Package ‘IgrExtra’

July 9, 2025

Type Package
Title Extra Appenders for 'lgr'
Version 0.1.1

Description Additional appenders for the logging package 'lgr' that
support logging to databases, email and push notifications.

License MIT + file LICENSE
Imports data.table, Igr, R6

Suggests covr, DBI, elastic, gmailr, httr2, jsonlite, knitr,
paws.management (>= 0.4.0), pool, RMariaDB, rmarkdown,
RPostgres, RPushbullet, RSQLite, rsyslog, sendmailR, testthat,
utils

Encoding UTF-8
RoxygenNote 7.3.2
NeedsCompilation no

Author Stefan Fleck [aut, cre] (ORCID:
<https://orcid.org/0000-0003-3344-9851>),
Jimmy Briggs [ctb, rev] (ORCID:
<https://orcid.org/0000-0002-7489-8787>)

Maintainer Stefan Fleck <stefan.b.fleck@gmail.com>
Repository CRAN
Date/Publication 2025-07-09 08:20:02 UTC

Contents
AppenderAWSCloudWatchLog e 2
AppenderDbi 5
AppenderDigest L. oL e e e e 7
AppenderDt 8
AppenderDynatrace L. oL e e e 11
AppenderElasticSearch 12
AppenderGmail 14

https://orcid.org/0000-0003-3344-9851
https://orcid.org/0000-0002-7489-8787

Index

AppenderAWSCloudWatchLog

AppenderMail e 15
AppenderPool 17
AppenderPushbullet 20
AppenderSendmail 22
AppenderSyslog Lo e 24
LayoutDbi 26
LayoutDynatrace e 28
LayoutElasticSearch e 30
select_dbi_layout e 31
Serializer L. e e 31
transform_event_dynatrace Lo 33
unpack_json_cols e 33

35

AppenderAWSCloudWatchLog

Log to AWS CloudWatch Logs

Description

Log to AWS CloudWatch Logs.

Value

The $new() method returns an R6::R6 that inherits from lgr::Appender and can be uses as an ap-
pender by a lgr::Logger.

Buffered Logging

By default, AppenderAWSCloudWatchLog writes each LogEvent which can be relatively slow. To
improve performance it is possible to tell AppenderAWSCloudWatchLog to buffer db writes by set-
ting buffer_size to something greater than @. This buffer is written to AWS CloudWatch when-
ever it is full (buffer_size), whenever a LogEvent with a level of fatal or error is encountered
(flush_threshold), or when the Appender is garbage collected (flush_on_exit), i.e. when you
close the R session or shortly after you remove the Appender object via rm().

Creating a New Appender

An AppenderAWSCloudWatchLog is linked to an AWS Account using the paws sdk package. If the
log group does not exist it is created either when the Appender is first instantiated or (more likely)
when the first LogEvent would be written to that table.

Super classes

lgr

::Filterable -> 1gr: :Appender -> 1gr: : AppenderMemory -> AppenderAWSCloudWatchLog

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://www.paws-r-sdk.com/

AppenderAWSCloudWatchLog 3

Active bindings

client a paws.management cloudwatchlogs client
log_group_name The name of the AWS CloudWatch log group.

log_stream_name The name of the log stream within the log_group_name.

Methods

Public methods:

* AppenderAWSCloudWatchLog$new()

* AppenderAWSCloudWatchLog$set_client()

* AppenderAWSCloudWatchLog$set_log_group_name()

¢ AppenderAWSCloudWatchLog$set_log_stream_name()

* AppenderAWSCloudWatchLog$set_log_group_retention_days()
¢ AppenderAWSCloudWatchLog$flush()

Method new():

Usage:
AppenderAWSCloudWatchLog$new(
log_group_name,
log_stream_name = paste(log_group_name, Sys.Date(), sep = "/"),
log_group_retention_days = NULL,
paws_config = list(),
threshold = NA_integer_,
layout = LayoutFormat$new(fmt = "%L: %m", colors = list()),
buffer_size = 0,
flush_threshold = "error”,
flush_on_exit = TRUE,
flush_on_rotate = TRUE,
should_flush = NULL,
filters = NULL

)

Arguments:

log_group_name The name of the AWS CloudWatch log group.
log_stream_name The name of the log stream within the log_group_name.

log_group_retention_days The number of days to retain the log events in the specified log
group. AWS API Documentation

paws_config list of paws config. Please see section https://www.paws-r-sdk.com/docs/
set_service_parameter/

threshold, flush_threshold, layout, buffer_size see lgr::AppenderBuffer

Method set_client(): set paws.management cloudwatchlogs client

Usage:
AppenderAWSCloudWatchLog$set_client(client)

Arguments:

https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_PutRetentionPolicy.html
https://www.paws-r-sdk.com/docs/set_service_parameter/
https://www.paws-r-sdk.com/docs/set_service_parameter/

AppenderAWSCloudWatchLog

client (paws.management::cloudwatchlogs) client. AWS CloudWatch

Method set_log_group_name(): set log group name for AWS CloudWatch
Usage:
AppenderAWSCloudWatchLog$set_log_group_name(log_group_name)
Arguments:

log_group_name (character) name of AWS CloudWatch

Method set_log_stream_name(): setlog stream name within AWS CloudWatch log group
Usage:
AppenderAWSCloudWatchLog$set_log_stream_name(log_stream_name)
Arguments:

log_stream_name (character) log stream name with AWS CloudWatch log group

Method set_log_group_retention_days(): set log group retention days for AWS Cloud-
Watch Log Group.

Usage:
AppenderAWSCloudWatchLog$set_log_group_retention_days(log_group_retention_days)
Arguments:

log_group_retention_days The number of days to retain the log events in the specified log
group. AWS API Documentation
Method flush():

Usage:
AppenderAWSCloudWatchLog$flush()

See Also

Other Appenders: AppenderDbi, AppenderDt, AppenderDynatrace, AppenderElasticSearch,
AppenderGmail, AppenderPool, AppenderPushbullet, AppenderSendmail, AppenderSyslog

Examples

Not run:
library(lgrExtra)
app <- AppenderAWSCloudWatchLog$new(log_group_name = "lgrExtra")
lg <- lgr::get_logger("lgrExtra")$add_appender (app)$set_propagate (FALSE)
lg$info("test”)
print(lg$appenders[[1]]$data)

invisible(lg$config(NULL)) # cleanup

End(Not run)

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_PutRetentionPolicy.html

AppenderDbi 5

AppenderDbi Log to databases via DBI

Description

Log to a database table with any DBI compatible backend. Please be aware that AppenderDbi
does not support case sensitive / quoted column names, and you advised to only use all-lowercase

names for custom fields (see . .. argument of lgr::LogEvent). When appending to a database table
all LogEvent values for which a column exists in the target table will be appended, all others are
ignored.

NOTE: AppenderDbi works reliable for most databases, but is still considered experimental, es-
pecially because the configuration is excessively complicated. Expect breaking changes to Appen-
derDbi in the future.

Value

The $new() method returns an R6::R6 that inherits from lgr::Appender and can be uses as an ap-
pender by a lgr::Logger.

Buffered Logging

By default, AppenderDbi writes each LogEvent directly to the target database which can be rel-
atively slow. To improve performance it is possible to tell AppenderDbi to buffer db writes by
setting buffer_size to something greater than @. This buffer is written to the database when-
ever it is full (buffer_size), whenever a LogEvent with a level of fatal or error is encountered
(flush_threshold), or when the Appender is garbage collected (flush_on_exit), i.e. when you
close the R session or shortly after you remove the Appender object via rm().

Creating a New Appender

An AppenderDbi is linked to a database table via its table argument. If the table does not exist
it is created either when the Appender is first instantiated or (more likely) when the first LogEvent
would be written to that table. Rather than to rely on this feature, it is recommended that you create
the target table first using an SQL CREATE TABLE statement as this is safer and more flexible. See
also LayoutDbi.

Choosing the correct DBI Layout
Layouts for relational database tables are tricky as they have very strict column types and further
restrictions. On top of that implementation details vary between database backends.

To make setting up AppenderDbi as painless as possible, the helper function select_dbi_layout ()
tries to automatically determine sensible LayoutDbi settings based on conn and - if it exists in the
database already - table. If table does not exist in the database and you start logging, a new table
will be created with the col_types from layout.

Super classes

lgr::Filterable -> lgr: :Appender -> 1gr: : AppenderMemory -> AppenderDbi

6 AppenderDbi

Active bindings

conn a DBI connection
close_on_exit TRUE or FALSE. Close the Database connection when the Logger is removed?

col_types anamed character vector providing information about the column types in the database.
How the column types are reported depends on the database driver. For example, SQLite re-
turns human readable data types (character, double, ...) while IBM DB2 returns numeric codes
representing the data type.

table acharacter scalar or a DBI::Id specifying the target database table
table_name character scalar. Like $table, but always returns a character scalar
table_id DBI::Id. Like $table, but always returns a DBI::1d

Methods

Public methods:

e AppenderDbi$new()

* AppenderDbi$set_close_on_exit()
¢ AppenderDbi$set_conn()

e AppenderDbi$show()

¢ AppenderDbi$flush()

Method new():

Usage:

AppenderDbi$new(
conn,
table,
threshold = NA_integer_,
layout = select_dbi_layout(conn, table),
close_on_exit = TRUE,
buffer_size = 0,
flush_threshold = "error”,
flush_on_exit = TRUE,
flush_on_rotate = TRUE,
should_flush = NULL,
filters = NULL

)

Arguments:
conn, table see section Fields
threshold, flush_threshold, layout, buffer_size see lgr::AppenderBuffer

Method set_close_on_exit():

Usage:
AppenderDbi$set_close_on_exit(x)

Method set_conn():

AppenderDigest 7

Usage:
AppenderDbi$set_conn(conn)

Method show():

Usage:
AppenderDbi$show(threshold = NA_integer_, n = 20)

Method flush():

Usage:
AppenderDbi$flush()

See Also

Other Appenders: AppenderAWSCloudWatchlLog, AppenderDt, AppenderDynatrace, AppenderElasticSearch,
AppenderGmail, AppenderPool, AppenderPushbullet, AppenderSendmail, AppenderSyslog

Examples

if (requireNamespace("RSQLite")){
app <- AppenderDbi$new(
conn = DBI::dbConnect(RSQLite::SQLite(), dbname = ":memory:"),
table = "log"
)

lg <- lgr::get_logger("test/dbi")$
add_appender(app, "db")$
set_propagate(FALSE)

lg$info("test”)

print(lg$appenders[[1]]$data)

invisible(lg$config(NULL)) # cleanup

AppenderDigest Abstract class for digests (multi-log message notifications)

Description

Digests is an abstract class for report-like output that contain several log messages and a title; e.g. an
E-mail containing the last 10 log messages before an error was encountered or a push notification.

Abstract classes, only exported for package developers.

Value

Abstract classes cannot be instantiated with $new() and therefore do not return anything. They are
solely for developers that want to write their own extension to Igr.

8 AppenderDt

Super classes

lgr::Filterable -> lgr: :Appender -> 1gr: : AppenderMemory -> AppenderDigest

Active bindings

subject_layout A lgr::Layout used to format the last lgr::LogEvent in this Appenders buffer
when it is flushed. The result will be used as the subject of the digest (for example, the E-mail
subject).

Methods

Public methods:

¢ AppenderDigest$new()
* AppenderDigest$set_subject_layout()

Method new():

Usage:
AppenderDigest$new(...)

Method set_subject_layout():

Usage:
AppenderDigest$set_subject_layout(layout)

See Also

Igr::LayoutFormat, Igr::LayoutGlue
Other abstract classes: AppenderMail

Other Digest Appenders: AppenderMail, AppenderPushbullet, AppenderSendmail

AppenderDt Log to an in-memory data.table

Description

An Appender that outputs to an in-memory data. table. It fulfill a similar purpose as the more
flexible lgr:: AppenderBuffer and is mainly included for historical reasons/backwards compatibility
with older version of Igr.

NOTE: AppenderDt has been superseded by Igr:: AppenderBuffer and is kept mainly for archival
purposes.

Value

The $new() method returns an R6::R6 that inherits from lgr::Appender and can be uses as an ap-
pender by a lgr::Logger.

AppenderDt 9

Custom Fields

AppenderDt supports lgr::custom fields, but they have to be pre-allocated in the prototype argu-
ment. Custom fields that are not part of the prototype are inserted in the list-column . fields if it
exists.

Creating a Data Table Appender

In addition to the usual fields, AppenderDt$new() requires that you supply a buffer_size and a
prototype. These determine the structure of the data.table used to store the log this appender
creates and cannot be modified anymore after the instantiation of the appender.

The lgr::Layout for this Appender is used only to format console output of its $show() method.

Comparison AppenderBuffer and AppenderDt

Both Igr::AppenderBuffer and AppenderDt do in memory buffering of events. AppenderBuffer
retains a copies of the events it processes and has the ability to pass the buffered events on to
other Appenders. AppenderDt converts the events to rows in a data. table and is a bit harder to
configure. Used inside loops (several hundred iterations), AppenderDt has much less overhead than
AppenderBuffer. For single logging calls and small loops, AppenderBuffer is more performant.
This is related to how memory pre-allocation is handled by the appenders.

Super classes

lgr::Filterable -> 1gr: :Appender -> AppenderDt

Methods

Public methods:

¢ AppenderDt$new()

* AppenderDt$append()

¢ AppenderDt$show()

e AppenderDt$set_layout()

Method new(): Creating a new AppenderDt

Usage:
AppenderDt$new(
threshold = NA_integer_,
layout = LayoutFormat$new(fmt = "%L [%t] %m %f", timestamp_fmt = "%H:%M:%0S3",
colors = getOption("lgr.colors”, list())),
prototype = data.table::data.table(.id = NA_integer_, level = NA_integer_, timestamp =
Sys.time(), logger = NA_character_, caller = NA_character_, msg = NA_character_,
.fields = list(list())),
buffer_size = 1e+05,
filters = NULL
)

Arguments:

10 AppenderDt

prototype A prototype data.table. The prototype must be a data.table with the same
columns and column types as the data you want to log. The actual content of the columns
is irrelevant. There are a few reserved column names that have special meaning: * .id:
integer (mandatory). Must always be the first column and is used internally by the Ap-
pender * .fields: list (optional). If present all custom values of the event (that are not
already part of the prototype) are stored in this list column.

buffer_size integer scalar. Number of rows of the in-memory data. table

Method append():
Usage:
AppenderDt$append(event)

Method show():
Usage:
AppenderDt$show(threshold = NA_integer_, n = 20L)

Method set_layout():
Usage:
AppenderDt$set_layout(layout)
See Also

data.table::data.table

Other Appenders: AppenderAWSCloudWatchlLog, AppenderDbi, AppenderDynatrace, AppenderElasticSearch,
AppenderGmail, AppenderPool, AppenderPushbullet, AppenderSendmail, AppenderSyslog

Examples

lg <- 1gr::get_logger("test")

lg$config(list(
appenders = list(memory = AppenderDt$new()),
threshold = NA,
propagate = FALSE # to prevent routing to root logger for this example

))
lg$debug(”test”)
lg$error("test”)

Displaying the log
lg$appenders$memory$data
lg$appenders$memory$show()
lgr::show_log(target = lg$appenders$memory)

If you pass a Logger to show_log(), it looks for the first AppenderDt
that it can find.
lgr::show_log(target = lg)

Custom fields are stored in the list column .fields by default
lg$info("the iris data frame”, caps = LETTERS[1:5])
lg$appenders$memory$data
lg$appenders$memory$datas.fields[[3]]$caps

lg$config(NULL)

AppenderDynatrace 11

AppenderDynatrace Log to Dynatrace via HTTP

Description

Log to Dynatrace via the Dynatrace log ingestion API.

Value

The $new() method returns an R6::R6 that inherits from lgr::Appender and can be uses as an ap-
pender by a lgr::Logger.

Super classes

lgr::Filterable -> 1gr: :Appender -> lgr: : AppenderMemory -> AppenderDynatrace

Active bindings

url astringurl

api_key astring api_key. Also referred to as "Api Token"

Methods

Public methods:

e AppenderDynatrace$new()

e AppenderDynatrace$set_url()

* AppenderDynatrace$set_api_key()
* AppenderDynatrace$get_data()

¢ AppenderDynatrace$show()

¢ AppenderDynatrace$flush()

Method new():

Usage:

AppenderDynatrace$new(
url,
api_key,
threshold = NA_integer_,
layout = LayoutDynatrace$new(),
buffer_size = 0,
flush_threshold = "error”,
flush_on_exit = TRUE,
flush_on_rotate = TRUE,
should_flush = NULL,
filters = NULL

12

AppenderElasticSearch

Arguments:
url see section Fields
threshold, flush_threshold, layout, buffer_size see lgr::AppenderBuffer

Method set_url():
Usage:
AppenderDynatrace$set_url(url)

Method set_api_key():
Usage:
AppenderDynatrace$set_api_key(api_key)

Method get_data(): Get log as data.frame: Not supported for dynatrace

Usage:
AppenderDynatrace$get_data(n = 20L, threshold = NA, result_type = "data.frame")

Method show(): Show log in console: Not supported for dynatrace
Usage:
AppenderDynatrace$show(threshold = NA_integer_, n = 20)

Method flush():
Usage:
AppenderDynatrace$flush()

See Also

https://docs.dynatrace.com/docs/analyze-explore-automate/logs/1lma-log-ingestion/
Ima-log-ingestion-via-api

Other Appenders: AppenderAWSCloudWatchLog, AppenderDbi, AppenderDt, AppenderElasticSearch,

AppenderGmail, AppenderPool, AppenderPushbullet, AppenderSendmail, AppenderSyslog

AppenderElasticSearch Log to ElasticSearch

Description

NOTE: Maturing; not yet fully documented but well tested in a production scenario

Value

The $new() method returns an R6::R6 that inherits from lgr::Appender and can be uses as an ap-
pender by a lgr::Logger.

Super classes

lgr::Filterable -> lgr: :Appender -> 1gr: : AppenderMemory -> AppenderElasticSearch

https://docs.dynatrace.com/docs/analyze-explore-automate/logs/lma-log-ingestion/lma-log-ingestion-via-api
https://docs.dynatrace.com/docs/analyze-explore-automate/logs/lma-log-ingestion/lma-log-ingestion-via-api

AppenderElasticSearch 13

Active bindings

conn a ElasticSearch connection
index target ElasticSearch index. May either be:

* acharacter scalar, or
* afunction returning a character scalar

index_create_body e character scalar json string (or NULL).

* a function returning a character scalar json string (or NULL) Optional settings, map-
pings, aliases, etc... in case the target index has to be created by the logger. See https://
www.elastic.co/docs/api/doc/elasticsearch/operation/operation-indices-create

Methods

Public methods:

e AppenderElasticSearch$new()

e AppenderElasticSearch$set_conn()
e AppenderElasticSearch$get_data()
¢ AppenderElasticSearch$show()

e AppenderElasticSearch$flush()

Method new():

Usage:

AppenderElasticSearch$new(
conn,
index,
threshold = NA_integer_,
layout = LayoutElasticSearch$new(),
index_create_body = NULL,
buffer_size = 0,
flush_threshold = "error”,
flush_on_exit = TRUE,
flush_on_rotate = TRUE,
should_flush = NULL,
filters = NULL

)

Arguments:
conn, index see section Fields

threshold, flush_threshold, layout, buffer_size seelgr::AppenderBuffer A datadata.frame.
content of index

Method set_conn():

Usage:
AppenderElasticSearch$set_conn(conn)

Method get_data():
Usage:

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-indices-create
https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-indices-create

14 AppenderGmail

AppenderElasticSearch$get_data(
n = 20L,
threshold = NA,
result_type = "data.frame”

)
Arguments:
n integer scalar. Retrieve only the last n log entries that match threshold
threshold character or integer scalar. The minimum log level that should be displayed
result_type character scalar. Any of:
* data.frame
* data.table (shortcut: dt)
* list (unprocessed list with ElasticSearch metadata)
¢ json (raw ElasticSearch JSON)

Returns: see result_type

Method show():

Usage:
AppenderElasticSearch$show(threshold = NA_integer_, n = 20)

Method flush():
Usage:

AppenderElasticSearch$flush()

See Also

Other Appenders: AppenderAWSCloudWatchLog, AppenderDbi, AppenderDt, AppenderDynatrace,
AppenderGmail, AppenderPool, AppenderPushbullet, AppenderSendmail, AppenderSyslog

AppenderGmail Send emails via the Gmail REST API

Description

Send mails via gmailr::gm_send_message(). This Appender keeps an in-memory buffer like
lgr::AppenderBuffer. If the buffer is flushed, usually because an event of specified magnitude is
encountered, all buffered events are concatenated to a single message. The default behavior is to
push the last 30 log events in case a fatal event is encountered.

NOTE: This Appender requires that you set up google API authorization, please refer to the docu-
mentation of gmailr for details.
Value

The $new() method returns an R6::R6 that inherits from lgr::Appender and can be uses as an ap-
pender by a lgr::Logger.

https://github.com/r-lib/gmailr
https://github.com/r-lib/gmailr

AppenderMail 15

Super classes

lgr::Filterable -> 1gr: :Appender -> 1gr: :AppenderMemory -> 1grExtra: : AppenderDigest
-> lgrExtra: : AppenderMail -> AppenderGmail

Methods

Public methods:

¢ AppenderGmail$new()
¢ AppenderGmail$flush()

Method new(): see AppenderMail for details
Usage:
AppenderGmail$new(
to,
threshold = NA_integer_,
flush_threshold = "fatal”,

layout = LayoutFormat$new(fmt = "%L [%t] %m %f", timestamp_fmt = "%H:%M:%S"),

subject_layout = LayoutFormat$new(fmt = "[LGR] %L: %m"),
buffer_size = 30,

from = get_user(),
cc = NULL,
bcc = NULL,
html = FALSE,
filters = NULL

)

Method flush():
Usage:
AppenderGmail$flush()

See Also

Igr::LayoutFormat, 1gr::LayoutGlue

Other Appenders: AppenderAWSCloudWatchlLog, AppenderDbi, AppenderDt, AppenderDynatrace,
AppenderElasticSearch, AppenderPool, AppenderPushbullet, AppenderSendmail, AppenderSyslog

AppenderMail Abstract class for email Appenders

Description
Abstract classes, only exported for package developers.

Value

Abstract classes cannot be instantiated with $new() and therefore do not return anything. They are
solely for developers that want to write their own extension to Igr.

16 AppenderMail

Super classes

lgr::Filterable -> 1gr: :Appender -> 1gr: :AppenderMemory -> 1grExtra: : AppenderDigest
-> AppenderMail

Active bindings
to character vector. The email addresses of the recipient
from character vector. The email address of the sender
cc character vector. The email addresses of the cc-recipients (carbon copy)
bcec character vector. The email addresses of bee-recipients (blind carbon copy)

html logical scalar. Send a html email message? This does currently only format the log contents
as monospace verbatim text.

Methods

Public methods:

¢ AppenderMail$new()

¢ AppenderMail$set_to()

¢ AppenderMail$set_from()
e AppenderMail$set_cc()

* AppenderMail$set_bcc()
* AppenderMail$set_html()
e AppenderMail$format()

Method new():
Usage:
AppenderMail$new(...)

Method set_to():

Usage:
AppenderMail$set_to(x)

Method set_from():

Usage:
AppenderMail$set_from(x)

Method set_cc():

Usage:
AppenderMail$set_cc(x)

Method set_bcc():

Usage:
AppenderMail$set_bcc(x)

Method set_html():

AppenderPool 17

Usage:
AppenderMail$set_html(x)

Method format():

Usage:
AppenderMail$format(color = FALSE, ...)

See Also

Other abstract classes: AppenderDigest
Other Digest Appenders: AppenderDigest, AppenderPushbullet, AppenderSendmail

AppenderPool Log to databases via pool

Description

Log to a database table using a connection pool from the pool package. This provides better per-
formance and connection management compared to direct DBI connections, especially for applica-
tions with concurrent users. Like AppenderDbi, it does not support case sensitive / quoted column
names, and you are advised to only use all-lowercase names for custom fields (see . . . argument of
Igr::LogEvent).

Value
The $new() method returns an R6::R6 that inherits from lgr::Appender and can be uses as an ap-
pender by a lgr::Logger.
Benefits of Pooled Connections
Using connection pools instead of direct DBI connections provides several advantages:
* Connections are reused rather than created for each query
» Connection management is automated (creation, validation, destruction)

* Better handles concurrent requests in multi-user applications

* Improves overall performance by reducing connection overhead

Buffered Logging

Like AppenderDbi, AppenderPool supports buffered logging by setting buffer_size to something
greater than @. This buffer is written to the database whenever it is full (buffer_size), when-
ever a LogEvent with a level of fatal or error is encountered (flush_threshold), or when the
Appender is garbage collected (flush_on_exit).

18 AppenderPool

Creating a New Appender

An AppenderPool is linked to a database table via its table argument. If the table does not exist it
is created either when the Appender is first instantiated or when the first LogEvent would be written
to that table. It is recommended to create the target table first using an SQL CREATE TABLE statement
for more control and safety.

Super classes

lgr::Filterable -> lgr: :Appender -> 1gr: : AppenderMemory -> AppenderPool

Active bindings

pool a pool connection

close_on_exit TRUE or FALSE. Close the pool connection when the Logger is removed? Usually
not necessary as pools manage their own lifecycle.

col_types anamed character vector providing information about the column types in the database.
table acharacter scalar or a DBI::1d specifying the target database table

table_name character scalar. Like $table, but always returns a character scalar

table_id DBI::Id. Like $table, but always returns a DBI::Id

Methods

Public methods:

¢ AppenderPool$new()

* AppenderPool$set_close_on_exit()
¢ AppenderPool$set_pool()

¢ AppenderPool$show()

¢ AppenderPool$flush()

Method new():

Usage:

AppenderPool$new(
pool,
table,
threshold = NA_integer_,
layout = select_dbi_layout(pool: :poolCheckout(pool), table),
close_on_exit = FALSE,
buffer_size = 0,
flush_threshold = "error”,
flush_on_exit = TRUE,
flush_on_rotate = TRUE,
should_flush = NULL,
filters = NULL

)

Arguments:

AppenderPool 19

pool, table see section Fields
threshold, flush_threshold, layout, buffer_size see lgr::AppenderBuffer

Method set_close_on_exit():

Usage:
AppenderPool$set_close_on_exit(x)

Method set_pool():

Usage:
AppenderPool$set_pool (pool)

Method show():

Usage:
AppenderPool$show(threshold = NA_integer_, n = 20)

Method flush():

Usage:
AppenderPool$flush()

See Also

Other Appenders: AppenderAWSCloudWatchLog, AppenderDbi, AppenderDt, AppenderDynatrace,
AppenderElasticSearch, AppenderGmail, AppenderPushbullet, AppenderSendmail, AppenderSyslog

Examples

if (requireNamespace("RSQLite") && requireNamespace("pool”)){
pool <- pool::dbPool(
drv = RSQLite::SQLite(),
dbname = ":memory:"

)

app <- AppenderPool$new(
pool = pool,
table = "log"

)

lg <- 1lgr::get_logger("test/pool”)$
add_appender (app, "db")$
set_propagate(FALSE)

lg$info("test")

print(lg$appenders[[1]]$data)

invisible(lg$config(NULL)) # cleanup
pool: :poolClose(pool)

20

AppenderPushbullet

AppenderPushbullet

Send push-notifications via RPushbullet

Description

Send push notifications via Pushbullet. This Appender keeps an in-memory buffer like 1gr:: AppenderBuffer.
If the buffer is flushed, usually because an event of specified magnitude is encountered, all buffered
events are concatenated to a single message that is sent to RPushbullet: :pbPost(). The default

behavior is to push the last 7 log events in case a fatal event is encountered.

Value

The $new() method returns an R6::R6 that inherits from lgr::Appender and can be uses as an ap-
pender by a lgr::Logger.

Super classes

lgr::Filterable -> 1gr: :Appender -> 1gr: :AppenderMemory -> 1grExtra: : AppenderDigest
-> AppenderPushbullet

Active bindings

apikey see RPushbullet: :pbPost()

recipients see RPushbullet: :pbPost()

email see RPushbullet: :pbPost()

channel see RPushbullet: :pbPost()

devices see RPushbullet: :pbPost()

Methods

Public methods:

AppenderPushbullet$new()
AppenderPushbullet$flush()
AppenderPushbullet$set_apikey ()
AppenderPushbullet$set_recipients()
AppenderPushbullet$set_email ()
AppenderPushbullet$set_channel ()
AppenderPushbullet$set_devices()

Method new():

Usage:

https://www.pushbullet.com/

AppenderPushbullet 21

AppenderPushbullet$new(
threshold = NA_integer_,
flush_threshold = "fatal”,
layout = LayoutFormat$new(fmt = "%K %t> %m %f", timestamp_fmt = "%H:%M:%S"),
subject_layout = LayoutFormat$new(fmt = "[LGR] %L: %m"),
buffer_size = 6,
recipients = NULL,

email = NULL,
channel = NULL,
devices = NULL,

apikey = getOption("rpushbullet.key"),
filters = NULL
)

Arguments:

threshold, flush_threshold, layout, buffer_size see lgr::AppenderBuffer
subject_layout A lgr::LayoutFormat object.

recipients, email, channel, devices, apikey see RPushbullet::pbPost

Method flush():

Usage:

AppenderPushbullet$flush()
Method set_apikey():

Usage:

AppenderPushbullet$set_apikey(x)
Method set_recipients():

Usage:

AppenderPushbullet$set_recipients(x)
Method set_email():

Usage:

AppenderPushbullet$set_email (x)
Method set_channel():

Usage:

AppenderPushbullet$set_channel(x)
Method set_devices():

Usage:
AppenderPushbullet$set_devices(x)

See Also

lgr::LayoutFormat, 1gr::LayoutGlue

Other Appenders: AppenderAWSCloudWatchlLog, AppenderDbi, AppenderDt, AppenderDynatrace,
AppenderElasticSearch, AppenderGmail, AppenderPool, AppenderSendmail, AppenderSyslog

Other Digest Appenders: AppenderDigest, AppenderMail, AppenderSendmail

22 AppenderSendmail

Examples

if (requireNamespace("RPushbullet”) && !is.null(getOption("rpushbullet.key”))){
app <- AppenderPushbullet$new()

lg <- lgr::get_logger("test/dbi")$
add_appender(app, "pb"”)$
set_propagate(FALSE)

lg$fatal("info")
lg$fatal("test”)

invisible(lg$config(NULL))
}

AppenderSendmail Send emails via sendmailR

Description

Send mails via sendmailR: :sendmail (), which requires that you have access to an SMTP server

that does not require authentication. This Appender keeps an in-memory buffer like 1gr:: AppenderBuffer.
If the buffer is flushed, usually because an event of specified magnitude is encountered, all buffered
events are concatenated to a single message. The default behavior is to push the last 30 log events

in case a fatal event is encountered.

Value
The $new() method returns an R6::R6 that inherits from lgr::Appender and can be uses as an ap-
pender by a lgr::Logger.

Super classes

lgr::Filterable -> 1gr: :Appender -> lgr: :AppenderMemory -> lgrExtra: : AppenderDigest
-> lgrExtra: : AppenderMail -> AppenderSendmail

Active bindings

control see sendmailR::sendmail()

headers see sendmailR::sendmail()

Methods

Public methods:
¢ AppenderSendmail$new()
¢ AppenderSendmail$flush()
* AppenderSendmail$set_control()
* AppenderSendmail$set_headers()

AppenderSendmail 23

Method new(): see AppenderMail for details

Usage:
AppenderSendmail$new(
to,
control,
threshold = NA_integer_,
flush_threshold = "fatal”,
layout = LayoutFormat$new(fmt =" %L [%t] %m %f", timestamp_fmt = "%H:%M:%S"),
subject_layout = LayoutFormat$new(fmt = "[LGR] %L: %m"),
buffer_size = 29,
from = get_user(),

cc = NULL,
bcc = NULL,
html = FALSE,

headers = NULL,
filters = NULL

)
Method flush():

Usage:

AppenderSendmail$flush()
Method set_control():

Usage:

AppenderSendmail$set_control(x)
Method set_headers():

Usage:
AppenderSendmail$set_headers(x)

Note

The default Layout’s fmt indents each log entry with 3 blanks. This is a workaround so that Mi-
crosoft Outlook does not mess up the line breaks.

See Also

Igr::LayoutFormat, 1gr::LayoutGlue

Other Appenders: AppenderAWSCloudWatchlLog, AppenderDbi, AppenderDt, AppenderDynatrace,
AppenderElasticSearch, AppenderGmail, AppenderPool, AppenderPushbullet, AppenderSyslog

Other Digest Appenders: AppenderDigest, AppenderMail, AppenderPushbullet

Examples

Not run:
lgr: :AppenderSendmail$new(
to = "user@ecorp.com”,
control = list(smtpServer = "mail.ecorp.com”),

24 AppenderSyslog

from = "lgr_user@yourmail.com”

)
End(Not run)

if (requireNamespace(”sendmailR")){
requires that you have access to an SMTP server

lg <- lgr::get_logger("lgrExtra/test/mail”)$
set_propagate(FALSE)$
add_appender (AppenderSendmail$new(

from = "ceo@ecorp.com”,
to = "some.guy@ecorp.com”,
control = list(smtpServer = "mail.somesmptserver.com”)

D)

cleanup

invisible(lg$config(NULL))

3
AppenderSyslog Log to the POSIX system log
Description

An Appender that writes to the syslog on supported POSIX platforms. Requires the rsyslog pack-
age.

Value

The $new() method returns an R6::R6 that inherits from Igr::Appender and can be uses as an ap-
pender by a lgr::Logger.

Super classes

lgr::Filterable -> lgr: :Appender -> AppenderSyslog

Public fields

syslog_levels. Either a named character vector or a function mapping lgr Igr::log_levels to
rsyslog log levels. See $set_syslog_levels().

Active bindings
identifier character scalar. A string identifying the process; if NULL defaults to the logger
name

syslog_levels. FEither a named character vector or a function mapping lgr lgr::log_levels to
rsyslog log levels. See $set_syslog_levels().

AppenderSyslog 25

Methods

Public methods:

¢ AppenderSyslog$new()

* AppenderSyslog$append()

* AppenderSyslog$set_syslog_levels()
* AppenderSyslog$set_identifier()

Method new():

Usage:

AppenderSyslog$new(
identifier = NULL,
threshold = NA_integer_,
layout = LayoutFormat$new("%m"),

filters = NULL,
syslog_levels = c(CRITICAL = "fatal”, ERR = "error”, WARNING = "warn”, INFO = "info",

DEBUG = "debug"”, DEBUG = "trace")

Method append():

Usage:
AppenderSyslog$append(event)

Method set_syslog_levels(): Define conversion between Igr and syslog log levels

Usage:
AppenderSyslog$set_syslog_levels(x)

Arguments:

x * anamed character vector mapping whose names are log levels as understood by rsyslog: : syslog()
and whose values are lgr log levels (either character or numeric)

» a function that takes a vector of Igr log levels as input and returns a character vector
of log levels for rsyslog: :syslog().

Method set_identifier(): Set a string to identify the process.

Usage:
AppenderSyslog$set_identifier(x)

See Also

lgr::LayoutFormat, 1gr::LayoutGlue

Other Appenders: AppenderAWSCloudWatchlLog, AppenderDbi, AppenderDt, AppenderDynatrace,
AppenderElasticSearch, AppenderGmail, AppenderPool, AppenderPushbullet, AppenderSendmail

26 LayoutDbi

Examples

if (requireNamespace("”rsyslog”, quietly = TRUE) && Sys.info()[["sysname”]] == "Linux") {
lg <- lgr::get_logger("rsyslog/test")
lg$add_appender (AppenderSyslog$new(), "syslog")
lg$info("A test message”)
print(system(”journalctl -t 'rsyslog/test'"))

invisible(lg$config(NULL)) # cleanup

LayoutDbi Format log events for output to databases

Description

LayoutDbi can contain col_types that AppenderDbi can use to create new database tables; how-
ever, it is safer and more flexible to set up the log table up manually with an SQL CREATE TABLE
statement instead.

Details

The LayoutDbi parameters fmt, timestamp_fmt, colors and pad_levels are only applied for for
console output via the $show () method and do not influence database inserts in any way. The inserts
are pre-processed by the methods $format_data(), $format_colnames and $format_tablenames.

It does not format LogEvents directly, but their data. table representations (see Igr::as.data.table.LogEvent),
as well as column- and table names.

Value

The $new() method returns an R6::R6 that inherits from Igr::Layout and can used as a Layout by
an Igr::Appender.

Database Specific Layouts

Different databases have different data types and features. Currently the following LayoutDbi sub-
classes exist that deal with specific databases, but this list is expected to grow as IgrExtra matures:
¢ LayoutSqglite: For SQLite databases
* LayoutPostgres: for Postgres databases
* LayoutMySqgl: for MySQL databases
¢ LayoutDb2: for DB2 databases
The utility function select_dbi_layout() tries returns the appropriate Layout for a DBI connec-

tion, but this does not work for odbc and JDBC connections where you have to specify the layout
manually.

For creating custom DB-specific layouts it should usually be enough to create an R6::R6 class that
inherits from LayoutDbi and choosing different defaults for $format_table_name, $format_colnames
and $format_data.

LayoutDbi 27

Super classes

lgr::Layout -> 1gr::LayoutFormat -> LayoutDbi

Public fields

format_table_name a function to format the table name before inserting to the database. The
function will be applied to the $table_name before inserting into the database. For example
some, databases prefer all lowercase names, some uppercase. SQL updates should be case-
agnostic, but sadly in practice not all DBI backends behave consistently in this regard.

format_colnames a function to format the column names before inserting to the database. The
function will be applied to the column names of the data frame to be inserted into the database.

format_data a function to format the data before inserting into the database. The function will
be applied to the whole data frame.

names of the columns that contain data that has been serialized to JSON strings

Active bindings

col_types a named character vector of column types supported by the target database. If not
NULL this is used by AppenderDbi or similar Appenders to create a new database table on
instantiation of the Appender. If the target database table already exists, col_types is not
used.

names of the columns that contain data that has been serialized to JSON strings

col_names column names of the target table (the same as names(lo$col_types))

Methods

Public methods:

¢ LayoutDbi$new()

* LayoutDbi$set_col_types()

e LayoutDbi$set_serialized_cols()
e LayoutDbi$sql_create_table()

e LayoutDbi$toString()

e LayoutDbi$clone()

Method new():

Usage:

LayoutDbi$new(
col_types = c(level = "integer"”, timestamp = "timestamp”, logger = "varchar(256)",

caller = "varchar(256)", msg = "varchar(2048)"),

serialized_cols = NULL,
fmt = "%L [%t] %m %f",
timestamp_fmt = "%Y-%m-%d %H:%M:%S",
colors = getOption(”lgr.colors”, list()),
pad_levels = "right",
format_table_name = identity,
format_colnames = identity,

28

format_data = data.table::as.data.table
)
Method set_col_types():
Usage:
LayoutDbi$set_col_types(x)
Method set_serialized_cols():

Usage:
LayoutDbi$set_serialized_cols(x)

Method sql_create_table():
Usage:
LayoutDbi$sql_create_table(table)
Method toString():

Usage:
LayoutDbi$toString()

Method clone(): The objects of this class are cloneable with this method.

Usage:
LayoutDbi$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

select_dbi_layout (), DBI::DBI,
Other Layout: LayoutDynatrace, LayoutElasticSearch

LayoutDynatrace

LayoutDynatrace Format log events for output to Dynatrace

Description

Similar to lgr::LayoutJson, but with some modifications to prepare data for Dynatrace.

Value

The $new() method returns an R6::R6 that inherits from Igr::Layout and can used as a Layout by

an lgr:: Appender.

Super class

lgr::Layout -> LayoutDynatrace

LayoutDynatrace 29

Active bindings

toJSON_args a list of values passed on to jsonlite: :toJSON()

transform_event afunction with a single argument event that takes a lgr::LogEvent and returns
alist.

Methods
Public methods:

e LayoutDynatrace$new()

e LayoutDynatrace$format_event()

* LayoutDynatrace$set_toJSON_args()

e LayoutDynatrace$set_transform_event()
* LayoutDynatrace$clone()

Method new():

Usage:
LayoutDynatrace$new(
toJSON_args = list(auto_unbox = TRUE),
transform_event = transform_event_dynatrace
)
Method format_event():

Usage:
LayoutDynatrace$format_event(event)

Method set_toJSON_args():
Usage:
LayoutDynatrace$set_toJSON_args(x)
Method set_transform_event():
Usage:
LayoutDynatrace$set_transform_event(x)
Method clone(): The objects of this class are cloneable with this method.

Usage:
LayoutDynatrace$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other Layout: LayoutDbi, LayoutElasticSearch

30 LayoutElasticSearch

LayoutElasticSearch Format log events for output to ElasticSearch

Description

Similar to 1gr::LayoutJson, but with some modifications to prepare data for ElasticSearch.

Value

The $new() method returns an R6::R6 that inherits from Igr::Layout and can used as a Layout by
an Igr::Appender.

Super class

lgr::Layout -> LayoutElasticSearch

Active bindings

toJSON_args a list of values passed on to jsonlite: :toJSON()

transform_event afunction with a single argument event that takes a lgr::LogEvent and returns
alist.

Methods

Public methods:
e LayoutElasticSearch$new()
e LayoutElasticSearch$format_event()
* LayoutElasticSearch$set_toJSON_args()
* LayoutElasticSearch$set_transform_event()
e LayoutElasticSearch$clone()

Method new():
Usage:
LayoutElasticSearch$new(

toJSON_args = list(auto_unbox = TRUE),
transform_event = function(event) get("values”, event)

)
Method format_event():

Usage:
LayoutElasticSearch$format_event(event)

Method set_toJSON_args():

Usage:
LayoutElasticSearch$set_toJSON_args(x)

select_dbi_layout 31

Method set_transform_event():
Usage:
LayoutElasticSearch$set_transform_event(x)
Method clone(): The objects of this class are cloneable with this method.

Usage:
LayoutElasticSearch$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other Layout: LayoutDbi, LayoutDynatrace

select_dbi_layout Automatically select appropriate layout for logging to a database

Description

Selects an appropriate Layout for a database table based on a DBI connection and - if it already
exists in the database - the table itself.

Usage

select_dbi_layout(conn, table, ...)
Arguments

conn a DBI connection

table a character scalar. The name of the table to log to.

passed on to the appropriate LayoutDbi subclass constructor.
Serializer Serializers

Description

Serializers are used by AppenderDbi to store multiple values in a single text column in a Database
table. Usually you just want to use the default SerializerJson. Please not that AppenderDbi as
well as Serializers are still experimental.

Value

a Serializer R6::R6 object for AppenderDbi.

32 Serializer

Methods
Public methods:

e Serializer$clone()

Method clone(): The objects of this class are cloneable with this method.

Usage:
Serializer$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Super class

lgrExtra::Serializer -> SerializerJson

Methods
Public methods:

e SerializerJson$new()
e SerializerJson$serialize()
e SerializerJson$clone()

Method new():

Usage:
SerializerJson$new(
COlS - H*H’
cols_exclude = c("level”, "timestamp”, "logger"”, "caller"”, "msg"),

col_filter = is.atomic,
max_nchar = 2048L,
auto_unbox = TRUE

)

Method serialize():
Usage:
SerializerJson$serialize(event)
Method clone(): The objects of this class are cloneable with this method.

Usage:
SerializerJson$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

The defaul Serializer for 'custom fields' columns
SerializerJson$new()

transform_event_dynatrace 33

transform_event_dynatrace
Transform a log event for Dynatrace

Description

Transform a log event for Dynatrace

Usage

transform_event_dynatrace(event)

Arguments

event a lgr::LogEvent object.

Value

a list of values that will be serialized to JSON for Dynatrace.

unpack_json_cols Unserialize data frame columns that contain JSON

Description

Unserialize data frame columns that contain JSON
Usage
unpack_json_cols(x, cols)

S3 method for class 'data.table'
unpack_json_cols(x, cols)

S3 method for class 'data.frame'
unpack_json_cols(x, cols)

Arguments
X adata.frame
cols character vector. The names of the text columns containing JSON strings that
should be expanded.
Value

a data.frame with additional columns expanded from the columns containing JSON

34 unpack_json_cols

Examples

x <- data.frame(
name = "example data”,
fields = '{"letters":["a","b","c"], "LETTERS":["A","B","C"]}',
stringsAsFactors = FALSE

)

res <- unpack_json_cols(x, "fields")

res

res$letters[[1]1]

Index

* Appenders
AppenderAWSCloudWatchlLog, 2
AppenderDbi, 5
AppenderDt, 8
AppenderDynatrace, 11
AppenderElasticSearch, 12
AppenderGmail, 14
AppenderPool, 17
AppenderPushbullet, 20
AppenderSendmail, 22
AppenderSyslog, 24

* Digest Appenders
AppenderDigest, 7
AppenderMail, 15
AppenderPushbullet, 20
AppenderSendmail, 22

* Layout
LayoutDbi, 26
LayoutDynatrace, 28
LayoutElasticSearch, 30

+ abstract classes
AppenderDigest, 7
AppenderMail, 15

x database layouts
LayoutDbi, 26

AppenderAWSCloudWatchlog, 2, 7, 10, 12, 14,
15,19,21,23,25
AppenderDbi, 4,5, 10, 12, 14, 15, 19, 21, 23,
25-27,31
AppenderDigest, 7, 17,21, 23
AppenderDt, 4, 7,8,9, 12,14, 15, 19, 21, 23,
25
AppenderDynatrace, 4, 7, 10, 11, 14, 15, 19,
21,23,25
AppenderElasticSearch, 4, 7, 10, 12,12, 15,
19,21,23,25
AppenderGmail, 4, 7, 10, 12, 14, 14, 19, 21,
23,25
AppenderMail, 8, 15, 15, 21,23

35

AppenderPool, 4, 7, 10, 12, 14, 15,17, 21, 23,
25

AppenderPushbullet, 4, 7, 8, 10, 12, 14, 15,
17, 19,20, 23,25

AppenderSendmail, 4, 7, 8, 10, 12, 14, 15, 17,
19,21,22,25

AppenderSyslog, 4, 7, 10, 12, 14, 15, 19, 21,
23,24

data.table: :data.table, /0
DBI connection, 6, 31
DBI::DBI, 28

DBI::Id, 6, I8

ElasticSearch connection, 13
gmailr::gm_send_message(), /4
jsonlite::toJSON(), 29, 30

LayoutDb2 (LayoutDbi), 26
LayoutDbi, 5, 26, 29, 31
LayoutDynatrace, 28, 28, 31
LayoutElasticSearch, 28, 29, 30
LayoutMySql (LayoutDbi), 26
LayoutPostgres (LayoutDbi), 26
LayoutRjdbc (LayoutDbi), 26
LayoutRjdbcDb2 (LayoutDbi), 26
LayoutSqlite (LayoutDbi), 26
lgr log levels, 25
lgr::Appender, 2, 5,8, 9,11, 12, 14-18, 20,
22,24, 26, 28, 30
lgr: :AppenderBuffer, 3,6, 8, 9, 1214,
19-22
lgr: :AppenderMemory, 2, 5, 8, 11, 12, 15, 16,
18, 20, 22
lgr::as.data.table.LogEvent, 26
lgr::custom fields, 9
lgr::Filterable, 2,5,8, 9,11, 12, 15, 16,
18, 20, 22, 24
lgr::Layout, 8, 9, 26-28, 30

36

lgr::LayoutFormat, 8, 15, 21, 23, 25,27
lgr::LayoutGlue, 8, 15,21, 23,25
lgr::LayoutJson, 28, 30
lgr::log_levels, 24
lgr::LogEvent, 5,8, 17,29, 30, 33
lgr::Logger,2,5,8,11,12,14,17, 20,22, 24
lgrExtra: : AppenderDigest, 15, 16, 20, 22
lgrExtra: :AppenderMail, 15, 22
lgrExtra::Serializer, 32

paws.management cloudwatchlogs client,
3
pool connection, I8

R6::R6,2,5,8, 11,12, 14,17, 20, 22, 24, 26,
28, 30, 31

RPushbullet: :pbPost, 2/

RPushbullet: :pbPost(), 20

rsyslog: :syslog(), 25

select_dbi_layout, 31
select_dbi_layout(), 5, 26, 28
sendmailR: :sendmail (), 22
Serializer, 31

SerializerJson (Serializer), 31

transform_event_dynatrace, 33

unpack_json_cols, 33

INDEX

	AppenderAWSCloudWatchLog
	AppenderDbi
	AppenderDigest
	AppenderDt
	AppenderDynatrace
	AppenderElasticSearch
	AppenderGmail
	AppenderMail
	AppenderPool
	AppenderPushbullet
	AppenderSendmail
	AppenderSyslog
	LayoutDbi
	LayoutDynatrace
	LayoutElasticSearch
	select_dbi_layout
	Serializer
	transform_event_dynatrace
	unpack_json_cols
	Index

