ̂Y (zk)

zk+1 − zk

)−1
.

Note that if the denominator, the difference of slopes of ϕ̂X and ϕ̂Y on [zk, zk+1], is zero then
the two functions must match on that interval (otherwise they would not intersect). This in
turn implies that the difference D is constant on that interval so that we can consider yk = zk

a possible point where the maximum of D occurs. Consequently, |D(·)| is maximal at one (or
more) points in the set

R = {L, R} ∪ {yk : k ∈ K}

and

K̂n =
(
n1n2/(n1 + n2))

)1/2
max{D(r) : r ∈ R}.

Figure 5 gives an example.

The computation of K̂∗
n(F̂X , F̂Y ) appears to be less straightforward than that of K̂n(F̂X , F̂Y ).

In logconTwoSample we first approximate the function (D∗)′
x = (∂/∂x)(D∗)(u, x) for u =

z1 − 0.1 · (zN − z1) on a sufficiently dense equidistant grid (the number of elements in that
grid can be provided to logconTwoSample using the argument n.grid). Then, similar to the
computation of K̂n(F̂X , F̂Y ), we identify those grid intervals where (D∗)′

x changes sign. To
finally find the maximum of the latter function we then invoke uniroot to find the precise
location of the zeros on these intervals, compute the value of (D∗)′

x at each of these zeros
and identify the largest of these values. In general, the computation of K̂∗

n(F̂X , F̂Y ) is more
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time-consuming than that of K̂n(F̂X , F̂Y ). However, since on the level of CDFs the MLE and
its smoothed version are very similar, differences with respect to the smooth two-sample test
in terms of power are very small. For these reasons we omitted the smooth version of the test
in our small simulation study reported on in Section 9.
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