
Package ‘linbin’
October 13, 2022

Version 0.1.3

Date 2021-04-16

Type Package

Depends R (>= 3.0.1)

License AGPL-3

Title Binning and Plotting of Linearly Referenced Data

Description Short for 'linear binning', the linbin package provides functions
for manipulating, binning, and plotting linearly referenced data. Although
developed for data collected on river networks, it can be used with any interval
or point data referenced to a 1-dimensional coordinate system. Flexible bin
generation and batch processing makes it easy to compute and visualize variables
at multiple scales, useful for identifying patterns within and between variables
and investigating the influence of scale of observation on data interpretation.

LazyData true

Imports stats, utils, graphics, grDevices

Suggests knitr, rmarkdown

VignetteBuilder knitr

URL https://github.com/ezwelty/linbin

BugReports https://github.com/ezwelty/linbin/issues

RoxygenNote 7.1.1

NeedsCompilation no

Author Ethan Z. Welty [aut, cre],
Christian E. Torgersen [ctb] (author support and guidance),
Samuel J. Brenkman [ctb] (elwha and quinault datasets),
Jeffrey J. Duda [ctb] (elwha dataset),
Jonathan B. Armstrong [ctb] (fishmotion dataset)

Maintainer Ethan Z. Welty <ethan.welty+linbin@gmail.com>

Repository CRAN

Date/Publication 2021-04-20 12:20:06 UTC

1

https://github.com/ezwelty/linbin
https://github.com/ezwelty/linbin/issues

2 as_events

R topics documented:
as_events . 2
crop_events . 3
cut_events . 4
elwha . 5
events . 6
event_coverage . 7
event_gaps . 8
event_midpoints . 9
event_overlaps . 9
event_range . 10
fill_event_gaps . 10
find_intersecting_events . 11
fishmotion . 12
is_events . 12
netmap . 13
plot_events . 14
quinault . 16
read_events . 17
sample_events . 18
seq_events . 20
simple . 21
sort_events . 21
to_date . 22
to_datetime . 22
transform_events . 23

Index 24

as_events Coerce to an Event Table

Description

Attempts to coerce an object to an event table.

Usage

as_events(x, ...)

S3 method for class 'numeric'
as_events(x, ...)

S3 method for class 'POSIXt'
as_events(x, ...)

S3 method for class 'Date'

crop_events 3

as_events(x, ...)

S3 method for class 'matrix'
as_events(x, from.col = 1, to.col = NULL, ...)

S3 method for class 'data.frame'
as_events(x, from.col = 1, to.col = NULL, ...)

Arguments

x Object to be coerced to an event table.

... Additional arguments passed to or used by methods.
from.col, to.col

Names or indices of the columns in x containing the event endpoints. Values are
swapped as needed to ensure that to > or = from on all rows. If NULL, to.col
defaults to from.col + 1 (if column exists) or from.col.

Methods (by class)

• numeric: Expands a numeric vector into two columns of event endpoints.

• POSIXt: Coerces to numeric before dispatching.

• Date: Coerces to numeric before dispatching.

• matrix: Converts the matrix to a data frame, then calls the data.frame method.

• data.frame: Renames from.col and to.col to "from" and "to" as needed. Since these
column names must be unique, other columns cannot also be called "from" or "to".

See Also

events for creating event tables and read_events for reading files as event tables.

Examples

as_events(1)
as_events(1:5)
as_events(cbind(1:5, 1:5), 1, 2)
as_events(data.frame(x = 1, start = 1:5, stop = 1:5), "start", "stop")

crop_events Crop Events

Description

Crops events to the specified intervals. Events are cut at interval endpoints and any whole or partial
events lying outside the intervals are removed.

4 cut_events

Usage

crop_events(e, crops, scaled.cols = NULL)

Arguments

e An event table.

crops An event table specifying the intervals for cropping. Point intervals are allowed,
and will create new point events where they intersect the interior, but not the
endpoints, of line events.

scaled.cols Names or indices of the columns of the event table to be rescaled after cutting
(see cut_events). Names are interpreted as regular expressions (regex) match-
ing full column names.

See Also

cut_events for only cutting events.

Examples

e <- events(c(0, 10, 20), c(10, 20, 30), x = 10)
crop_events(e, events(c(0, 15)))
crop_events(e, events(c(0, 5, 15)))
crop_events(e, events(c(0, 5, 15)), scaled.cols = "x")
crop_events(e, events(c(0, 5, 5, 15)), scaled.cols = "x") # creates new points inside lines
crop_events(e, events(c(0, 10, 10, 15)), scaled.cols = "x") # but not at line event endpoints

cut_events Cut Events

Description

Cuts events at the specified locations.

Usage

cut_events(e, cuts, scaled.cols = NULL)

Arguments

e an event table.

cuts the cut locations. Can be either a numeric vector or an event table. If an event
table that contains points, point events will be created where they intersect the
interior, but not the endpoints, of line events in e.

scaled.cols names or indices of the event table columns to be scaled to their new length
after cutting. Names are interpreted as regular expressions (regex) matching
full column names.

elwha 5

Details

Line events straddling cut locations are cut into multiple event segments. Columns scaled.cols are
scaled by the fraction of the original event length in each resulting event (which assumes that these
variables were uniformly distributed over the original interval). To have a record of the parents of
the resulting event segments, append an unique identification field to the event table before calling
this function.

See Also

crop_events for both cutting and removing events.

Examples

e <- events(c(0, 10, 20), c(10, 20, 30), x = 10)
cut_events(e, events(c(0, 5, 15)))
cut_events(e, events(c(0, 5, 15)), scaled.cols = "x")
cut_events(e, events(c(0, 5, 5, 15)), scaled.cols = "x") # creates new points inside lines
cut_events(e, events(c(0, 10, 10, 15)), scaled.cols = "x") # but not at line event endpoints

elwha Elwha River Survey

Description

An event table containing the results of a survey of the Elwha River (Washington, USA) carried out
in August-September 2008. Both physical variables and fish counts were collected.

Format

A data frame with 249 rows and 33 variables.

Details

• from, to - distance upstream from the river mouth [km]

• unit.length - unit length [m]

• unit.type - unit type (P = pool, GP = glide-like pool, G = glide, GR = glide-like riffle, R =
riffle)

• channel.type - channel type (1 = main, 2 = secondary)

• mean.depth - mean depth [m]

• max.depth - max depth [m]

• mean.width - mean wetted width [m]

• bedrock - bedrock substrate [%]

• boulder - boulder substrate [%]

• cobble - cobble substrate [%]

6 events

• gravel - gravel substrate [%]
• sand - sand substrate [%]
• silt - silt substrate [%]
• overhang.cover - channel banks with overhanging vegetation [%]
• boulder.cover - channel area covered by boulders [%]
• jams - number of log jams
• jam.area - total area of log jams [m^2]
• SACO.10/20/30/40/total - number of Bull Trout (Salvelinus confluentus) sized 10 - 20 cm / 20

- 30 cm / 30 - 40 cm / > 40 cm / total, respectively.
• ONXX.10/20/30/40/total - number of trout (Oncorhynchus sp.) sized 10 - 20 cm / 20 - 30 cm

/ 30 - 40 cm / > 40 cm / total, respectively.
• SAFO - number of Brook Trout (Salvelinus fontinalis)
• ONTS - number of Chinook Salmon (Oncorhynchus tshawytscha)
• ONNE - number of Sockeye Salmon (Oncorhynchus nerka)
• LATR - number of Pacific Lamprey (Lampetra tridentata)
• ONKI - number of Coho Salmon (Oncorhynchus kisutch)

Source

Brenkman, S. J., J. J. Duda, C. E. Torgersen, E. Z. Welty, G. R. Pess, R. Peters, and M. L. McHenry.
2012. A riverscape perspective of Pacific salmonids and aquatic habitats prior to large-scale dam
removal in the Elwha River, Washington, USA. Fisheries Management and Ecology 19:36-53. DOI:
doi: 10.1111/j.13652400.2011.00815.x

events Event Tables

Description

Creates an event table, a custom data.frame used throughout the linbin package to store and
manipulate linearly referenced data. Each row includes an event’s endpoints from and to (which
can be equal, to describe a point, or non-equal, to describe a line) and the values of any variables
measured on that interval.

Usage

events(from = numeric(), to = NULL, ...)

Arguments

from, to Event endpoints, in any format coercible to single data frame columns. from
and to are swapped as needed so that to > or = from on all rows. If from is the
only non-empty argument, as_events is dispatched for object coercion.

... Additional arguments, either of the form value or tag = value, to be passed
directly to data.frame following from and to. Component names are created
based on the tag (if present) or the deparsed argument itself.

https://doi.org/10.1111/j.1365-2400.2011.00815.x

event_coverage 7

Details

Event endpoints (and any additional arguments) are coerced to a data frame with data.frame, then
coerced to an event table with as_events. A valid event table has two columns named "from" and
"to" containing only finite numeric values (i.e., no NA, NaN, or Inf) and ordered such that to > or =
from. is_events tests for these requirements. The other columns in the event table can be of any
type supported by the data.frame class.

Value

An event table, the data.frame object used by linbin to describe interval data.

See Also

data.frame.

as_events and read_events for coercing objects and files to event tables, is_events to validate
event tables.

Examples

events(1, 5)
events(1:5)
events(c(0, 15, 25), c(10, 30, 35), x = 1, y = c('a', 'b', 'c'))

event_coverage Event Coverage

Description

Returns the intervals over which the number of events is always one or greater.

Usage

event_coverage(e, closed = TRUE)

Arguments

e An event table.

closed Logical value indicating whether events should be interpreted as closed inter-
vals. If TRUE, coverage is continuous at breaks between two adjacent events.

Details

If closed = TRUE, breaks between adjacent events are dropped. If closed = FALSE, breaks between
adjacent events are retained, including point events on line event endpoints. Duplicate points are
dropped in both cases.

8 event_gaps

See Also

event_gaps for gaps (the inverse of coverage), event_range for range (coverage with gaps ig-
nored).

Examples

e <- events(c(1, 2, 4, 8), c(3, 4, 5, 10))
event_coverage(e, closed = TRUE) # retains breaks
event_coverage(e, closed = FALSE) # drops breaks
e <- events(c(0, 2, 2, 2, 8, 10), c(0, 2, 2, 6, 10, 10))
event_coverage(e, closed = TRUE) # retains isolated points
event_coverage(e, closed = FALSE) # retains isolated points and points adjacent to lines

event_gaps Event Gaps

Description

Returns the intervals over which there are no events.

Usage

event_gaps(e, closed = TRUE, range = NULL)

Arguments

e An event table.

closed Logical value indicating whether events should be interpreted as closed inter-
vals. If TRUE, no gaps are returned at breaks between two adjacent events.

range An event table specifying, by its event_range, the interval within which to
check for gaps. If NULL, the range of e is used.

See Also

event_coverage for coverage (the inverse of gaps), fill_event_gaps for filling gaps with empty
events.

Examples

event_gaps(events(c(1, 3, 5), c(2, 4, 5))) # gaps between events
event_gaps(events(1:5)) # no gaps
event_gaps(events(1:5), closed = FALSE) # gaps at breaks
event_gaps(events(1:5), range = events(0, 6)) # gaps to edge of range

event_midpoints 9

event_midpoints Event midpoints

Description

Event midpoints

Usage

event_midpoints(e)

Arguments

e Event table.

Examples

e <- events(c(0, 10, 15, 25, 30), c(10, 20, 25, 40, 30))
event_midpoints(e)

event_overlaps Event Overlaps

Description

Returns the number of events on each interval. Useful for sampling the original data with sample_events
at the highest possible resolution that nevertheless flattens overlapping events.

Usage

event_overlaps(e)

Arguments

e An event table.

Details

Point events are preserved and line events are cut as necessary at the endpoints of other point or line
events.

Value

An endpoint-only event table with column "n" listing the number of overlapping events on that
interval.

10 fill_event_gaps

See Also

event_coverage.

Examples

e <- events(c(0, 10, 15, 25, 30), c(10, 20, 25, 40, 30))
event_overlaps(e)

event_range Event Range

Description

Returns the minimum and maximum endpoints of all the events in an event table.

Usage

event_range(e)

Arguments

e An event table.

See Also

event_coverage for an alternative that accounts for gaps.

Examples

event_range(events(1:5)) # no gaps
event_range(events(c(1,5), c(1,5))) # gaps

fill_event_gaps Fill Event Gaps

Description

fill_event_gaps fills gaps below a maximum length with empty events. collapse_event_gaps
shifts event endpoints to close gaps below a maximum length.

Usage

fill_event_gaps(e, max.length = Inf)

collapse_event_gaps(e, max.length = Inf)

find_intersecting_events 11

Arguments

e An event table.

max.length The maximum length of gaps to be filled or closed.

See Also

event_gaps

Examples

e <- events(c(1, 4), c(2, 5), x = 1)
fill_event_gaps(e)
fill_event_gaps(e, max.length = 1)
collapse_event_gaps(e)
collapse_event_gaps(e, max.length = 1)

find_intersecting_events

Find Intersecting Events

Description

Returns a logical matrix indicating whether or not each pair of events intersect.

Usage

find_intersecting_events(ex, ey, equal.points = TRUE, closed = FALSE)

Arguments

ex, ey Event tables.

equal.points If TRUE, equal-valued points are considered intersecting. This is always TRUE if
closed = TRUE.

closed If TRUE, events are interpreted as closed intervals and events sharing only an
endpoint are reported as intersecting.

Value

A logical matrix with ey events as rows and ex events as columns.

Examples

ex <- events(c(0, 5, 5, 10))
find_intersecting_events(ex, events(5), equal.points = FALSE) # equal points don't intersect
find_intersecting_events(ex, events(5), equal.points = TRUE) # equal points do intersect
find_intersecting_events(ex, events(5), closed = TRUE) # adjacent events intersect
find_intersecting_events(ex, ex)

12 is_events

fishmotion Fish Movements

Description

A pair of event tables (in a list) documenting the movements of tagged Coho Salmon (Oncorhynchus
kisutch) in Bear Creek (Southwest Alaska, USA) for 29 July - 19 August 2008. Table motion lists
individual fish residence time intervals in each of three stream regions, while table origin lists the
study-wide residence time of each fish and the stream region in which the fish was first tagged.

Format

Two data frames motion and origin with 1,140 rows and 149 rows of 4 variables, respectively.

Details

• from, to - start and end times as seconds since 1970-01-01 UTC (POSIXct)

• fish.id - unique identifier for each fish

• region - stream region (1 = 0 - 930 m, a cold downstream region with abundant and spawning
sockeye salmon; 2 = 930 - 1360 m, a cold middle region with few if any sockeye salmon; 3 =
> 1360 m, a warm upstream region where sockeye salmon were absent)

Source

Armstrong, J. B., D. E. Schindler, C. P. Ruff, G. T. Brooks, K. E. Bentley, and C. E. Torgersen.
2013. Diel horizontal migration in streams: juvenile fish exploit spatial heterogeneity in thermal
and trophic resources. Ecology 94:2066-2075. DOI: doi: 10.1890/121200.1

is_events Validate Event Table

Description

Tests whether the object meets the basic requirements of an event table, i.e. a data frame containing
at least two numeric, finite columns named ’from’ and ’to’ ordered such that to > or = from on all
rows.

Usage

is_events(x, verbose = FALSE)

Arguments

x An R object.

verbose Logical value indicating whether to print the reason for test failure.

https://doi.org/10.1890/12-1200.1

netmap 13

See Also

events, as_events, and read_events for creating valid event tables.

Examples

verbose <- TRUE
is_events(c(1, 3), verbose)
is_events(data.frame(from = 1, t = 3), verbose)
is_events(data.frame(from = 1, from = 1, to = 3), verbose)
is_events(data.frame(from = 1, to = TRUE), verbose)
is_events(data.frame(from = 1, to = NA), verbose)
is_events(data.frame(from = 3, to = 1), verbose)
is_events(data.frame(from = 1, to = 3), verbose) # TRUE

netmap Dungeness River (NetMap)

Description

NetMap (terrainworks.com) output for the entire fluvial network of the Dungeness River (Wash-
ington, USA). NetMap employs digital elevation models to generate detailed river networks and
compute biophysical variables for spatially continuous hydrologic units throughout the networks.

Format

A data frame with 16,616 rows and 47 variables.

Details

• CHAN_ID - channel identifier (1 = mainstem, all others are tributaries)

• OUT_DIST - distance upstream from the river mouth to the downstream end of the unit [km]

• LENGTH_M - unit length [m]

• ... - see NetMap’s Master Attribute List

Source

https://terrainworks.com

https://terrainworks.com
http://www.netmaptools.org/Pages/NetMapHelp/master_attribute_list.htm
https://terrainworks.com

14 plot_events

plot_events Plot Events as Bar Plots

Description

Plots an event table as a grid of bar plots.

Usage

plot_events(
e,
group.col = NULL,
groups = NULL,
data.cols = NULL,
dim = NULL,
byrow = TRUE,
main = NULL,
xlabs = character(),
ylabs = character(),
xlim = NULL,
ylim = NULL,
xticks = NULL,
yticks = NULL,
xtick.labels = NULL,
ytick.labels = NULL,
plot.grid = FALSE,
sigfigs = c(3, 3),
col = NULL,
border = par("fg"),
lty = par("lty"),
lwd = par("lwd"),
xpd = FALSE,
mar = c(2.1, 2.75, 1.5, 0.5),
oma = c(2, 2, 2, 2),
...

)

Arguments

e An event table.

group.col Name or index of column defining the event grouping for plotting. If NULL, the
events are treated as one group. Group NA is not plotted.

groups Vector of values from group.col specifying which groups to plot. If NULL, all
groups are plotted by order of first appearance in group.col.

data.cols Names or indices of columns to plot, given as a list of character or numeric
vectors. If multiple columns are specified, their bars are stacked together in one

plot_events 15

plot. Names are interpreted as regular expressions (regex) matching full column
names. If NULL, all columns not named from, to, or group.col are each plotted
individually in order of appearance.

dim The row and column dimensions of the grid. If NULL, the grid is column groups
(rows) by event groups (columns) if byrow = TRUE, and event groups (rows) by
column groups (columns) if byrow = FALSE.

byrow Plots are added by column group, then bin group. If TRUE, plots are added by
rows, rather than columns, to the grid.

main Titles for each plot. If NULL, plots are titled by the column names, pasted to-
gether with separator " + ". Set main = NA to not title the plots.

xlabs, ylabs Labels arranged at equal intervals along the bottom and left side of the plot grid.
These are drawn in the outer margins of the figure, so oma[1] and oma[2] must
be non-zero.

xlim, ylim Limits for the x and y axes of all plots. If NULL, limits are set to the range of the
data and the y limits extended as needed to include 0.

xticks, yticks The positions of x and y tick marks for all plots. If NULL, only the min and max
x and y are ticked (and 0 as needed for y). If axTicks, that function will be used
to calculate R default tick mark positions. If NA, no ticks are drawn.

xtick.labels, ytick.labels

The labels for the x and y tick marks, coerced to character vectors and recycled
as necessary. If NULL, the positions of the ticks are used as the labels, formatted
with sigfigs. If NA, the tick marks are not labeled.

plot.grid If TRUE, a lined horizontal grid is plotted at the yticks.

sigfigs The maximum significant figures of the x and y axis labels.

col Color(s) for the bars in each plot. If NA, bars are transparent. If NULL, a grey
palette is used.

border Color(s) for bar borders in each plot. If NA, borders are omitted.

lty Line type(s) for bar borders in each plot.

lwd Line width(s) for bar borders in each plot.

xpd Logical value or NA. If FALSE, all plotting is clipped to the plot region, if TRUE,
all plotting is clipped to the figure region, and if NA, all plotting is clipped to the
device region.

mar Numerical vector of the form c(bottom, left, top, right) giving the size of the
inner margins of each plot in lines of text.

oma Numeric vector of the form c(bottom, left, top, right) giving the size of the outer
figure margins in lines of text.

... Additional arguments passed to plot.

Details

Given a grouping variable for the rows of the event table (e.g., groups of bins of different sizes
used in sample_events), and groups of columns to plot, bar plots are drawn in a grid for each
combination of event and column groups. In each plot, the specified event table columns are plotted
together as stacked bars. Negative and positive values are stacked separately from the y = 0 baseline.

16 quinault

Events with NA are not shown, differentiating them from zero-valued events which are drawn as
thin black lines. Point events are drawn as thin vertical lines. Overlapping events are drawn as
overlapping bars, so it is best to use sample_events with non-overlapping bins to flatten the data
before plotting.

See Also

seq_events for generating groups of sequential bins, sample_events to populate groups of bins
with event data.

Examples

e <- events(from = c(0, 10, 15, 25), to = c(10, 20, 25, 40), length = c(10, 10, 10, 15),
x = c(1, 2, 1, 1), f = c('a', 'b', 'a', 'a'))

bins <- seq_events(event_coverage(e), c(8, 4, 2, 1))
e.bins <- sample_events(e, bins, list(sum, c('x', 'length')), scaled.cols = 'length')
plot_events(e.bins, group.col = 'group')

quinault Quinault River Survey

Description

An event table containing the results of a survey of the Quinault River (Washington, USA) in August
2009. Both physical variables and fish counts were collected.

Format

A data frame with 363 rows and 31 variables.

Details

• from, to - distance upstream from the river mouth [km]

• altitude - mean elevation above sea level [m]

• channel.type - channel type (1 = main, 2 = secondary)

• unit.type - unit type (P = pool, GP = glide-like pool, GR = glide-like riffle, R = riffle)

• unit.length - unit length [m]

• mean.width - mean wetted width [m]

• mean.depth - mean depth [m]

• max.depth - max depth [m]

• overhang.cover - channel banks with overhanging vegetation [%]

• boulder.cover - channel area covered by boulders [%]

• jams - number of log jams

• jam.area - total area of log jams [m^2]

read_events 17

• SACO.10/20/30/50/total - number of Bull Trout (Salvelinus confluentus) sized 10 - 20 cm / 20
- 30 cm / 30 - 50 cm / > 50 cm / total, respectively.

• ONXX.10/20/30/total - number of trout (Oncorhynchus sp.) sized 10 - 20 cm / 20 - 30 cm / >
30 cm / total, respectively.

• PRWI - number of Mountain Whitefish (Prosopium williamsoni)

• ONTS - number of Chinook Salmon (Oncorhynchus tshawytscha)

• ONMY - number of Rainbow Trout (Oncorhynchus mykiss)

• ONKI - number of Coho Salmon (Oncorhynchus kisutch)

• ONNE - number of Sockeye Salmon (Oncorhynchus nerka)

• ONGO - number of Pink Salmon (Oncorhynchus gorbushcha)

• ONKE - number of Chum Salmon (Oncorhynchus keta)

• CAMA - number of Largescale Sucker (Catostomus macrocheilus)

• LATR - number of Pacific Lamprey (Lampetra tridentata)

Source

Samuel J. Brenkman (National Park Service, Olympic National Park, Washington, USA), unpub-
lished data.

read_events Read File as Event Table

Description

Reads a file in table format and attempts to coerce it to an event table.

Usage

read_events(file, from.col = 1, to.col = 2, sep = "", header = TRUE, ...)

Arguments

file Name, connection, or url of the file to be read as an event table.
from.col, to.col

Names or indices of the columns containing event endpoints. Values are swapped
as needed to ensure that to > or = from on all rows.

sep Character separating values on each line of the file. If sep = "" (the default), the
separator is ’white space’ (that is, any combination of one or more spaces, tabs,
newlines and carriage returns).

header Logical value indicating whether the file contains column names as its first line.
If FALSE, columns will be named "V" followed by the column number, unless
col.names (a vector of optional column names) is provided as an additional
argument.

... Additional arguments, of the form tag = value, to be passed directly to read.table
to control how the file is read.

18 sample_events

Details

The file is read into R by calling read.table. Any of its arguments can be set by passing additional
tag = value pairs. from.col and to.col are renamed to "from" and "to" as needed. Since these
column names must be unique, other columns cannot also be called "from" or "to".

See Also

read.table.

events and as_events for creating event tables from existing objects.

sample_events Sample Events

Description

Computes event table variables over the specified sampling intervals, or "bins".

Usage

sample_events(
e,
bins,
...,
scaled.cols = NULL,
col.names = NULL,
drop.empty = FALSE

)

Arguments

e An event table.

bins An event table specifying the intervals for sampling.

... Lists specifying the sampling functions and parameters to be used (see the Details).

scaled.cols Names or indices of the event columns to be rescaled after cutting (see cut_events).
Names are interpreted as regular expressions (regex) matching full column
names.

col.names Character vector of names for the columns output by the sampling functions. If
NULL, the columns are named automatically (see the Details).

drop.empty If TRUE, bins not intersecting any events are dropped.

sample_events 19

Details

Events are cut at bin endpoints, and any scaled.cols columns are rescaled to the length of the
resulting event segments. The event segments falling into each bin are passed to the sampling
functions to compute the variables for each bin. Bins sample from events they overlap: line events
with whom they share more than an endpoint, or point events with equal endpoints (if the bin itself
is a point).

Sampling functions are specified in lists with the format list(FUN, data.cols, by = group.cols,
...). The first element in the list is the function to use. It must compute a single value from one
or more vectors of the same length. The following unnamed element is a vector specifying the
event column names or indices to recursively pass as the first argument of the function. Names are
interpreted as regular expressions (regex) matching full column names. Additional unnamed ele-
ments are vectors specifying additional event columns to pass as the second, third, ... argument of
the function. The first "by" element is a vector of event column names or indices used as grouping
variables. Any additional named arguments are passed directly to the function. For example:

list(sum, 1:2, na.rm = TRUE) => sum(events[1], na.rm = TRUE), sum(events[2], na.rm = TRUE)
list(sum, 1, 3:4, 5) => sum(events[1], events[3], events[4], events[5]), ... list(sum, c(’x’, ’y’), by =
3:4) => list(sum, ’x’), list(sum, ’y’) grouped into all combinations of columns 3 and 4

Using the latter example above, column names are taken from the first argument (e.g. x, y), and
all grouping variables are appended (e.g. x.a, y.a, x.b, y.b), where a and b are the levels of
columns 3 and 4. NA is also treated as a factor level. Columns are added left to right in order of the
sampling function arguments. Finally, names are made unique by appending sequence numbers to
duplicates (using make.unique).

Value

The bins event table with the columns output by the sampling functions appended.

See Also

seq_events to generate sequential bins.

Examples

e <- events(from = c(0, 10, 15, 25), to = c(10, 20, 25, 40), length = c(10, 10, 10, 15),
x = c(1, 2, 1, 1), f = c('a', 'b', 'a', 'a'))

bins <- rbind(seq_events(event_coverage(e), 4), c(18, 18))
sample_events(e, bins, list(sum, 'length'))
sample_events(e, bins, list(sum, 'length'), scaled.cols = 'length')
sample_events(e, bins, list(sum, 'length', by = 'f'), scaled.cols = 'length')
sample_events(e, bins, list(weighted.mean, 'x', 'length'), scaled.cols = 'length')
sample_events(e, bins, list(paste0, 'f', collapse = "."))

20 seq_events

seq_events Generate Sequential Events

Description

Generates groups of regularly sequenced events fitted to the specified intervals. Intended for use as
bins with sample_events.

Usage

seq_events(coverage, length.out = NULL, by = NULL, adaptive = FALSE)

Arguments

coverage An event table specifying the non-overlapping intervals to which the event se-
quences will be fitted. Gaps in coverage do not count towards event length.
Points in the coverage are currently ignored.

length.out The number of events in each sequence. Event lengths are chosen such that they
evenly divide the coverage.

by The length of the events in each sequence. Ignored if length.out is defined.
When the length does not evenly divide the coverage, a shorter event is ap-
pended to the end of the sequence.

adaptive If TRUE, events are adjusted locally so that a whole number of events fit within
each coverage interval, preserving breaks and gaps.

Value

An endpoint-only event table with an additional group field if the length of length.out or by is >
1.

See Also

event_range, event_coverage, and fill_event_gaps for building a coverage from an existing
event table.

Examples

e <- events(c(0, 20, 40), c(10, 30, 45))
no.gaps <- event_range(e)
has.gaps <- event_coverage(e)
seq_events(no.gaps, by = 10) # unequal length (last is shorter)
seq_events(no.gaps, by = 10, adaptive = TRUE) # equal length (11.25)
seq_events(no.gaps, length.out = 4) # equal length (11.25)
seq_events(has.gaps, length.out = 4, adaptive = FALSE) # equal coverage (11.25), straddling gaps
seq_events(has.gaps, length.out = 4, adaptive = TRUE) # unequal coverage, fitted to gaps
seq_events(no.gaps, length.out = c(2, 4)) # "group" column added

simple 21

simple Simple Event Table

Description

A simple, hypothetical event table.

Format

A data frame with 11 rows and 7 variables.

Details

• from, to - endpoint positions

• x, y, z - numeric variables

• factor - a factor variable

sort_events Sorted Events

Description

sort_events sorts events by ascending from, then ascending to. is_unsorted_events tests
whether the events are not sorted, without the cost of sorting them.

Usage

sort_events(e)

is_unsorted_events(e)

Arguments

e An event table.

Examples

e <- events(c(1, 1, 3, 2), c(2, 1, 4, 3))
is_unsorted_events(e)
sort_events(e)

22 to_datetime

to_date Convert event endpoints to dates

Description

Convert event endpoints to dates

Usage

to_date(e, origin = as.Date("1970-01-01"))

Arguments

e Event table or atomic vector.

origin Date object (see as.Date).

Examples

t <- as.Date("1970-01-01") + 0:4
e <- events(t)
to_date(e)
to_date(e$from)

to_datetime Convert event endpoints to date-times

Description

Convert event endpoints to date-times

Usage

to_datetime(e, tz = "UTC", origin = as.POSIXct("1970-01-01", tz = "UTC"))

Arguments

e Event table or atomic vector.

tz Time zone (see timezones).

origin Date-time object (see as.POSIXct).

Examples

t <- as.POSIXct("1970-01-01", tz = "UTC") + 0:4
e <- events(t)
to_datetime(e)
to_datetime(e$from)

transform_events 23

transform_events Transform Events

Description

Transforms events by scaling, then translating their endpoint positions. That is, the transformed
[from, to] = scale * [from, to] + translate.

Usage

transform_events(e, scale = 1, translate = 0)

Arguments

e An event table.

scale Number by which event endpoints should be scaled.

translate Number by which event endpoints should be translated.

Examples

e <- events(c(10, 100), c(100, 1000))
transform_events(e, scale = 2, translate = 1)

Index

as.Date, 22
as.POSIXct, 22
as_events, 2, 6, 7, 13, 18
axTicks, 15

collapse_event_gaps (fill_event_gaps),
10

connection, 17
crop_events, 3, 5
cut_events, 4, 4, 18

data.frame, 6, 7

elwha, 5
event_coverage, 7, 8, 10, 20
event_gaps, 8, 8, 11
event_midpoints, 9
event_overlaps, 9
event_range, 8, 10, 20
events, 3, 6, 13, 18

fill_event_gaps, 8, 10, 20
find_intersecting_events, 11
fishmotion, 12

is_events, 7, 12
is_unsorted_events (sort_events), 21

make.unique, 19

netmap, 13

plot, 15
plot_events, 14

quinault, 16

read.table, 17, 18
read_events, 3, 7, 13, 17
regex, 4, 15, 18, 19

sample_events, 9, 15, 16, 18, 20

seq_events, 16, 19, 20
simple, 21
sort_events, 21

timezones, 22
to_date, 22
to_datetime, 22
transform_events, 23

url, 17

24

	as_events
	crop_events
	cut_events
	elwha
	events
	event_coverage
	event_gaps
	event_midpoints
	event_overlaps
	event_range
	fill_event_gaps
	find_intersecting_events
	fishmotion
	is_events
	netmap
	plot_events
	quinault
	read_events
	sample_events
	seq_events
	simple
	sort_events
	to_date
	to_datetime
	transform_events
	Index

