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2 anneal

likelihood-package Package for maximum likelihood estimation

Description

This package allows you to find the maximum likelihood estimates of statistical models using sim-
ulated annealing, a global optimization algorithm.

Details

Package:  likelihood

Version: 1.5

Date: 2012-01-27
Depends: R (>=2.1.1, nlme
License: ~ GNU Public License

Several demonstration scripts are included in the demo directory.

Author(s)

Lora Murphy <murphyl @caryinstitute.org> Maintainer: Lora Murphy <murphyl @caryinstitute.org>

anneal Perform Simulated Annealing for Maximum Likelihood Estimation

Description

Performs simulated annealing - a global optimization algorithm - for maximum likelihood estima-
tion of model parameters. Bounded, unbounded, and mixed searches can all be performed. See
the Simulated Annealing Algorithm help page for more on how simulated annealing is actually
performed.

Usage

anneal(model, par, var, source_data, par_lo = NULL, par_hi = NULL, pdf,
dep_var, initial_temp = 3, temp_red = 0.95, ns = 20, nt = 100,
max_iter = 50000, min_change = @, min_drops = 100, hessian = TRUE,
delta = 100, slimit = 2, ¢ = 2, note = "", show_display = TRUE, ...)
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Arguments

model

par

var

source_data

par_lo

par_hi

pdf

dep_var

initial_temp

temp_red
ns
nt
max_iter

min_change

Scientific model for whose parameters anneal will find maximum likelihood
estimates. This is an R function.

List object of parameters for which to find maximum likelihood estimates using
simulated annealing. The name of each component in par matches the name
of an argument in one of the functions passed to anneal (either model, pdf, or
any other function that you pass in). The value of each component is the initial
value. All components in par must be numeric vectors. Vectors of length greater
than one have each of their elements treated separately as individual parameters
to estimate.

List object with the source for all other arguments and data used by model, pdf,
and any other functions.

Data frame containing any needed source data. You can reference the data frame
columns by name to anneal.

List object with the lower search bounds for each parameter to estimate. The
list component names and sizes should each match a component in par. Any
individual component (up to and including the entire par_lo argument) is op-
tional. For any component of par that is omitted, the lower search bound for
that parameter is assumed to be negative infinity. (Infinity isn’t quite infinity -
see details section for more.)

List object with the upper search bounds for each parameter to estimate. The
list component names and sizes should each match a component in par. Any
individual component (up to and including the entire par_hi argument) is op-
tional. For any component of par that is omitted, the upper search bound for
that parameter is assumed to be infinity. (Infinity isn’t quite infinity - see details
section for more.)

Probability density function to use in likelihood calculations. anneal depends
on a log likelihood value, so you must instruct pdf to calculate the log of its
result. This is an option with all of R’s built-in PDFs.

The name of the column in source_data, as a string, that contains the dependent
variable (the “observed” value).

The temperature at which to start the annealing process.
The rate of temperature reduction (a fractional number less than 1).

Number of iterations between changes in parameter search ranges. One iteration
varies all parameters one time.

Controls number of iterations between drops in temperature. Temperature drops
occur at nt * ns iterations. One iteration varies all parameters one time.

Maximum number of iterations to perform. One iteration varies all parameters
one time.

An alternate (and optional) way to specify quitting conditions for the run. This
is the minimum amount of change in likelihood in min_drop number of tem-
perature drops. If the change is less than min_change, execution stops even if
max_iter number of iterations have not been performed.



4 anneal

min_drops The companion to min_change for alternate quitting conditions. This is the
number of temperature drops over which the likelihood must have changed more
than min_change for execution to continue.

hessian if TRUE, the Hessian matrix is used to calculate the standard error for each
parameter and the parameter variance-covariance matrix. These are included in
the output. If FALSE, this step is skipped.

delta The number by which to divide each parameter maximum likelihood estimate
value when searching for support limits. The bigger the number, the finer the
search. See support_limits for more on how support limits are calculated.

slimit When calculating support limits for the parameter maximum likelihood esti-
mates, this is the number of likelihood units less than the optimum likelihood
for which to search the parameter ranges. 2 units is standard. 1.92 units corre-
sponds roughly to a 95 percent confidence interval.

c Controls the reduction in parameter search range. A value of 0 would keep
the search range permanently between the values set in par_lo and par_hi. A
higher value will restrict the search more when range adjustments are made. A
value of 2 is recommended by Goffe.

note A note about the run. This can be any character string. This will be written to
output files by write_results.

show_display = Whether or not to show the progress display.

Any other data needed by model, pdf, or any other function to be called by
anneal. This is an alternative to providing the data in var; however, passing all
values in var is strongly recommended.

Details

Simulated annealing is a search algorithm that attempts to find the global maximum of the like-
lihood surface produced by all possible values of the parameters being estimated. The value of
the maximum that anneal finds is the maximum likelihood value, and the value of the parameters
that produced it are their maximum likelihood estimates. See the Simulated Annealing Algorithm
page for details on how the search is performed. See the Likelihood Calculation page for details on
how likelihood is calculated. Simulated annealing is an algorithm that can search any function; but
anneal specifically searches likelihood.

The model function is the scientific model, which generally takes as arguments the parameters for
which to estimate maximum likelihood. It returns a predicted value of the dependent variable for
each record in the source_data dataset, which is compared to the actual (observed) value when
likelihood is calculated. Write model so that it returns a vector of numeric values, one for each
record in the dataset.

The probability density function calculates the likelihood using the predicted and observed values
of the dependent variable. You can provide your own function, but R has many built-in functions
that you can use. You can read more about R’s probability density functions in the help file “An
Introduction to R”, but here is a brief list: dbeta (beta), dexp (exponential), dgamma (gamma),
dlnorm (lognormal), dnbinom (negative binomial), dnorm (normal), and dpois (poisson). These all
take a log argument which you should set to TRUE in var in order to calculate the log likelihood.
If you write your own probability density function, it should return a vector of values, one for each
record in the dataset.
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If you wish, some of the arguments passed to model or pdf by anneal can be the results of other
functions. anneal will make sure these functions are evaluated at each search iteration.

anneal handles all function calls and data. You tell anneal how to use your functions and data
using par and var. Use par to give anneal the list of parameters for which to find maximum
likelihood estimates. All values must be numeric vectors. The name of each list component must
match the function argument where the value should go. For example, if your model function takes
an argument called “a”, and you want the maximum likelihood estimate for a, there should be a
pars$a. If any component of par is a vector of length greater than one, each value is treated as a
separate parameter to estimate. This is useful if, for example, you wish to estimate a parameter that
has a different value for different sites or species.

Use var to tell anneal where all other functions and data come from. var is a list, and each
component’s name matches the function argument it should be used for (as with par). The value
can be of any data type that makes sense to the function. To indicate that the source of a function
argument is a column of data from a dataset, set that value of var to the name of the data frame’s
column, as a character string (for example, var$dbh<-"DBH"). Case matters! You will get the best
results if all function arguments and column names are unique, so that there is no ambiguity. You
are also free to reference values directly from the global environment in your functions if you prefer.

The reserved character string “predicted”, used in var, means the predicted value of the dependent
variable, as calculated by model.

If you want anneal to pass the results of another function as an argument to the model or pdf
functions, define the function and then set the appropriate argument in var to the name of the
function. Then provide all arguments to the sub-function in var as well. For instance, if your model
function takes an argument called x, and you wish x to be the result of function fun1, then set var$x
<- fun1, and add any arguments to fun1 to var. anneal will ensure that all functions are evaluated
in the proper order.

If the likelihood is calculated as infinity or NaN (which can easily happen), the likelihood is ar-
bitrarily set to -1000000 to preserve the ability to graph results and compare values. If your best
likelihood is -1000000, it is possible that no valid likelihood value was found.

The search ranges for parameters can be set to (or allowed to default to) negative and positive
infinity. In practice, the search is bounded by the largest and smallest values the computer can work
with. To find out what the actual limits are on your computer, use .Machine$double.xmax.

When looking at the examples provided in the demos that come with this package, check those for
likeli as well, since the parameter setup techniques are the same.
Value

A list object with information on the annealing run. If you stop the run by pressing Esc, you will
get this data structure with the results of the run at the point where you stopped it.

best_pars The maximum likelihood estimates for each value in par.

var A copy of the var argument, to help you keep track of your analysis. To save
space, any data frames are removed.

source_data A copy of the source_data data frame, with a column added for the predicted
values calculated by model using the maximum likelihood estimates of the pa-
rameters.

pdf The name of the pdf function.
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iterations

max_likeli

aic_corr

slope

R2

likeli_hist

par_lo

par_hi

par_step
note

upper_limits

lower_limits

std_errs

var_covar_mat

References

anneal

The name of the model function.

The number of annealing iterations completed. One iteration varies all parame-
ters one time. If the run does not complete, this may not be an integer.

The maximum likelihood value found.

The value of Akaike’s Information Criterion, “corrected” for small sample size.
See the Simulated Annealing Algorithm help page for more.

The value of Akaike’s Information Criterion. See the Simulated Annealing Al-
gorithm help page for more.

Slope of observed values linearly regressed on those predicted by model, using
the parameter maximum likelihood estimates. The intercept is forced at zero.

Proportion of variance explained by the model relative to that explained by the
simple mean of the data.

Data frame with the history of likelihood change throughout the run. All changes
in likelihood are recorded, along with regular periodic checkpoints. The columns
are: “temp”, the temperature at that point, “iter”, the number of iterations com-
pleted, and “likeli”, the maximum likelihood value.

List object with the lower bounds for each of the parameters. If any value was
omitted in the original arguments, it is recorded here as a value that approximates
negative infinity.

List object with upper bounds for varying parameters. If any value was omit-
ted in the original arguments, it is recorded here as a value that approximates
infinity.

List object with final size of the search range for each parameter.
The value of the note argument, above.

List object with upper support limits for each parameter. For more on support
limits, see the support_limits function.

List object with lower support limits for each parameters. For more on support
limits, see the support_limits function.

If anneal was run with hessian = TRUE, this is a list object with the standard
errors for each parameter.

If anneal was run with hessian = TRUE, this is the parameter variance / covari-
ance matrix.

Goffe, W.L., G.D. Ferrier, and J. Rogers. 1994. Global optimization of statistical functions with
simulated annealing. Journal of Econometrics 60:65-99.

Examples

#it

## Simulated annealing to maximize log
## likelihood for the following:

## Model: Radius

= a+ b % DBH

## Dataset: included crown_rad dataset
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## We want to use simulated annealing to
## find maximum likelihood estimates of
## the parameters "a" and "b".

##

## Not run:

library(likelihood)

## Set up our dataset
data(crown_rad)
dataset <- crown_rad

## Create our model function
modelfun <- function (a, b, DBH) {a + b x DBH}

## Create the list for the parameters to estimate and
## set initial values for a and b
par <- list(a =0, b = 0)

## Create a place to put all the other data needed by
## the model and PDF, and indicate that DBH comes from
## the column marked "DBH" in the dataset

var <- list(DBH = "DBH")

## Set bounds and initial search ranges within which to search for parameters
par_lo <- list(a = 0, b = 0)
par_hi <- list(a = 50, b = 50)

## We'll use the normal probability density function -
## add the options for it to our parameter list

## "x" value in PDF is observed value

var$x <- "Radius”

## Mean in normal PDF
var$mean <- "predicted”
var$sd <- 0.815585

## Have it calculate log likelihood
var$log <- TRUE

results<-anneal(model = modelfun, par = par, var = var,
source_data = dataset, par_lo = par_lo, par_hi = par_hi,
pdf = dnorm, dep_var = "Radius”, max_iter = 20000)

## Alternately: reference crown_rad$DBH directly in the function without
## using var
modelfun <- function (a, b) {a + b * crown_rad$DBH?}

var <- list(x = "Radius”,
mean = "predicted”,
sd = 0.815585,
log = TRUE)

results<-anneal(model = modelfun, par = par, var = var,
source_data = dataset, par_lo = par_lo, par_hi = par_hi,
pdf = dnorm, dep_var = "Radius"”, max_iter = 20000)
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## End(Not run)

crown_rad Dataset of Tree DBH and Crown Radius

Description

This is a set of imaginary data for DBH and crown radius for a set of trees.

Usage

crown_rad

Format

Tab-delimited text.

from_sortie Generated Tree Allometry Dataset

Description

This is a set of generated data for tree allometry.

Usage

from_sortie

Format

Tab-delimited text.
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likeli

Calculate Likelihood

Description

Calculate likelihood of a model, given a dataset. Typically this is log likelihood. See the Likelihood
Calculation page for details on how likelihood is calculated.

Usage
likeli(model, par, var, source_data, pdf, ...)
Arguments
model Model function for which to calculate likelihood. See details for how to set up
this function.
par List object of parameters for which to calculate likelihood. The name of each
component in par matches the name of an argument in one of the functions
passed to 1likeli (either model, pdf, or another function that does initial calcu-
lations). All elements in par must be numeric vectors. This is the same as the
argument that you pass to anneal.
var List object with the source for all other non-parameter arguments and data used

source_data

pdf

Details

by model, pdf, and any other functions. This is the same as the argument that
you pass to anneal.

Data frame containing any needed source data. You can reference the data frame
columns by name to likeli.

Probability density function to use in the likelihood calculation. If you want a
log likelihood value, which is usual and matches what anneal does, instruct pdf
to calculate the log of its result. This is an option with all of R’s built-in PDFs.

Any other data that may be needed by model, pdf, or any other function to be
called by 1ikeli. This is an alternative to providing the data in var; however,
passing values in var is strongly recommended.

See the Likelihood Calculation page for details on how likelihood is calculated. anneal uses the
same parameters and is set up in the same way.

The model function is the scientific model, which generally takes as arguments the parameters for
which to estimate maximum likelihood. It returns a predicted value of the dependent variable for
each record in the source_data dataset, which is compared to the actual (observed) value when
likelihood is calculated. Write model so that it returns a vector of numeric values, one for each
record in the dataset.

The probability density function calculates the likelihood using the predicted and observed values
of the dependent variable. You can provide your own function, but R has many built-in functions
that you can use. You can read more about R’s probability density functions in the help file “An
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Introduction to R”, but here is a brief list: dbeta (beta), dexp (exponential), dgamma (gamma),
dlnorm (lognormal), dnbinom (negative binomial), dnorm (normal), and dpois (poisson). These all
take a log argument which you should set to TRUE in var in order to calculate the log likelihood.
If you write your own probability density function, it should return a vector of values, one for each
record in the dataset.

If you wish, some of the arguments passed to model or pdf by likeli can be the results of other
functions.

likeli handles all function calls and data. You tell 1ikeli how to use your functions and data
using par and var. Use par to give likeli the list of parameters for the model. Use var to tell
likeli where all other functions and data come from. var and var are lists, and each component’s
name matches the function argument it should be used for. For example, if the model function
takes an argument called “a”, there should be a par$a or a var$a with the value of a. For par, all
values must be numeric vectors. For var, the values can be of any data type that makes sense to
the function. To indicate that the source of a function argument is a column of data from a dataset,
set that value of var to the name of the data frame’s column, as a character string (for example,
var$dbh<-"DBH"). Case matters! You will get the best results if all function arguments and column
names are unique, so that there is no ambiguity. You are also free to reference values directly from
the global environment in your functions if you prefer.

The difference between par and var is important to anneal but not to 1ikeli.

The reserved character string “predicted”, used in var, means the predicted value of the dependent
variable, as calculated by model.

If you want likeli to pass the results of another function as an argument to the model or pdf
functions, define the function and then set the appropriate argument in var to the name of the
function. Then provide all arguments to the sub-function in var as well. For instance, if your model
function takes an argument called x, and you wish x to be the result of function fun1, then set var$x
<- fun1, and add any arguments to fun1 to var. likeli will ensure that all functions are evaluated
in the proper order.

Value

A single numeric value for the likelihood. It is possible for this to be NaN or Inf.

Examples

library(likelihood)

## Use the included crown_rad dataset
data( crown_rad )

## Create our model function - crown radius is a linear function of DBH.
## DBH is a column of data from the crown_rad dataset; a and b are single
## parameter values.

model <- function (a, b, DBH) {a + b * DBH}

## Create our parameters list and set values for a and b
par <- list(a = 1.12, b = 0.07)

## Create a place to put all the other data needed by
## the model and PDF, and indicate that DBH comes from
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## the column marked "DBH" in the dataset
var <- list(DBH = "DBH")

## We'll use the normal probability density function dnorm - add its
## arguments to our parameter list

## "x" value in PDF is observed value
var$x <- "Radius”

## The mean is the predicted value, the outcome of the model statement. Use
## the reserved word "predicted”

var$mean <- "predicted”

## Use a fixed value of the standard deviation for this example

var$sd <- 0.815585

## Have dnorm calculate log likelihood
var$log <- TRUE

result <- likeli(model, par, var, crown_rad, dnorm)
## Alternately: reference crown_rad$DBH directly in the function without

## using var
model <- function (a, b) {a + b x crown_rad$DBH}

var <- list(x = "Radius”,
mean = "predicted”,
sd = 0.815585,
log = TRUE)

result <- likeli(model, par, var, crown_rad, dnorm)

Likelihood Calculation
Details on the Calculation of Likelihood

Description

There are four inputs to a likelihood calculation: a scientific model, a probability model, parameters
for the model, and data. The scientific model mathematically describes one or more relationships
that have been captured by the data. The probability model describes the error in the data. The
parameters are the variables of interest for the scientific and probability models, for which you are
trying to find the best values.

The dataset contains a dependent variable of interest. The values for this variable in the dataset
are the “observed” values. The scientific model predicts values for this same dependent variable,
based on other data and parameters. The values produced by the scientific model for the dependent
variable are the “predicted” values. The differences between the observed and predicted values are
the residuals.

The probability model is the core of likelihood estimation. Given the scientific model and a set of
specific values for its parameters, there is a certain probability of observing the actual data. The
mathematical relationship that describes that probability is the probability density function. This
PDF is used to calculate the likelihood of the specific parameter values, given the data.
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Likelihood Calculation

In order to do a likelihood calculation, you must identify your scientific model, choose a probability
density function, and choose values for each of your parameters. To help you identify these pieces,
here is an example. Suppose research is being conducted to study how cold weather affects sales
at coffee shops. A dataset is gathered, with outdoor temperature and number of coffees sold. The
researcher proposes that the number of coffees sold is a linear function of the outdoor temperature.
The scientific model is:

Sales = a + bxTemp

The observed values for the dependent variable (coffee sales) are the sales data gathered. The pa-
rameters are a and b. Once test values have been chosen for a and b, we can calculate the likelihood
of those values. To calculate the likelihood, the test values of a and b, along with the temperature
data, are plugged into the scientific model, which gives us a set of predicted values for sales.

The error, the difference between the predicted and observed values, is described by the probability
model. In our example, we will assume that the error is normally distributed. The normal probability
distribution function is then the probability model. The probability model compares the predicted
and observed values to produce the final likelihood.

If we repeat the likelihood calculation with another set of values for a and b, we can compare the two
likelihood values. The values that produce the higher likelihood value are better. The values that
produce the best likelihood possible are the maximum likelihood estimates for those parameters.

Details

For eqni = 1...N independent observations in a vector X, with individual observations z;, and a set
of parameter values 6:

N
Likelihood = L(0|X) = [ [ g(x:l0)

i=1

where L(0|X) is the likelihood of the set of parameters 6 given the observations X, and g(z;|0)
is the probability density function of the probability model (i.e. the probability of each observa-
tion, given the parameters). Because logarithms are easier to work with, the preferred value is log
likelihood, calculated as:

N
Loglikelihood = In[L(0]X)] = Y In[g(x;]6)]
i=1

Thus to calculate likelihood, we use the parameter values and the scientific model to calculate a
set of predicted values for each of the observed values in the dataset. Then we use the probability
density function to calculate the natural log of the probability of each pair of predicted and observed
values. Then we sum the result over all observations in the dataset. For each data point, the mean of
the probability density function is the observed value. The point for which the probability is being
calculated, given that mean (generally called “x” in R’s PDFs), is the predicted value.
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likeli_4_optim Use Likelihood with Optim

Description
Wraps the function 1ikeli so you can use it with optim. This allows you to use other optimization
methods to find maximum likelihood estimates.

Usage

likeli_4_optim(par_2_analyze, model, par_names, var, source_data, pdf)

Arguments

par_2_analyze Vector of initial values for those parameters that are to be optimized. This should
be a vector, NOT a list. This MUST be a one-dimensional vector - i.e. none
of the vector members can be vectors themselves (in contrast to the rules for
anneal). optim will pass this argument to likeli_4_optim automatically. See
the example for more.

model Model function for which to calculate likelihood.
par_names Character vector with the name for each value in par_2_analyze.
var List object with the source for all other non-parameter arguments and data used

by the model, the PDF, and any sub-functions. This is the same as the argument
that you pass to anneal or likeli.

source_data Data frame containing any needed source data, including observed values.

pdf Probability density function to use. If you want a log likelihood value, which is
usual, the PDF must calculate the log of its result.

Details

This wraps the 1ikeli function so that it can conform to the requirements of optim. Setting up to
use this function is exactly like setting up to use likeli.

Remember to set the fnscale option in the control list for optim to -1 so that optim performs a
maximization rather than the default minimization (see example for details).

Value

A single numeric value for the likelihood. It is possible for this to be NAN or Inf.

Examples

SR

## Set up for likeli
SHEFHEHHHEHEHEEE

## Use the included crown_rad dataset
data(crown_rad)
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## Create our model function - crown radius is a linear function of DBH.
## DBH is a column of data from the crown_rad dataset; a and b are single
## parameter values.

model <- function (a, b, DBH) {a + b * DBH}

## We are planning to get maximum likelihood estimates for a and b. Create

## the list that says where all other functions and data are to be found.

## Indicate that DBH comes from the column marked "DBH" in the crown_rad dataset.
var<-list(DBH = "DBH")

## We'll use the normal probability density function dnorm - add its
## arguments to our parameter list

## "x" value in PDF is observed value

var$x <- "Radius”

## The mean is the predicted value, the outcome of the model statement. Use
## the reserved word "predicted”

var$mean <- "predicted”

var$sd <- 1.0

## Have dnorm calculate log likelihood
var$log <- TRUE

## Set up a vector with initial values for a and b
par_2_analyze <- c(0.1, 0.1)

## Set up the vector with the names of a and b, so likeli_4_optim knows
## what the values in for_optim are
par_names <- c("a", "b")

## Set your choice of optim controls - pass the other likeli_4_optim arguments
## by name so optim knows they are for likeli_4_optim

## Remember to set the fnscale option of optim to a negative value to perform
## a maximization rather than a minimization

## Not run: optim(par_2_analyze, likeli_4_optim, method = "Nelder-Mead”,
control = list(fnscale = -1), model = model, par_names = par_names,
var = var, source_data = crown_rad, pdf = dnorm)

## End(Not run)

predicted_results Calculate Model Predicted Results

Description

Calculate predicted results of the dependent variable from a model with parameters set up as for the
likeli and anneal functions. These predicted results are useful for various statistical calculations
when compared to observed results from a dataset.
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Usage
predicted_results(model, par, var, source_data, ...)
Arguments
model Model function to use to calculate predicted results.
par List of parameters for which likelihood is being estimated. All elements in par
must be numeric vectors.
var List object with the source for all other non-parameter arguments and data used
by model, pdf, or any sub-functions.
source_data Data frame containing any needed source data.
Any other data that may be needed by the model or any of its sub-functions.
This is an alternative to providing the data in var; however, passing values in
var is strongly recommended.
Details

The parameters for this function are set up exactly as they are in anneal and likeli. See those
pages for details on how to do this.

Extra list members in var are ignored, so if you have set up a var list for use with likeli or
anneal, you can use that list with predicted_results without removing arguments for the PDF.

Value

A vector of predicted results, one for each observation in source_data.

Examples

## Use the included crown_rad dataset
data( crown_rad )

## Create our model function - crown radius is a linear function of DBH.
## DBH is a column of data from the crown_rad dataset; a and b are single
## parameter values.

model <- function (a, b, DBH) {a + b *x DBH}

## Create our parameters list and set values for a and b
par <- list(a =1.12, b = 0.07)

## Create a place to put all the other data needed by
## the model and PDF, and indicate that DBH comes from
## the column marked "DBH" in the dataset

var <- list(DBH = "DBH")

predicted <- predicted_results(model, par, var, crown_rad)
## Calculate R2 - proportion of variance explained by the model relative to

## that explained by the simple mean of the data
meanrad <- mean(crown_rad$Radius)
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sse <- (crown_rad$Radius - predicted)*2
sst <- (crown_rad$Radius - meanrad)*2
R2 <- 1 - (sum(sse)/sum(sst))

Simulated Annealing Algorithm
Details on the Simulated Annealing Algorithm

Description

This gives details on how the simulated annealing process is performed.

Details

When you are using likelihood methods to select the best parameter values for a scientific model,
you need a method for searching the space of all possible values to find the global maximum like-
lihood. There are several search algorithms, and many R implementations of them. The simulated
annealing algorithm is a good choice for maximizing likelihood for two reasons. The likelihood
function is difficult to analyze using mathematical methods, such as derivation. Also, it often has
a complex topology in parameter space, with local maxima, cliffs, ridges, and holes where it is
undefined. Simulated annealing is an algorithm designed to deal with these problems. The algo-
rithm of course can be applied to all kinds of problems, but its implementation in this package is for
analyzing the likelihood function only.

An analogy for the search process is walking a mountain range in the dark, trying to find the highest
mountain. In the beginning, when the algorithm’s “temperature” is high, the search is energetic. In
addition to moving uphill, it will also regularly move downhill to try to find a better uphill path. It
will also jump off the mountain it’s currently on to see if it lands on another, higher mountain. Later
in the search, when the temperature and energy are lower, the algorithm works on reaching the top
of the best mountain it has found. It may still move downhill to try to find a better path to the top
but this becomes less and less likely.

The search (hopefully) ends with the algorithm converging on the global maximum. This may
happen quickly or may take a very long time. The algorithm cannot know when it has found the
global maximum, so it continues searching until it reaches a predefined end point, and leaves it up
to you to judge the result. The set of search controls is called the annealing schedule, and defines the
search’s initial conditions, its rate of energy drop, and its end point. You can change this schedule
to maximize the probability of convergence with the minimum amount of computation time.

You begin an annealing run by setting up the annealing schedule and the parameter search space.
For the annealing schedule, you provide:

* Initial temperature (t). The higher the temperature, the more energetic the search.

* Rate of reduction in temperature (rt). This controls how quickly the temperature falls through-
out the run.

* Rate of drops in temperature (nt). This controls how long the search stays at a certain temper-
ature before further cooling.

* Interval between changes in range (ns). This controls how often the annealing process adjusts
the parameter search range.
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* An end point to the search. This is generally a maximum number of search iterations.

For the parameters, you provide:

* Initial values. The values whose likelihood is the point where the search starts.

» Upper and lower bounds. If desired or mathematically necessary. The annealing can also
conduct a global search on one or more parameters.

Simulated annealing searches by randomly varying one parameter value, keeping all the other pa-
rameter values the same, and calculating the new likelihood. It compares this value to the last
likelihood calculated to decide whether to keep the new parameter value or discard it. It then re-
peats this process by randomly varying the next parameter in the set. When each parameter has
been varied one time, that is one search iteration. Simulated annealing then starts over with the first
parameter again, beginning a new iteration.

The latest set of parameter values represents the point in the search space where the algorithm is on
its current path. The algorithm also keeps a copy of the values that produced the highest likelihood
yet found, so it can go back to that point.

Each time simulated annealing picks a new parameter value to test, it must decide whether to accept
or reject the change. First, it compares the new parameter’s likelihood value to the likelihood
before the change. If the new value is equal to or greater than the previous value, the change in the
parameter is accepted and the algorithm takes a step uphill. It then checks to see if it’s at a new
overall high point in the search. If so, it saves this set of parameter values as its best yet.

If the new parameter value’s likelihood is worse than the previous one (representing a step down-
hill), simulated annealing uses the Metropolis criterion to decide whether or not to accept the move.
The criterion is:

_Li-L2
p=e
where p is the probability the move will be accepted, L1 is the previous likelihood, L2 is the new
likelihood, and T is the current annealing temperature. The algorithm compares a random number
to this probability. If the move is accepted, the algorithm steps downhill. If the move is rejected, the
new parameter value is discarded and the search stays in the same place, to try a step in a different
direction with the next parameter.

The parameter values are randomly chosen within a range. The search begins with any defined
upper and lower bounds, or infinity if there are none. Every ns iterations (where ns is the interval
between changes in range in the initial annealing schedule), simulated annealing adjusts its search
bounds for each parameter so that 50% of all moves will be accepted, either enlarging the bounds
to find new ground to search or shrinking them to narrow in on a maximum.

After ns * nt iterations, the temperature T drops as

T =rtxT

where rt is the rate of temperature reduction given in the initial annealing schedule.

The search ends when simulated annealing has reached the end point defined in its annealing sched-
ule; either a maximum number of iterations, or a failure to find a higher likelihood within a set
amount of temperature drop. The search may end before the global maximum has been reached.

Using the algorithm
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You set up the annealing schedule and search bounds to maximize the probability of convergence
on the global maximum while minimizing the computation time. Unfortunately, there are no firm
rules for establishing that convergence has occurred. You can conclude that the algorithm has not
converged if the maximum likelihood is still trending upwards when the run ends. If the maximum
likelihood is stable for many iterations, this is evidence for convergence. Better evidence is multiple
runs finding approximately the same maximum likelihood.

If an annealing run has not converged by the time it finishes, you can change the annealing schedule
to improve the chances of convergence on a subsequent run. If the likelihood is changing at a rapid
rate when the run finishes, give it more time by increasing the maximum iterations, and possibly
increasing ns and nt as well. You can also begin subsequent runs by setting the parameter initial
values to the best values found in the previous run, to allow it to continue searching where it left
off.

If the maximum likelihood value does not change much throughout the run, but the maximum
likelihood estimates for the parameters are not very good and you suspect that better values exist
but were not found, it’s possible the run was not effectively searching the parameter space. Try
increasing the parameter bounds and the initial temperature to start a more energetic search.

Other information calculated

The simulated annealing algorithm returns many pieces of information to allow evaluation of the
maximum likelihood estimates and comparison between models.

Akaike’s Information Criterion. Akaike’s Information Criterion is a measure of how well a model
approximates reality. Its most common use is to compare models (based on the same dataset) that
differ in their number of parameters. Models with more parameters will generally have higher
likelihood, and AIC provides a means to incorporate principles of parsimony in model comparison.

AIC is calculated as:

AIC = —2In(L(6y)) + 2K

where In(L(0]y)) is the log likelihood and K is the number of model parameters.
Unless the sample size is large relative to the number of model parameters, AIC corrected for small
sample size (AICc) is recommended as an alternative. This is calculated as:

n

)

where n = dataset size.

Slope. Slope is calculated as:

ST (obs;)(exp;)

N
o €ap;

where exp; is the expected value of observation i in the dataset (obs;) given the model.

slope =

R2. R? (different from 72) is the proportion of variance explained by the model relative to that
explained by the simple mean of the data. It is not bounded between 0 and 1. It is calculated as:

SSE 1 Zé\il(obsi — exp;)?

T SST T SN (obs; — obs)?

i=1

R?>=1
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where exp; is the expected value of observation i in the dataset (obs;) given the model, and obs; is
the mean of the observations.

Support limits. Support limits help you evaluate the strength of support for each parameter’s
maximum likelihood estimate. For details on how support limits are calculated, see the help page
for the support_limits function.

Standard errors, variance and covariance. Standard errors are calculated using the Hessian ma-
trix, which is a matrix of numerical approximations of the second partial derivatives of the likelihood
function with respect to parameters, evaluated at the maximum likelihood estimates. Inverting the
negative of the Hessian matrix gives the parameter variance-covariance matrix. The square roots of
the diagonals of the variance-covariance matrix are the parameter standard errors.

References

Goffe, W.L., G.D. Ferrier, and J. Rogers. 1994. Global optimization of statistical functions with
simulated annealing. Journal of Econometrics 60:65-99.

support_limits Calculate Support Limits

Description

Calculates asymptotic support limits for parameter maximum likelihood estimates. For a parameter,
support limits are the values above and below the maximum likelihood estimate that cause the
likelihood to drop by a given number of units, while holding all other parameters at their maximum
likelihood values. Two units is standard. 1.92 units roughly corresponds to a 95% confidence
interval.

Usage

support_limits(model, par, var, source_data, pdf, par_lo = NULL,
par_hi = NULL, delta = 100, slimit = 2)

Arguments

model Model function for which to calculate likelihood. This is the same as the argu-
ment that you pass to anneal or likeli.

par List of parameters for which to find the support limits. The name of each com-
ponent in par matches the name of an argument in one of the functions passed
to support_limits (either model, pdf, or another function that does initial cal-
culations). The value of each component is the maximum likelihood estimate.
All components in par must be numeric vectors. Vectors of length greater than
one get a set of support limits calculated separately for each vector value. This
is the same as the argument that you pass to anneal or likeli.

var List object with the source for all other arguments and data used by model, pdf,
and any other functions. This is the same as the argument that you pass to
anneal or likeli.
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source_data Data frame containing any needed source data. This is the same as the argument
that you pass to anneal or likeli.

pdf Probability density function to use in likelihood calculations. This is the same
as the argument that you pass to anneal or likeli.

par_lo List object with lower bounds for the support limit search. The support limit
bounds are in general the same as the simulated annealing search bounds. The
list component names and sizes should each match a component in par. Any
individual component (up to and including the entire par_lo argument) is op-
tional. For any component of par that is omitted, the lower search bound for
that parameter is assumed to be negative infinity. (Infinity isn’t quite infinity -
see details section for more.) This is the same as the argument that you pass to
anneal.

par_hi List object with upper bounds for the support limit search. The support limit
bounds are in general the same as the simulated annealing search bounds. The
list component names and sizes should each match a component in par. Any
individual component (up to and including the entire par_hi argument) is op-
tional. For any component of par that is omitted, the lower search bound for
that parameter is assumed to be infinity. (Infinity isn’t quite infinity - see details
section for more.) This is the same as the argument that you pass to anneal.

delta Controls the fineness of the search for support limits. Each parameter is divided
by this number to arrive at a step size used for “walking” the likelihood function.
Bigger numbers mean a finer search. See details for more on how the support
limits are determined.

slimit The number of units of likelihood that define the support limits. If slimit is 2,
then the limits are those values that cause the likelihood to drop by 2 on either
side of the parameter maximum likelihood estimate.

Details

Support limits are the values on either side of a parameter’s maximum likelihood estimate that make
the likelihood drop by slimit units, holding all other parameters at their maximum likelihood esti-
mate value. Of course, support limits are only meaningful if the values in par are indeed maximum
likelihood estimates. The distance from the maximum likelihood estimate of a parameter to its
support limits is an indication of the “pointiness” of the maximum on the likelihood surface.

The algorithm produces support limits for a parameter by holding all other values at their maximum
likelihood value and “walking” the likelihood function in the plane of that parameter, seeking to
find the first spot that is s1imit units below the peak likelihood. It starts by walking in big steps,
then in progressively smaller steps, until it reaches that point. The smallest step it takes is found by
dividing the parameter value by delta. This controls the overall fineness of the search.

The support limits search is bounded by the values in par_lo and par_hi. The search uses these
bounds to control how it searches. This means that different bounds values may produce slightly
different results. If a bounds value is omitted, support_limits will attempt an unbounded search,
up to infinity. This will work fine as long as the likelihood surface is not completely flat. In practice,
“infinity” means the largest and smallest values the computer can work with. To find out what the
actual limits are on your computer, use .Machine$double.xmax.

This algorithm works best if the surface produced by the likelihood function is continuous and
monotonic from the maximum likelihood value out to the support limits of all parameters. This is
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often not true. However, in most cases, this will produce reasonably good results with a low amount
of total computation time.

Support limits are calculated automatically at the end of an anneal run.

Value

A list object with two components: “upper_limits” and “lower_limits”. upper_limits has the
upper support limits for each member in par, with the maximum possible value being that parame-
ter’s value in par_hi; lower_limits has the lower support limits, with the minimum possible value
being that parameter’s value in par_lo.

If the likelihood calculated from par is infinite or NA, then the support limits will also be NA.

Note

The parameter maximum likelihood estimates found by anneal are in the list component called
best_pars. These are the values to pass to support_limits for the par argument.

See Also

likeli, anneal

Examples

HHHEHHHEHEEH

## Set up for an annealing run
S

## Use the included crown_rad dataset
data(crown_rad)

## Create our model function - crown radius is a linear function of DBH.
## DBH is a column of data from the crown_rad dataset; a and b are single
## parameter values.

model <- function (a, b, DBH) {a + b * DBH}

## Create our parameters list and set values for a and b, and indicate
## that DBH comes from the column marked "DBH" in the crown_rad dataset
par <- list(a =1.12, b = 0.07)

var <- list(DBH = "DBH")

## We'll use the normal probability density function dnorm - add its
## arguments to our parameter list

## "x" value in PDF is observed value
var$x <- "Radius”

## The mean is the predicted value, the outcome of the model statement. Use
## the reserved word "predicted”

var$mean <- "predicted”

var$sd <- 0.815585

## Set bounds within which to search for parameters
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0, b = 0)
50, b = 50)

par_lo <- list(a
par_hi <- list(a

## Have dnorm calculate log likelihood
var$log <- TRUE

## Not run:
results <- anneal(model, par, var, crown_rad, par_lo, par_hi, dnorm, "Radius”, max_iter=20000)

## End(Not run)
A
## Do support limits - even though there are a set already in results

I

## Not run:
limits <- support_limits(model, results$best_pars, var, crown_rad, dnorm, par_lo, par_hi)

## End(Not run)

write_results Write the Results of Simulated Annealing to File

Description

Takes the results produced by the function anneal and writes them to a tab-delimited text file.

Usage

write_results(results, filename, data = TRUE, print_whole_hist = FALSE)

Arguments
results The output list produced by the function anneal.
filename A string with the file and path to the file you wish to write. This will overwrite
any existing files of that name. This will not add any file extensions so remember
to put on the appropriate one.
data If TRUE, the source_dataset member of results is written to the file; if

FALSE, it is not. Large datasets can inflate the size of output files.

print_whole_hist
If TRUE, the entire likelihood history of the run is printed; if FALSE, it is not.
Long runs can have rather long histories.

Value

A file with the contents of results written as tab-delimited text.
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See Also

anneal

Examples

## Assuming you have performed a simulated annealing run and placed the
## results in an object called "my_results”...
## Not run: write_results(my_results, "c:\results.txt")

23
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