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1 Maintainer’s note

Once the package is installed, this document can be viewed via vignette(“lmm-
tr”) from R.

The reference should readt

Schafer, J.L. (1998) Some improved proedures for linear mixed models. Dept.
of Statistics, The Pennsylvania State University.

The marijuana data as in Table 1 and in the package is reproduced here,

Table 1: Change in heart rate recorded 15 and 90 minutes after marijuana
use, measured in beats per minute above baseline

15 minutes 90 minutes
Subject Placebo Low High | Placebo Low High
1 16 20 16 20 -6 -4
2 12 24 12 -6 4 -8
3 8 8 26 -4 4 8
4 20 8 - - 20 -4
5 8 4 -8 - 22 -8
6 10 20 28 -20 -4 -4
7 4 28 24 12 8 18
8 -8 20 24 -3 8 24
9 - 20 24 8 12 -

After the package is loaded, one can use example(example) to run the
example provided or issue help(example,package=“lmm”) to see the ex-
ample code.

2 Technical Report

The technical report starts from next page.

!The technical report was originally obtained from http://www.stat.psu.edu/"jls/
misoftwa.html
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Linear mixed-effects models are widely used in the analysis of longitudinal and clustered data. This article
presents new expressions for the derivatives of loglikelihood functions for these models with respect to
unknown components of variance. These expressions are easy to evaluate and involve the same quanti-
ties needed for EM algorithms for maximum-likelihood (ML) and restricted maximum-likelihood (RML)
estimation. Three applications for these derivative expressions are developed: (a) new hybrid algorithms
for ML and RML estimation that combine the stability and low per-iteration cost of EM with the rapid
convergence of Fisher scoring; (b) a new analytic method for correcting traditional empirical Bayes interval
estimates for the uncertainty associated with variance components; and (¢) a new Markov chain Monte
Carlo algorithm for Bayesian posterior simulation that has the low per-iteration cost of a conventional

Gibbs sampler but converges rapidly.
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1 Introduction

Let y; be a vector of n; measurements for sample unit 4, 2 = 1,...,m. I assume that y; follows the general
linear mixed model

yi = Xif8 + Z;ib; + ¢4, (1)

where X; (n; x p) and Z; (n; X q) are known covariate matrices, and b; and ¢; are random errors distributed

as

bi ~ Nq(07¢)7 (2)

€ an (O,U2W), (3)

independently for ¢ = 1,..., m. Models of this form were proposed by Hartley and Rao (1967) and became
practically useful due to the computational work of Laird and Ware (1982); Jennrich and Schluchter
(1986); Laird, Lange, and Stram (1987); Lindstrom and Bates (1988); and others. These models are often
applied in longitudinal settings, where y; represents repeated measurements of a variable over time, and the
measurement times are incorporated into X; and Z;. Because no particular form is assumed for X; or Z;,
the model accommodates time-varying covariates, unequally-spaced responses, and incomplete data where
some responses are missing for some units. Other applications involve multilevel or clustered data, where y;
represents measurements for subunits nested within unit 7 (e.g. students within a classroom). Algorithms
for fitting these models have been implemented in SAS (Littell et al., 1996), S-PLUS (MathSoft, Inc.,

1997), MLn (Multilevel Models Project, 1996) and HLM (Bryk, Raudenbush, and Congdon, 1996).

Depending on the context, various assumptions are made about the covariance matrices ¢ and o2V;.
With clustered data, each V; (n; xn;) is typically required to be an identity matrix, reflecting an assumption
that subunits within clusters have exchangeable errors. In longitudinal applications, exchangeable models
are common, as are patterned (e.g. banded or first-order autoregressive) forms where the V; depend on a
small number of free parameters. Often no restrictions are placed on v other than positive definiteness
(v > 0). Models with block-diagonal v are also popular, because with suitable Z; this allows units to be

grouped into subsamples having different between-unit covariance matrices (e.g. Laird, Lange, and Stram,



1987). For the remainder of this article I assume that Vi,...,V,, are known. Extensions where V; contains
unknown parameters are not difficult and may be addressed in future work. In addition, I will apply an
assumption of linearity to the between-unit precision matrix. This linear form is crucial and cannot be
done away with easily. The assumption is relatively benign, however, because it covers the usual situations

where ¢ is unstructured or block-diagonal.

Depending on the context, one may want to draw inferences about the coefficients  common to all units
(the “fixed effects”), the unit-specific coefficients b; (the “random effects”), or the variance components
(62,1). The dual errors (2) and (3) allow the model to be expressed as a linear regression with patterned

covariance,
yi ~ N(Xis, *W;H), (4)
where W; = (Z;£ZF +V;)™! and ¢ = 0=%¢). Maximum-likelihood (ML) estimates of 3, o2, and ¢ are

obtained by maximizing the likelihood function arising from (4),
N &~ 1 1
Lo(6.0%,8) o (%) ¥ TLIWelt exo { =5 (- X)Wt - Xi0) | )
i=1

where N = Y~ n;. For the variance components, some prefer restricted maximum-likelihood (RML)
estimates, which are obtained by maximizing a function equal to the indefinite integral of (5) over 3,

(N—p)

Li(0%,¢) o (0?) H|Wz’|% eXp{_%(yi — X;B)"Wi(ys _Xz'/é)}a (6)

where

B = (iXiTWiXi> (i XzTWz'yi) (7)

i=1

is the generalized least-squares estimate of 3 implied by (0?,&). Notice that W; and B are functions of
&; for notational simplicity, however, the dependence upon £ is suppressed. ML and RML estimates are
discussed from a frequentist perspective by Harville (1977) and from a Bayesian perspective by Dempster,

Rubin, and Tsutakawa (1981).

Two approaches are commonly used to maximize Lg or Li. Methods based on the EM algorithm are
given by Laird and Ware (1982); Jennrich and Schluchter (1986); Laird, Lange, and Stram (1987); and Liu

and Rubin (1995). Newton-Raphson and Fisher scoring are discussed by Jennrich and Schluchter (1986)



and Lindstrom and Bates (1988). EM is easy to implement and stable but can be very slow to converge.
Progress in speeding EM has recently been made by Meng and van Dyk (1997). Newton-Raphson and
scoring typically converge in just a few iterations, but current versions are complicated and have a high
per-iteration cost. Moreover, these algorithms require careful implementation because they lack some of the
stability of EM; the loglikelihood might not increase at each iteration, estimates might leave the parameter
space, and the algorithms may fail if the loglikelihood function is oddly shaped (e.g. non-concave or having

maxima on the boundary).

Inferences about random effects are based on the following results which I state without proof. Condi-
tionally upon y = (y1,¥2,.--,ym) and (8,02, &), Bayes’s Theorem implies that by, ..., b,, are independent

and normal with posterior moments E(b; | y, 8,02,€) = b; and V (b; | y, 8,02, €) = 02U;, where

b; U,Z]V; My — XiB), (8)

Ui = (& +zlvi'z)™ 9)

Empirical Bayes (EB) point and interval estimates for b; may be obtained by substituting estimates for
(8,0%,€) into these expressions. Alternatively, if we apply an improper uniform prior density to 3, the
posterior distribution for 8 given (02,€) is normal with mean E(8 | y,02,£) = § and variance V(|

y,02,£) = 0T, where

r = <§:X3’ W,-X,-) . (10)

i=1

It follows that the moments for b; without regard for 3 are E(b; | y,02,€) = b; and V(b; | y,02,&) =
a%(U; + A;), where
bi = UZTV; 'y — XiP), (11)

A; v.zrvixirxtvo 1z, (12)

Substituting estimates of 02 and ¢ into (11)—(12) provides another source for EB intervals. This latter

method seems preferable because it accounts for uncertainty in estimating 3. Neither method, however,

2

acknowledges uncertainty about o* or £. As a result, both types of intervals will be artificially precise,

tending to have frequentist coverage less than their nominal levels in small to moderate samples.



As an alternative to EB, some prefer a fully Bayesian approach in which knowledge about the unknown
parameters is summarized by a posterior distribution. Under a uniform prior for 3, the posterior density
is

P(8,0°,&ly) o< Lo(B,0%,€)m(0”,8), (13)
where 7(0?,£) is the prior density function for the variance components. The marginal posterior for the

variance components alone can be written as

P(o%¢&ly) o Li(0®,€) m(0?,€), (14)
and Bayesian inferences about b; are obtained by averaging its conditional posterior

bi|y,0%,6 ~ N(bi, 0*(Us + Ai))

over (14). These inferences about b;, and summaries of P(02,¢ |y) itself, have been difficult to obtain
analytically or by traditional numerical methods. It is possible, however, to simulate random draws of 8

from P(f|y) using recently developed techniques of Markov chain Monte Carlo (MCMC).

In MCMC, one generates a random sequence of dependent parameter values whose distribution con-
verges to the desired posterior. Applications of MCMC to linear mixed models have been made by Gelfand
et al. (1990); Zeger and Karim (1991); Liu and Rubin (1995); and Carlin (1996). These applications are
similar to EM algorithms in that they rely on simplifications that result if the random effects b; are assumed
known. Augmenting y1,...,Yy,, by simulated values of by,...,b,, leads to algorithms with an attractive
simplicity, but which may require many cycles to converge. Slowly converging MCMC algorithms are trou-
blesome not only because of their computational demands, but because convergence can be notoriously

difficult to detect (e.g. Gelman and Rubin, 1992).

In this article, I derive analytic methods for assessing the uncertainty due to the variance components
in the general linear mixed model. Section 2 presents new expressions for the first and second derivatives of
the logarithms of Lo and L;. These expressions are noteworthy for their simplicity and close relationship
to quantities appearing in EM algorithms. In Section 3, I use these derivatives to develop new ML and

RML algorithms that combine the stability of EM with the rapid convergence of Fisher scoring. When the



dimension of £ (¢ x g) is small, the computational cost per iteration of these new algorithms is similar to
that of EM. Section 4 presents an analytic method for incorporating variance-component uncertainty into
EB intervals. Unlike MCMC methods, the method does not use simulation or prior distributions for 02 and
&, and it appears to perform well even when sample sizes are quite small. A final application, presented in
Section 5, is a new MCMC algorithm for Bayesian inference which has the stability and low per-iteration

cost, of current Gibbs samplers but converges rapidly.
2 Derivative expressions

Previously, Jennrich and Schluchter (1986) and Lindstrom and Bates (1988) have presented derivative-
based methods for maximizing Ly and L;. Their methods apply not only to the linear mixed model but to
other (e.g. factor analytic) covariance patterns as well. Their derivative formulas are quite general but can
be tedious to compute, particularly as the within-unit sample sizes n; grow. My expressions pertain only
to model (1) but are much easier to evaluate. The crucial computations (e.g. inversions) involve matrices

of dimension g x ¢ rather than n; x n;.

The only additional requirement for my method is that the inverse of £ must be a linear function of
free parameters. I assume that
g
5_1 = ijGj, (15)
=1

where w = (wi,ws,...,wy)T is a vector of unknown covariance parameters and Gi,...,G, are known
symmetric matrices of dimension ¢ x q. The unstructured form for £ results from taking each G to be
a matrix containing ones in positions (k,!) and (I, k) and zeros elsewhere, in which case g = g(q + 1)/2.

Clearly (15) also covers any situation where £ is block-diagonal with unstructured blocks, or where any

block is known up to a constant of proportionality.

The expressions below follow the convention that if f is a scalar-valued function and X is an a x b matrix
with typical element x;;, then 0f /0X is the a x b matrix with corresponding element Of /0x;;. Similarly,
T

the derivative of X with respect to a scalar ¢ is the matrix with elements 0xz;;/0c. If = (21,...,2,)

and y = (y1,...,y)7, then 8%f/8z0yT is the (a x b) matrix with (i, j)th element 8%f/0z;0y;. Finally,



if F(z) = (f1(y),---,fa(y))T is a vector-valued function (a > 1) of y = (y1,...,ys)T, then OF/dy is the

(a x b) matrix with (i, j)th element Jf;/0y;.

For convenience, derivatives of the loglikelihood will be taken with respect to the free parameters 3, w,

and 7 = 0~2. Using the relationship |W;| = |V;|=! |¢|~! |U;|, and ignoring constants of proportionality, the

logarithm of Ly may be written as

m

N m 1 e T T
lo = 5 logT — - logl¢| +§;10g|U,| - §Z(yz—x,ﬂ) Wiy — Xi).

i=1

By standard techniques of matrix differentiation (e.g. Schott, 1997) we have 9¢é~1 /0w, = G, OU;/dw; =

—U,'GjUz', and
ow;
aw]‘

=V, 'ZU,G;U. 2}V, 1,

which follows from W; = Vi_1 — H_IZiUiZgVi_l. Applying these rules and the identity
D (i — XiB) Wilyi — XiB) = Y (i — Xi)"Wily: — XiB) + (8- B)"T~' (8- B),

i=1 =1

it can be shown that the first derivatives are dly/88 = —o~2I"1(8 — ),

dlo 1 oy T

— = - tr(¢-U;—o7%0:b] )Gy,

6&)j 21221 ( ) J

g N , 1 T

E = 5 o” — 2 1221 (yz _Xzﬂ) Wz(yz - X,/@),

and the second derivatives are 821y /072 = —No*/2, 8%1y/0B08T = —o 2L,

Pl IS (par
OT0w; -2 ; tr (bibi )Gj’

62l0 _ -1 ~

agor - I8 - p),

8%l B s Ui T ~
6,36(4{7 - -0 Zzzl ’Yz U’LG]U’L’YZ (ﬂ - 16)7
8%l

—% tr{GjEGk + % itr UjGjUin +02 itr (IA)ZBIT)G]U,G]@,

Ow;Ouwr i=1 i=1

where v; = Z}V,'X;.

The scoring algorithms of Section 3 will require us to calculate expectations of the second derivatives

with respect to the distribution of y for fixed parameters. The expectations of (17) and (18) are zero



because 3 is an unbiased estimate of 3. Also, (4) and (8) imply that E(b;) = 0 and E(B,Bf) =o2(E-U),

from which it can be shown that

B 3%l _ itr(g e
orow;) 2 & i)
82l0 1 m
E = 75 t —Ui)G( 6 —U; .
(8wj6wk> 2 ; r(§ —U:)G;(§ — Ui)Gr
These expressions can be evaluated quickly by taking into account the sparseness of G1,...,Gy.

The logarithm of L;, which can be written as

b= WPy, My, |§|+1ilo Ui + 210 |r|_f§:( = XiB) T Wily: — XiB)
1= g7 D) g 2i:1 g Ui D) g 21.:1 Yi i i\Yi i),

is more tedious to differentiate because I and 3 are complicated functions of £. The first derivatives reduce

to
oh _ (N-p) » 1§m: ) ATW: (y; 3
ar D) g D) yar (yz Xz/B) Wz(yz Xzﬁ);
o 1 o eiar\ o
b = 21§:1jtr (g Ui— A —o b,b,.)G],

where b; = U; ZIV, " (y;—X;3) and A; = U;y; T 4} U;. The second derivative with respect to 7 is 9%l; /072 =
—(N —p)o*/2, and the cross-derivative is 0211 /070w; = — Y | tr (IBJ);!’) G;/2. Taking expectations gives
E(b;) = 0 and E(bb}) = 0%(¢ — U; — A;), producing

E Gl Ztrg U)G UjitrAG‘ (20)
010w 2 Pt v

Notice that the second term in (20) is of a lower order than the first two terms. In an asymptotic sequence

where m — oo, U; = O(1) and A; = O(m1); thus the first term in (20) is O(m), whereas the second is

O(1). Ignoring the second term gives

p(2h) o itr(f—U-)G4 (21)
ordw;) 2 pt RO

The second derivatives with respect to w are complicated, but after taking expectations and dropping

lower-order terms they simplify to

%l
E(awjawk> —Ztr§ U)G;(€ = U;)Gy (22)



Proofs of these results for I; are outlined in the Appendix. Notice that (21) and (22) are identical to the

corresponding expressions for the regular loglikelihood .
3 Fast algorithms for ML and RML estimation

The EM algorithm (Dempster, Laird, and Rubin, 1977) is a well known technique for parameter estimation
in incomplete-data problems. Traditional applications of EM to the linear mixed model treat the random

effects as missing data, relying on simplifications that occur when y is augmented by assumed values for

b1,...,bm. The likelihood function based on the augmented data (y, by, ...,b,) can be written as
1 m
La(B,0%,9) o |97 % exp {—itr«rl (Z bib?) } (23)
i=1

_N 1 & _
x (0)72 exp 55 ) (Wi—XiB - Zib) 'V, Ny — X3 — Zibs) ¢
20

where 1 = 02£. Because L4 factors into distinct functions of 1 and (3, 0?), the overall maximum can
be found by maximizing each factor separately. In particular, the factor involving % is maximized at

m~! Yoy b bF. Each cycle of EM maximizes the expected logarithm of L4, where the expectation is
taken with respect to the distribution of by, ..., b, given y with the parameters fixed at their most recent
estimates. This expectation can be found by noting that log Ly is linear in b; and b;b} , whose expectations

are b; and b;bT + o2U;, respectively.

An interesting variation on EM arises by noting that when ¢ is held constant, the original likelihood

Ly becomes proportional to

(0%) * exp {_% ;(yi — XiB) Wilyi — Xiﬂ)} ,

where W; is now fixed. For any given &, Lo thus achieves a conditional maximum at 8 = 3 and
1 & .
o2 )T
=¥ E_ — X:B) ' Wi(y; — X:8).

For fixed 8 and o2, however, Ly does not reduce to a convenient function of ¢ that can be maximized in
closed form. The additional information contained in the “missing data” b4, ..., by, is helpful for estimating

® but is not really needed for (3,02). This suggests a strategy in which we alternately (a) maximize L



with respect to (3,02), holding ¢ fixed at its current estimate; and (b) maximize E(log Ls) with respect
to &, holding B and o? fixed at their current estimates. This modified algorithm is no longer EM, but
belongs to a more general class of procedures which Liu and Rubin (1995) have called ECME. This ECME
algorithm for ML estimation, which does not seem to have been published before, updates the current

estimates A(t=1) az(t), and £ by the following steps:

_ -1
vl = (,g“) T4 Zz.TVZle,-) ; (24)
Wz(t) — V—l _ V—lini(t)Z;TV‘i—17 (25)
m 1/ m
B0 = (Z x7 Wi(t)Xi> (Z x7 Wi(t)yi> : (26)
i=1 i=1
02(t+1) - = Z - X8 (t) Tw(t) (y;i — X8 t)) (27)
0 = UPZIV (i - XiBY), (28)
getn = L Z( —2(0)3 BOBOT +U(t)) (29)

Slightly faster convergence may result if we replace o2 ®) by the updated estimate o2t iy (29), but for the
developments below it notationally convenient not to do so. Note that Vfl, ZZ-TV[I, and ZiTV[IZ,- may be
calculated once and stored for all iterations. An attractive feature of this algorithm is that the loglikelihood
function at each cycle can be evaluated after step (27) with almost no additional cost. Ignoring constant

terms, the loglikelihood at cycle ¢ reduces to
m 2(t+1)
0 52® ety = _ N, 2® My L L W _N (o7~
lo(8Y,0,6") = ——-logo® " — - logl¢ |+2;loglUZ =5 e )

The determinants of £ and Uz-(t) may be computed along with their inverses during step (24).

Comparing these steps to the derivatives of Iy presented in Section 2, we see that (26), (27), and (29) are
precisely equivalent to setting 0ly/0, 0lo/0T, and dly/Ow; (j = 1,...,g) to zero. The algorithm (24)—(29)
can thus be viewed as a simple fixed-point iteration that operates solely on first derivatives. It also suggests

that the convergence rate can be substantially improved by using second-derivative information.

In the well known Newton-Raphson procedure, a function [(6) is maximized by repeatedly solving the

linear system CO+1) = d, where C = —8%1/8090, d = CO®) + 9l/06, and the derivatives are evaluated

10



at = 6. In well behaved statistical applications where [ is a loglikelihood function and @ represents
unknown parameters, Newton-Raphson converges to an ML estimate é, and first-order asymptotic theory
allows the final value of C~! to be used as an estimate of V(é — @). In practice it is not necessary to
use the exact second derivatives of [; the asymptotic properties still hold if C = —8%1/90067 is replaced
by C = —0%1/0606T + R, provided that the remainder R is 0,(n) where n is proportional to sample size
(e.g. Cox and Hinkley, 1974, Ch. 9). When C = —E(8%1/9096T) the technique is called Fisher scoring.
Using expected rather than observed second derivatives may simplify the calculations, and scoring typically

converges about as quickly as Newton-Raphson.

To apply large-sample results to the present model, I assume an asymptotic sequence in which the the
number of units m grows but the within-unit sample sizes n; may remain bounded. In principle one could
allow either or both of these measures to approach infinity. Many applications of the linear mixed model
involve a large number of units but a modest number of observations per unit, so arguments requiring the
n; to be large are often unrealistic. If m — oo but the n; remain bounded, one cannot obtain consistent
estimates of the b; (Neyman and Scott, 1948). ML or RML estimates for the fixed effects and variance
components will be consistent, however, differing from the true parameters by terms of size Op(m’l/ 2.
In this framework, any terms smaller than O,(m) in the second derivatives of the loglikelihood may be

ignored.

The results of Section 2 lead to a simple scoring algorithm for maximizing lo. The cross-derivatives
(17) and (18) have zero expectation, causing the scoring step to separate into independent linear systems
for B and the variance parameters. One may easily verify that the scoring step to calculate 3®) from
(B 52 (t),ﬁ(t)) is equivalent to (26), so the ECME algorithm already performs scoring for 8. Denote
the scoring step for the variance parameters as Cn = d, where n = (10,71, --.,7,)7 = (1,w1,...,w,)7T, and
the elements of C' and d are ¢;; and dj, respectively (j,k = 0,1,...,9). Applying results from Section 2,
we obtain cgo = N ot /2,

2(t) m

z tr(£® — UM)q; (30)

Coj

11



1 m
e = 52 r(€® —UM)G; (€0 - UGy, (31)

N
dy = N2 _ 2 EC:;,ZI) + Z ¢ lwlt), (32)
g
m
dj = 5 tr(§(t) - Egl—gl))Gj + COj0'72(t) + chlwl(t) (33)
1=1

for j =1,...,9and k¥ = 1,...,g, where o2 (1) and gEé;‘;gl) are the ECME-updated estimates given

ECME

by (27) and (29). Upon solution (n = C~1d), the scoring-updated estimates are o2 AR 1/no and

SCORE
(t+1) _ (59 -
SCORE =1"j GJ' :

Scoring-updated variance components are usually much closer to the ML estimates than their ECME

counterparts. Unlike ECME, however, scoring is not guaranteed to increase the loglikelihood at each cycle.

2(t+1) _ 2 (t+1)

For this reason, I perform the scoring step concurrently with (28)—(29), tentatively setting o e ORE

and §(t+1) = SCC()ZJ,SI) but storing the ECME estimates as well. After step (27) of the next cycle I evaluate

the loglikelihood as

m 2 (t+2)
(t+1) _2(t+1) ~(¢41)y _ _E o(t+1) M (t41) 4 L (t+1) _E Opeme
(B4, 0* ) = —— logo 5 logl¢ |+2;10g|Ui =5 | e )
=

2(t41) _ 2(t41) g g1 = gEéL-gl)

If Iy has decreased I reject the scoring estimates, replacing them with o OsomE

and recalculate (24)—(27). Note that it is possible for the solution to Cn = d to lie outside the parameter
space; the variance estimates implied by = C~'d might not be positive definite. When this happens I
use a step-halving procedure to move 7 back to an allowable value. Finally, if C' is not positive definite, I

abort the scoring procedure for that cycle and use the ECME estimates, returning a warning message that

the loglikelihood at that cycle is not concave.

Now consider the closely related problem of RML estimation. Traditional EM algorithms for RML
treat all coefficients (8,b1,...,bn) as missing data. Each cycle of EM maximizes the expected logarithm
of L4, where the expectation is now taken over the distribution of (3, b1, ..., b,,) given y under a uniform
prior density for 8. Instead of formulating an EM algorithm per se, let us consider an ECME procedure

analogous to (24)—(29) for RML. Notice that in Ly, the quantities W; and 3 depend on £ but not ¢2. If £

12



were known, L; would be maximized at

1 ~ ~
o? = (yi — XiB) Wily; — X:3).
(N-p) i=1

Fixing o2, however, does not really simplify the estimation of £. Thus it makes sense to alternately (a)

maximize L; with respect to o2, fixing £ at its current estimate; and (b) maximize E(log L4) with respect
to &, fixing 02 at its current estimate. To carry out (b), notice that log L4 is a linear function of the terms

b;bl whose expectations follow from (11) and (12). The ECME cycle for RML becomes

v = (§(t>‘1+ZiTV;—1z,-)_1, (34)

w = v -voizulzIv, (35)

e = (i x7 Wz-“)Xz)_l (36)
i=1

5® — 1 (i Xz-TWi“)yi), (37)

i=1
2o = > (s — XiFOYWD g — X3, (38)
’L—l

Egt) = Ui(t)ZiTVi_l(yi - X;3"), (39)

Agt) = Ui(t)’Yin(t)’Y?Ui(t)’ (40)

) %i (072“)5?)5?”%-%“) +A§t)), (41)
i=1

where v; = ZT Vz._lXi. Applying results from Section 2, the RML scoring step solves Cn = d where
t
coo = (N —P)U4( )/2;

2(t) m

coj = Ztr (€® — U(t) (42)
G o= 5 Ztr@(” ~ UG (€Y - UG, (43)
do = (N —p)a2(t) - (NTP géﬁ:;” + Zcmw , (44)
d; = % tr (f(t) Eéfj,gl))Gj + coja Z c]lw(t) (45)
j=1,...,9,k =1,...,9. As before, I set ¢**1) and £(+1) equal to their scoring estimates unless the

loglikelihood decreases, in which case I use the ECME versions. The loglikelihood at each cycle is available

13



following (38) as

N — m 1 «—
b ") = T oPiogo2® Mo e0] 1 23 10g Ul
i=1
2 (t+1)
+1 log |F(t)| _ (N _p) UéCME .
2 2 o2
Although I have presented scoring in terms of = (7, wy, - - ,wg)T, one may also apply the method to

other parameterizations of the variance components. If * is a one-to-one transformation of 7, the scoring
step for n* solves C*n* 1) = d* where C* = (8n/dn*)1C(0n/dn*) and d* = C*n* + (9n/dn*)T (81/8n).
One parameterization that seems to work well applies a log transformation to 7 and to each w; corresponding
to a diagonal element of £~!, but leaves the off-diagonal elements unchanged. In several data examples,
scoring converged substantially faster on this new scale, particularly when the ML and RML estimates

were close to the boundary of the parameter space.

These new ML and RML algorithms have been implemented as functions for S-PLUS (MathSoft,
Inc., 1997) using subroutines written in Fortran-77. The functions currently assume that v unstructured,
but extensions to other (e.g. block-diagonal) forms may be made available in the future. They can be
downloaded from my website at http://www.stat.psu.edu/~jls/. I now illustrate their performance

with a small data example.

The data in Table 1, reported by Weil, Zinberg, and Nelson (1968), come from a pilot study of the
clinical and psychological effects of marijuana. Nine male subjects were given three treatments in the form
of low-dose, high-dose, and placebo cigarettes. The order of treatments within subjects was balanced in
a replicated 3 x 3 Latin square, but because the order for each subject was not reported in the article, I
shall proceed as if the order effects are negligible. Changes in heart rate were recorded 15 and 90 minutes

after marijuana use, and five of the 54 data values are missing.

Letting y;;; denote the response for subject i = 1,...,9, treatment j (1=placebo, 2=low dose, 3=high
dose), and time k (1=15 minutes, 2=90 minutes), I fit the compound symmetry model y;;r = p;x + b; + €4jk,
where the p; are fixed effects for treatment x time, b; ~ N(0,¢) are random effects for subjects, and

gijk ~ N(0,0?) are independent experimental errors. Without additional constraints on the y;i, this model

14



Table 1: Change in heart rate recorded 15 and 90 minutes after
marijuana use, measured in beats per minute above baseline

15 minutes 90 minutes

Subject Placebo Low High Placebo Low High

1 16 20 16 2 —6 —4

2 12 24 12 —6 4 —8

3 8 8 26 —4 4 8

4 20 8 — — 20 —4

5 8 4 -8 — 22 -8

6 10 20 28 —20 —4 —4

7 4 28 24 12 8 18

8 -8 20 24 -3 8 -2

9 — 20 24 8 12 —
mean 8.8 16.9 18.2 1.0 76 —3.2

has p = 6 fixed effects. Starting values for parameters were obtained by the procedure of Laird, Lange, and
Stram (1987), and the algorithms were stopped when the relative change in all parameters from one cycle
to the next dropped below 0.01%. The ML algorithm converged to (62,)) = (87.88,3.089) and ji = (p11,
W21, H31, M21, H22, f23) = (8.838, 16.89, 18.30, —1.640, 7.556, —3.162) in 8 cycles, and the RML version
converged to (&2,1/3) = (100.2,3.477) and i = (8.837, 16.89, 18.30, —1.640, 7.556, —3.163) in 10 cycles.
In contrast, the ECME algorithms for ML and RML took 221 and 247 cycles, respectively, and required
about 10 times as much processing time. Each cycle of the new algorithms took only about 50% longer

than the corresponding cycles of ECME.

Similar improvements over EM-type algorithms have been seen in a variety of small and large datasets;
time savings of 90% or more are common. Scoring typically converges by 10-15 cycles, whereas EM may
require hundreds or thousands. Unless the number of variance parameters is unusually large, the per-
iteration cost of the new methods tends to be roughly 1.5 times that of EM. When the loglikelihood is

oddly shaped and the scoring procedure fails, EM takes over and the user is warned of the anomaly.
4 Corrections to empirical Bayes interval estimates

Let us now consider the problem of inferences about individual random effects b;. If values of (3,02,%))

were known, the conditional posterior distribution of b; would be
bi |y7/670-27¢ ~ N(81702Uz) (46)
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One can show that if m — oo but the n; remain bounded, the point estimate 13, is not a consistent estimate
of b; because U; = O(1) is stable. Nonetheless, many statisticians would agree that (46) provides a sound
basis for point and interval estimation for functions of b; when (3, 02,1) are known. Substituting consistent
estimates for (3,02,1) into (46) leads to traditional empirical Bayes (EB) inferences for b;. This method
may work well with large samples when the fixed effects and variance components are well estimated. In
small to moderate samples, however, the procedure tends to be artificially precise and may substantially
understate the actual uncertainty. Here I present a new method for interval estimation which involves a full
correction of the conditional variance estimate o>U; up to terms of size O(m ') to account for uncertainty

due to 3, 02 and .

The new method can be motivated with frequentist arguments, but it is logically simpler when presented
as a first-order approximation to fully Bayesian inference. The basic idea is to use the loglikelihood and
its derivatives to construct an approximate joint posterior distribution for 8 and the variance components.
Using Taylor linearization, this approximate posterior is then combined with (46) to approximate the
unconditional posterior mean and variance of b;. Despite the Bayesian motivation, the user is not required
to specify prior distributions for the unknown parameters. Moreover, the method seems to perform well by
frequentist criteria; in simulations the interval estimates have frequency coverage close to nominal levels in

even in samples that are quite small.

To construct the approximate posterior distribution, let § = (#,d1,...,&,)7 denote RML estimates
of the variance-component parameters. Let 8 denote the generalized least-squares estimate (7), which
is implicitly a function of 5, and let 5 denote the value of 8 obtained by setting n = 7. Finally, let
C~! denote the final value of C~1 upon convergence of the RML scoring procedure. The approximation
(i — 1) ~ N(0,C~1) can be justified from either a frequentist or a Bayesian perspective (e.g. DeGroot,

1970, ch. 10; Gelman et al., 1995, Appendix B). Adopting the Bayesian view, we can regard
nly ~ N@C™ (47)
as an approximate marginal posterior distribution for 7. The conditional posterior for 5 given 7 is

/6 | y,n ~ N(B702F)7 (48)
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from which it follows that the unconditional moments are E(3 | y) = E(3 | y) and V(8 | y) = E(c?T |
y)+ V(B | y). Calculating these moments is difficult because 4 and T are nonlinear functions of 5. Using
the first-order Taylor expansion
~ o 6/@ . B
(B-8) = (3_77) (n=1) + Op(m™"), (49)
n="1

however, we obtain the approximations E(8 | y) = B and

- T
3 OB\ A1 (08
n=1 n=1
Similarly, a first-order expansion of ¢T" about n = # leads to E(o’T | y) ~ 521, where 62 and I' are
calculated by setting n = 7j. Finally, it follows from (48) and (49) that

88\ -
wanw)z<£>cl
n

=
Combining these results, we obtain a limiting posterior distribution for (87,77)7 that is normal with mean

~T
(8 ,7T)T and covariance matrix

= 0,(m ). (50)

The derivatives of 3 with respect to the elements of = (r,ws, ... ,wg) T are dB/dr = 0 and 83/ Ow; =
r (E?ll %TUz'GjEi)-

Now let us use this posterior to obtain approximate Bayesian inferences for the random effects. Using
(46) and (48), it is straightforward to show that the distribution of b; given 5 (but not 3) is normal with
mean b; and variance a2(U; + A;), both of which are nonlinear functions of 5. Expanding these functions
about 7 = 7, and using E(b; | y) = E(b; | y) and V(b; | y) = E(c2(U; + 4;) | y) + V(b | y), it follows that

the limiting posterior distribution of b; is normal with moments

SHo

EWi|ly) =~ b, (51)

- - \T
- . Ob; \ 4 ob;
V(b; ~ 62 U; + 4; =11 = s 52
(bily) ~ 6*(Ti+ )+(%> <%>A (52
n=1
where Z,., (7,», and A; are obtained by setting n = 7j. The derivatives of b; with respect to the elements of n
are 65,/6’7’ =0 and 65,’/6&)1' = —UiGjB,' — Uz”)’,’(aﬁ/awj).
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In practice, one may want to draw inferences about linear combinations of b; and 3, e.g. the subject-
level means X;03 + Z;b;. Let X and Z be arbitrary known matrices with p and ¢ columns, respectively.
Approximate confidence regions for X3 + Zb; may be obtained from a normal distribution with mean

E(XB+ Zb; |y) ~ Xé + Zz,' and variance

V(XB+2Zbily) = XV(BIy)XT + ZV(bi|y)Z" (53)

+ X Cou(b;, B | )T 2T + ZCov(b;, B | y)XT.

Approximations to the variance terms in (53) are given by (52) and the upper-left portion of (50). For the

covariances, it can be shown that
Cov(bi, B | y) = —E(o”UiniT | y) + Cou(bs, B | y),

and by expanding (b;, 3) about 1 = §j we obtain —E(s2Uy; |y) ~ —&Qﬁiwf‘ and

- AT
. ob;\ ~_, (08
Cov(bi, 0B | y) = (—) c1! (—) .

on i on -

=1 7
These approximations have been implemented in S-PLUS and Fortran-77 as part of RML procedure of
Section 3. Upon convergence, the user is provided with ILJZ and estimates of V(b; | y), V(8 | y), and
Cou(b;, 8 | y) for i = 1,...,m, which can be used to compute point and interval estimates for arbitrary
linear combinations of b; and 3.

Returning to the data of Table 1, this procedure was used to obtain 95% interval estimates for the
random subject effects b; in the model y;;;, = pjr +b;+€;j. Intervals were calculated as ii +2[V(b; | y)]'/?,
with V(b; | y) approximated using (52). The results are shown in Table 2, along with conventional EB
intervals Iiz + 2(62U;)'/? which ignore uncertainty in 3, 02 and . The new intervals are from 2% to 141%

wider than the conventional ones. The relative expansion depends on the magnitude of the estimated

random effect; larger estimates for b; produce greater increases.

To assess the performance of the new method, I conducted a small simulation designed to mimic the data
of this example. Responses for m = 9 subjects were drawn according to model y;;x = p;r + b; + €55 with

w = (10,15,20,0,0,0), 02 = 90, and ¢ = 10, producing an intra-subject correlation of 10/(10 + 90) = 0.1.
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Table 2: Random effect estimates and 95% intervals calculated
by conventional and new methods, with relative increase in width
under new method

Subject Est. Conventional New Increase (%)
1 —0.080 (—3.47, 3.31) (—3.55, 3.39) 2
2 —0.252  (—3.64, 3.14) (—3.97, 3.46) 9
3 0.092 (—3.30, 3.49) (—3.38, 3.56) 2
4 0.423 (—3.07, 3.92) (—3.86, 4.70) 22
5 —0.900 (—4.34, 2.54) (—7.08, 5.29) 80
6 —0.482 (—3.87, 2.91) (—4.83, 3.87) 28
7 1.356  (—2.04, 4.75) (—6.81, 9.52) 141
8 —0.855  (—4.25, 2.54) (—6.69, 4.98) 72
9 0.698 (—2.80, 4.19) (—4.68, 6.07) 54

Missing values were introduced completely at random at an average rate of 10%. The sampling procedure
was repeated 1000 times, with new b; and €;;; drawn each time. For each sample, I calculated nominal 95%
interval estimates by the new and old methods and noted whether the intervals covered the true values of
b;. For 245 of the 1000 samples, neither method could be used because the RML estimate of 1 fell on the
boundary (which was assumed to have happened if the RML procedure converged to an estimate below
10~%). Among the remaining 755 samples, the intervals calculated by the new method had an average
coverage rate of 94.1%, compared to 87.2% for the old method. The new intervals were on average 35%

2

wider than the old, suggesting that uncertainty in estimating 8, ¢°, and ¥ plays a substantial role in

inferences about by, ..., by,.

Despite the small sample size and proximity of ¢ to the boundary, the performance of the new procedure
in this simulation is very encouraging. The new intervals essentially attained their nominal coverage,
whereas the old intervals had an error rate of more than 2.5 times their stated value. To improve the
behavior of the RML estimation procedure, I repeated the experiment after raising the number of subjects
to m = 15 and the intra-subject correlation to 0.5. Under these new conditions, only one of the 1000
estimates of ¢ fell on the boundary, and the simulated coverage of the new method was 94.1% versus

89.2% for the old.
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5 A rapidly converging MCMC algorithm

My final application is a new Markov chain Monte Carlo (MCMC) algorithm for simulating draws of
parameters from a Bayesian posterior distribution. Conventional MCMC algorithms for linear mixed
models regard (3, 02,1)) as part of a larger system of unknown quantities that also includes B = (by, ..., bn);
draws from the joint posterior distribution of (3,02,1, B) are then obtained by repeatedly drawing from
various conditional posterior distributions in turn. For example, consider an iterative algorithm in which
the current parameter values (3(*), 5 (t), ¥ ®) and random effects B®) are updated in four steps by drawing

from the conditional posterior distributions

2D P(o? |y, 8D, p® B®)Y, (54)
gD~ P | y,a2(t+1),1/)(t),B(t)), (55)
B~ P(B |y, gD, 02 Y ), (56)
HD o P | y’l@(t-i-l)’0_2(t+1)’B(t+1))’ (57)

in a slight abuse of notation. The cycle (54)—(57) defines a discrete-time, continuous-state space Markov
chain called a Gibbs sampler. Given starting values in the support of the parameter space, the distribution
of (ﬂ(t),az(t),w(t),B(t)) converges to P(3,0%,%,B | y) as t — oo. Technical details on the convergence
of Gibbs samplers and related methods are provided by Liu, Wong, and Kong (1994) and Tierney (1996).
Overviews of MCMC are given by Gelfand and Smith (1990); Smith and Roberts (1993); Tanner (1993);
and Gilks, Richardson, and Spiegelhalter (1996). Gibbs samplers for linear mixed models are described by

Gelfand et al. (1990); Zeger and Karim (1991); Liu and Rubin (1995); and Carlin (1996).

Like EM algorithms, Gibbs samplers that simulate b1,..., b, may converge very slowly. The worst
performance occurs when m is large and the random effects are poorly estimated, i.e. where the within-
unit precision matrices Z! Vlei are small relative to the between-unit precision £ ~!. Nevertheless, these
Gibbs samplers are stable and easy to implement. I will use the derivative approximations of Section
2 to construct a new MCMC algorithm that tends to converge more rapidly. Before presenting the new

algorithm, however, I will describe a modified Gibbs sampler that is closely related to the ECME procedure
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for RML estimation from Section 3.

Several authors, including Gelman (1992) and Tierney (1994), have noted that one need not sample from
exact conditional distributions at each cycle of a Gibbs sampler. Any of the steps (54)—(57), for example,
may be replaced by one or more cycles of another MCMC algorithm that converges to the respective
conditional, and the stationary distribution overall algorithm will be maintained. This idea leads to an
MCMC algorithm that nests one Gibbs sampler inside another. Consider a two-step Gibbs sampler in which
we draw from (a) the conditional posterior distribution of o2 given ¢, and (b) the conditional posterior
distribution of ¢ given o2. Alternating between (a) and (b) eventually produces a draw from P(02,¢ | y).
Step (b) is difficult because the likelihood L is a complicated function of £. Inferences about & become
much easier, however, if y is augmented by simulated values of 8 and B. Suppose we replace (b) by one or

more cycles of another two-step Gibbs sampler

(B, BY) ~ P(3,B|y,0% &), (58)

¢~ P(Ey, 0%, Y, BY). (59)

Alternating between (58) and (59) eventually produces a draw of ¢ from P(¢ | y,0?). Imbedding a cycle

of (58)—(59) into the Gibbs sampler for o2 and ¢ leads to

t+1
2~ P(o? | y,e®) (60)
t
BO ~ P3|y, ) (61)
BY ~ P(B|y,pY,0*", W), (62)
€H) ~ P(¢]y,02", BW), (63)

where () has dropped out of (63) because it carries no information about & once B is known. Notice
that (61) and (62) are equivalent to simply drawing B from its marginal distribution P(B | y, 02(t), £®),
Simulation of B is most conveniently accomplished in two steps, however, because given 8 the random
effects by, ...,b,, are conditionally independent. Slightly faster convergence may result if we condition on

o2 rather than 02 in (61)—(63), but formulas that follow remain simpler if we do not.
Steps (60) and (63) require prior distributions for 62 and £. Following common practice, let us suppose
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that 02 and ¢ = ¢ are independently distributed as 02 ~ ax; > and ¢y~! ~ W(c, D), where a, b, ¢, and D
are user-specified hyperparameters and W (¢, D) denotes a Wishart distribution with degrees of freedom ¢
and scale matrix D. Values for a and b may be chosen by regarding a/b as a rough prior guess for o2 and b
as an imaginary degrees of freedom on which this guess is based. Similarly, ¢~ D~! may be regarded as a
guess for 1 with ¢ > ¢ degrees of freedom. When little or no prior information is available, one may choose
a/b and ¢~ D~ to be near the RML estimates of o2 and 1, respectively, and take the degrees of freedom
to be weak so that the inference will be dominated by the shape of the likelihood rather than the prior.
Notice that the inverse-Wishart prior is appropriate for models where 1) is unstructured. Block-diagonal
situations can be handled by applying independent Wishart distributions to the non-zero blocks of ¢!,

which introduces only minor modifications to the following procedures.

Under this joint prior for (02,%), it is a straightforward exercise in transformation to show that the

implied conditional priors for o2 and £ are
® & ~ (a+teD7'E) X ey (64)
&t o®* ~ W(c,0’D). (65)

Combining (64) with Ly leads to o® | (y,€) ~ (a' +trD7'67") x5, where ' =b+ N —pand o’ = a +
S (yi — XiB)TWi(y: — XiB), and combining (65) with L4 leads to £~ | (y,02, B) ~ W(c',02D'), where

d=c+mand D' = (D1 +Y ", bibiT)_l. The modified Gibbs sampler can thus be implemented as

v = (e v ziviz) (66)
w = vt ovoizulziv (67)
r® = (i xT W}‘”X,»)1 (68)
i=1
40 — p® (i XZ-TW,-“’yi>, (69)
i=1
a9 = a+ Z — XifNTWO (y; — X,80), (70)
Uz(t+1) N (a'(t)+trD_1£(t)_ )XI)_—{?pr-{—cq’ (71)
8O~ N(B, 2 T0), (72)
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b~ NUPZIV - Xip0), 02U, (73)

m —1
E(t+1)_1 ~ W /ec+m, Jz(t) <D1+Zbgt)b£t)T) ) (74)

i=1

This algorithm bears a strong resemblance to the ECME method for RML estimation described in Section
3; it may be regarded as a stochastic version of the ECME procedure, with expectation and maximiza-
tion procedures replaced by simulation. Moreover, just as second derivatives were useful in speeding the

convergence of ECME, they are also useful in speeding the convergence of this algorithm.

My technique for speeding convergence is based on another popular MCMC method known as the
Metropolis-Hastings (MH) algorithm (Metropolis et al., 1953; Hastings, 1970). Overviews of MH are given
by Gelman et al. (1995) and Gilks, Richardson, and Spiegelhalter (1996). Given a current simulated value
n® of the variance parameters f = (Tywiy .- ,wg)T, suppose that we sample a candidate value 5t from a
density function h(n') meant to approximate the marginal posterior P(n|y) o« Li(n) 7(n), where n(n) is

the prior density applied to n. We then calculate the acceptance ratio

P(n'ly) h(n")
P(n®|y) h(nt)

R® —

and set

g (t)
O R,
7 if u > R®,

where u ~ U(0,1) is a uniform random variate. This defines a special type of MH algorithm called an
independence sampler (Tierney, 1994). Executing these steps repeatedly creates a Markov chain whose
stationary distribution is P(n|y), provided that h is nonzero over the support of P(n|y). The algorithm
converges rapidly if h is a good approximation to P(n|y), producing acceptance ratios close to one. It is
wise to choose h to have somewhat heavier tails than P(n|y), so that the candidate values cover the region

of appreciable posterior density, and to reduce the chance of “getting stuck” in the tails of P(n]|y).

My approximation to P(n|y) is based on a multivariate ¢ distribution. If Z ~ N4(0, ) and X ~ x?2 are
independent, then T' = Z+/v/X + p is said to have a multivariate ¢ distribution centered at u with scale

matrix S (d x d) and v degrees of freedom; its density function is

hT) < |1+ % (T — w)"S™(T - p) . (75)
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I approximate P(n |y) by a multivariate ¢ distribution centered at the mode of P(n |y), which can be
calculated by a slight modification of the scoring procedure for RML estimation given in Section 3; this
modification is described in the Appendix. The scale matrix S is found by equating the final value of
—C from scoring to the second derivative of the logarithm of the ¢ density, which gives S = (#) cL
Regarding the degrees of freedom, Gelman et al. (1995) suggest that v = 4 is often reasonable for approx-
imating posterior distributions; my experience also indicates that v = 4 does tend to be a good choice

here.

Notice that drawing candidates from a ¢ distribution may occasionally produce variance components
outside the parameter space (02 < 0 or £ < 0). When this happens, we may simply discard the bad
candidate and draw again. In effect we are sampling from a ¢ distribution that has been truncated outside
the allowable region. Truncation introduces an unknown normalizing constant into the approximate density

h, but this constant cancels out in the acceptance ratio and may be ignored.

The quality of the approximation may be improved by applying the ¢ distribution to some nonlinear
transformation of 7 rather than to n itself. If n* is a one-to-one function of 7, the scale matrix for
n* can be obtained by replacing C' with C* = (0n/0n*)1C(0n/0n*). The candidate for n is obtained
by back-transforming the candidate for #*, and the approximation density must take into account the
Jacobian |On*/dn|. Good results have been obtained by applying a log transformation to 7 and to each
wj corresponding to a diagonal element of £~!, while leaving the off-diagonal elements unchanged. This

transformation with v = 4 degrees of freedom produced acceptance rates of 40-60% in a variety of examples.

The acceptance ratio R® requires evaluation of P(7|y) at each new candidate value. The density at

any particular value ) can be calculated as

N—-—p+b+cqg—2 (t) o’
log P ]y) = —( 5 )[l‘)g”2 T O
ag
m+c—q—1 1 1
_ (f) log €] + 2 >~ 1og [U] + 3 log 1], (76)
i=1

where

—1 m ~ ~
5o _ DO 4 5 (i = XiB) W (g - XiBY)
N-p+b+cqg—2 ’
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and Uz-(t), th), Wi(t) and B®) are given by (66)—(69).

Notice that evaluating P(n | y) requires many of the steps needed for a cycle of the modified Gibbs
sampler (66)—(74). This suggests that, if the candidate value from MH is rejected, we can still update n

inexpensively by completing the Gibbs cycle. More specifically, given the current simulated values o2 ®

and ¢ suppose we perform a single cycle of (66)—(74) to obtain Gibbs-updated versions 02,(;;;1) and

otV . After step (69) of this cycle, the posterior density P(n®) | ) corresponding to o™ and £

becomes available via (76). At the same time we draw candidate values for MH, calling them O'ZMS+1) and
£,48) | We tentatively set o2 = af,(,fﬂ) and £t = ¢, and proceed to the next cycle of Gibbs.

20+ nd £+ becomes available after

When the value of P(n{**1) |y) corresponding to the tentative o
step (69), we complete the calculation of R(*) and decide whether to retain the tentative values. If they
are retained, we finish the cycle to obtain o2 (t+2), £G1§3t1$2), Uﬁgﬁ) and & NN they are rejected, we

GIBBS

set o2 = g2 (ED ang ¢+ = ¢ (D) and re-do (66)—(69).

GIBBS

Setting (02(t+1),§(t+1)) to (ag,gt;;l), otV rather than to (az(t),ﬁ(t)) upon rejection does not alter
the stationary distribution, because the Gibbs algorithm has the same stationary distribution as MH. One
advantage of doing this is that we will never “get stuck” at a single state; if the approximation used in
MH is so poor that all candidate values are rejected, the algorithm still progresses at the same rate as the
Gibbs algorithm (66)—(74). If the approximation is good, however, the convergence can be substantially
faster. This hybrid combination of MH and Gibbs is especially attractive because the performance of MH
tends to improve precisely where the Gibbs sampler deteriorates. Conventional Gibbs samplers converge
more slowly as the number of units m grows, because the augmented-data likelihood function L4 becomes
tightly concentrated about the current value of 9, causing ¥/ and ¥t to be highly correlated. As

m grows, however, the actual posterior P(n|y) more closely resembles a normal distribution, leading to

higher MH acceptance rates.

I now demonstrate the performance of this algorithm on three data examples. In each I used v = 4
degrees of freedom for the ¢ approximation and applied log transformations to o and the diagonal elements

of £71. The first example uses the data from Table 1 and the compound-symmetry model described in
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Figure 1: Sample autocorrelation r for logy under (a) the modified Gibbs sampler and (b) the new MCMC
method, using data from Table 1.

Section 3, with prior distributions o2 ~ 300x3> and ¢~' ~ W(3,1/15) = x%/15. For comparison, I ran
both the modified Gibbs sampler and the new MCMC algorithm for 5,000 cycles each, storing the simulated
values of 02 and 9 for all iterations. Time-series plots and autocorrelation functions (ACFs) revealed that
both chains converged rapidly, but the new method was noticeably faster. Sample ACF's for log, shown in
Figure 1, suggest that the serial dependence dies down in 810 cycles with the Gibbs sampler and 2-3 cycles
with the new method. Total processing time for the new method was about 50% longer than for Gibbs (25
versus 16 seconds on a 133 Mhz Pentium machine). In the new method, candidates were accepted at an

average rate of 49%.

My second example uses the growth data of Pothoff and Roy (1964). This well known dataset has four
measurements taken at two-year intervals on 11 girls and 16 boys. I applied a linear growth model with
random slopes, random intercepts, and fixed effects for gender and gender x time. The prior distributions
for 0% and v (2 x 2) were centered near their RML estimates with 3 and 4 degrees of freedom, respectively.
Figure 2 shows ACFs pertaining to the log-variance of the random intercept estimated from 5,000 cycles
of each algorithm (plots for other variance parameters were similar to these). Dependence appears to die
down by about 4 cycles with the new method, compared to more than 10 cycles with Gibbs. Again, the
average per-iteration processing time for the new algorithm was about 50% longer than for Gibbs, with an

average acceptance rate of 38%.

The final example simulates a situation where conventional Gibbs samplers perform poorly. I generated
responses under a one-way random-effects model y;; = p + b; + €5, b; ~ N(0,9), €;; ~ N(0,0?) for

m = 200 units with n; = 2 observations per unit, with variance components ¢ = 10 and o? = 90. The
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Figure 2: Sample autocorrelation r for the log-variance of the random intercept under (a) the modified
Gibbs sampler and (b) the new MCMC method, using data from Pothoff and Roy (1964).
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Figure 3: Sample autocorrelation r for log1 under (a) the modified Gibbs sampler and (b) the new MCMC
method, using simulated data.

priors for 1) and 0 were centered near their true values with three degrees of freedom apiece, ¥ ~ 30x; 2
and o2 ~ 270x5 2. ACFs for log o2 and log estimated from 10,000 cycles of each algorithm are shown in
Figure 3. Under the new algorithm the ACF dies down in 8-10 cycles, but Gibbs shows dependence well

beyond lag 50. The average MH acceptance rate was 56%.

6 Extensions and future work

The formulas in Section 2, especially the derivatives of log L1, lead to appealing procedures for this limited
but important class of models. With some additional work, I believe that these methods can be extended
in a number of useful ways. For example, I have assumed that the matrices Vi, ..., V,, are known. Models
where V; depends on unknown parameters are also important, particularly in longitudinal applications with
a large number of observations per unit. Derivatives of the loglikelihood with respect to these additional
parameters are not difficult to obtain and can be easily incorporated into scoring and MH algorithms, as

well as the corrected empirical Bayes procedures of Section 4.
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The methods can also be extended to more complicated models with random effects for additional
levels of nesting. For example, it is quite common for longitudinal data to be collected on units nested
within larger units—e.g. repeated measures for students within classrooms. Adding more random terms
to the linear model introduces additional variance parameters which require additional derivatives. When
investigating the large-sample properties of these models, it is especially important to carefully define an

appropriate asymptotic sequence.

The algorithms in this article seem to perform well because each is a hybrid combination of two distinct
methods; one method is rapidly converging but possibly unstable, whereas the other may converge slowly
but is very reliable. At any cycle, the ML and RML algorithms of Section 3 revert to EM if Fisher scoring
fails. Similarly, the MCMC algorithm of Section 5 reverts to Gibbs sampling whenever a Metropolis-
Hastings candidate is rejected. The crucial feature of linear mixed-effects models that allows us to create
these attractive hybrid algorithms is that the loglikelihood function can be evaluated at each cycle without
much difficulty. Hybrid algorithms would be difficult to create for mixed-effects models with non-normal
error distributions (e.g. logistic regression with random effects) because the likelihood for those models
is much harder to compute. Other models where the loglikelihood is available include traditional factor
analysis and latent-class models for categorical data. Because EM and MCMC for these models can be
notoriously slow to converge, it may well be worthwhile to develop hybrid algorithms for these situations

as well.
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Appendix

Differentiating I; = log L, is straightforward except for calculating the derivatives of log|T'| and ), (y; —
X;B8)TWi(y; — XiB) with respect to wr, ..., w,. Using T = (¥, XIW:X;) , W; = V' =V 2,0, 21V,

and 6UZ/6&)J = —Uz'GjUz', it follows that 6I‘/8w] =-r (Zl ’szUzG]Uz’yz) I' and

—ilog |F| = ftr (Ez 'ny,-GjUz-'yz-) r
6&13'

= tr (Zl Umil“viTUi) Gj

= Ez trd;Gj,

where v; = ZT Vi_lX,-. Differentiating again with respect to wy, gives

2

0
6wj6wk

but because I' = O(m™1!), these terms are O(1) and may be ignored.

To differentiate the quadratic form, use the identity

>y — X:B)TWi(y; — XiB) = (Z@'y;‘rwiyi) - (ZiXiTWiyi)TB7
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which gives

%Ei(yi = XiB)"Wilyi — XiB) = (S \TUG;UN) = (X7 UG4 U)\) B
J

T aB
— (X, X' Wiys) By’ (77)

where \; = Z]'V, 'y;. But

o5

oo, = T (i UiGUim) B+T (L7 UiGUis)
J

r (Zi’)’iTUz’GjBi) s
and with algebraic manipulation (77) reduces to

0

w;

(i — XiB) Wiy — XiB) = tr (Eigii);?r) G

For the second derivative, note that

6% tr (E b; bT) =2 Z G, ( (M) (78)

But IN)Z = Bz — UZ’YZ(B — ﬁ) where Bl = UzZ,lTV;_l(yl — Xzﬂ), which gives

ob; 9B
Bon = -U; Gkb + UGkUz'Yz(ﬁ B) — Usyi (6&%)
— 7 616
= —UGibi + ~Usy; ( Bwk) (79)

Moreover, it can be shown that E(I;,-l;iT) = o?(¢& - U; — A;) and E(E,-:I;iT) = 2UpvyyTyU; for i # i'.

Substituting (79) into (78), taking expectations, and dropping terms smaller than O(m) produces

E( 62 > (i — XiB) Wiy X,-B)) ~ —2J2Ztr(§—U,~)GjU,~Gk.

Ow;Owy,

The RML estimation procedure of Section 3 is easily modified to find the posterior mode for 7, which
is equivalent to maximizing the density P(c=2,£~! | y). To do this, replace (38) by

2oy _ @4 D@

UECME - N_p+b+cq_2’ (80)
where o/ = a + S (i — Xaf YT (y; — X, 3®), and replace (41) by
1 S ~(1)7
(t+1) _ —2(8) p-1 2717 HT (®) ()
ECME (m+c_q_1) |ff D +1221(0' bz bz +Ul +Az ) (81)
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For the scoring step, replace (N — p) with (N —p+ b + cg — 2) in the expressions for cgpo and dy, m with

(m + ¢ — g — 1) in the expression for d;, and (42)—(43) with

0.2(t) m ‘ 1
Coj = 2 Ztr(f(t) - Uz'( ))GJ' + §trD_1GJ"
i=1
1 «— c—q—1
e = 32 (Y- U)Gi(€® - U)Gy + (+) tréG €G-
=1

At each cycle, the log-posterior density may be evaluated using (76).
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