Multicollinearity, identification, and estimable functions
Simen Gaure

ABSTRACT. Since there is quite a lot of confusion here and there about what
happens when factors are collinear; here is a walkthrough of the identification
problems which may arise in models with many dummies, and how 1fe handles
them. (Or, at the very least, attempts to handle them).

1. Context

The Ife package is used for ordinary least squares estimation, i.e. models which
conceptually may be estimated by 1m as

Im(y ~ x1 + x2 + ... + xm + f1 + £2 + ... + fn)

where f1,f2,...,fn are factors. The standard method is to introduce a
dummy variable for each level of each factor. This is too much as it introduces
multicollinearities in the system. Conceptually, the system may still be solved,
but there are many different solutions. In all of them, the difference between the
coefficients for each factor will be the same.

The ambiguity is typically solved by removing a single dummy variable for each
factor, this is termed a reference. This is like forcing the coefficient for this dummy
variable to zero, and the other levels are then seen as relative to this zero. Other
ways to solve the problem is to force the sum of the coefficients to be zero, or one
may enforce some other constraint, typically via the contrasts argument to 1lm.
The default in 1m is to have a reference level in each factor, and a common intercept
term.

In Ife the same estimation can be performed by

felm(y ~ x1 + x2 + ... +xm | f1 + £2 + ... + fn)

Since felm conceptually does exactly the same as 1m, the contrasts approach
may work there too. Or rather, it is actually not necessary that felm handles it
at all, it is only necessary if one needs to fetch the coefficients for the factor levels
with getfe.

Ife is intended for very large datasets, with factors with many levels. Then the
approach with a single constraint for each factor may sometimes not be sufficient.
The standard example in the econometrics literature (see e.g. [2]) is the case with
two factors, one for individuals, and one for firms these individuals work for, chang-
ing jobs now and then. What happens in practice is that the labour market may
be disconnected, so that one set of individuals move between one set of firms, and
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another (disjoint) set of individuals move between some other firms. This happens
for no obvious reason, and is data dependent, not intrinsic to the model. There may
be several such components. I.e. there are more multicollinearities in the system
than the obvious ones. In such a case, there is no way to compare coefficients from
different connected components, it is not sufficient with a single individual refer-
ence. The problem may be phrased in graph theoretic terms (see e.g. [1, 3, 4]), and
it can be shown that it is sufficient with one reference level in each of the connected
components. This is what lfe does, in the case with two factors it identifies these
components, and force one level to zero in one of the factors.

In the examples below, rather small randomly generated datasets are used. lfe
is hardly the best solution for these problems, they are solely used to illustrate some
concepts. I can assure the reader that no CPUs, sleeping patterns, romantic rela-
tionships, trees or cats, nor animals in general, were harmed during data collection
and analysis.

2. Identification with two factors

In the case with two factors, identification is well-known. getfe will partition
the dataset into connected components, and introduce a reference level in each
component:

library(1fe)
## Loading required package: Matriz

set.seed(42)

x1 <- rnorm(20)

f1 <- sample(8, length(xl), replace = TRUE) / 10
f2 <- sample(8, length(xl), replace = TRUE) / 10
el <- sin(f1) + 0.02 * £2°2 + rnorm(length(x1))
y <= 2.5 * x1 + (el - mean(el))

summary(est <- felm(y ~ x1 | f1 + £2))

#it

## Call:

#it felm(formula = y ~ x1 | £f1 + £2)

##

## Residuals:

## Min 1Q Median 3Q Max
## -0.7331 -0.1751 0.0000 0.1139 0.7331
##

## Coefficients:
#it Estimate Std. Error t value Pr(>|tl)

## x1  1.9609 0.2854  6.872 0.000998 *x*x
# -

## Signif. codes: O 'kkx' 0.001 'x*' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#t

## Residual standard error: 0.8097 on 5 degrees of freedom

## Multiple R-squared(full model): 0.9849  Adjusted R-squared: 0.9425
## Multiple R-squared(proj model): 0.9042 Adjusted R-squared: 0.6361
## F-statistic(full model):23.23 on 14 and 5 DF, p-value: 0.001318

## F-statistic(proj model): 47.22 on 1 and 5 DF, p-value: 0.0009982
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We examine the estimable function produced by efactory.

ef <- efactory(est)
is.estimable(ef, est$fe)

## [1] TRUE

getfe(est)

## effect obs comp fe idx
## £1.0.1 0.84230453 1 2 f1 0.1
## £1.0.2 0.42366575 4 1 £f1 0.2
## £1.0.3 0.60409852 2 2 £f1 0.3
## £1.0.4 0.90166835 4 1 £f1 0.4
## £1.0.5 0.67425996 2 2 f1 0.5
## £1.0.6 1.08737618 2 1 £f1 0.6
## £1.0.7 -1.18563165 2 1 £f1 0.7
## £1.0.8 0.38769504 3 1 £f1 0.8
## £2.0.1 -2.17762453 2 1 £2 0.1
## £2.0.2 0.00000000 6 1 £2 0.2
## £2.0.3 0.44013166 1 1 £2 0.3
## £2.0.4 -0.93754073 1 1 £2 0.4
## £2.0.5 0.00000000 3 2 £2 0.5
## £2.0.6 -0.59598343 4 1 £2 0.6
## £2.0.7 -0.16807961 2 2 £2 0.7
## £2.0.8 -0.02478903 1 1 £2 0.8

As we can see from the comp entry, there are two components, the second one
with £1=0.1, £1=0.3, £1=0.5, and £2=0.5 and £2=0.7. A reference is introduced
in each of the components, i.e. £2.0.2=0 and £2.0.5=0. If we look at the dataset,
the component structure becomes clearer:

data.frame(f1l, f2, comp = est$cfactor)

#it f1  £2 comp
# 1 0.30.5 2
# 2 0.70.2 1
# 3 0.6 0.2 1
# 4 0.20.6 1
# 5 0.80.6 1
# 6 0.40.2 1
#7 0.40.4 1
# 8 0.6 0.3 1
# 9 0.20.6 1
## 10 0.5 0.5 2
## 11 0.4 0.2 1
## 12 0.5 0.7 2
## 13 0.4 0.6 1
## 14 0.2 0.2 1
## 15 0.8 0.2 1
## 16 0.2 0.8 1
## 17 0.3 0.5 2
## 18 0.8 0.1 1



Observations 1, 10, 12, 17, and 20 belong to component 2; no other observation
has f1 %in% c¢(0.1,0.3,0.5) or £2 %in% c(c0.5,0.7), thus it is clear that coef-
ficients for these can not be compared to other coefficients. 1m is silent about this
component structure, hence coefficients are hard to interpret. Though, predictive
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properties and residuals are the same:

4

5

6

-4.393e-01 -6.495e-01 -5.678e-01

11

12

13

7
1.244e-16
14

8.197e-02 -4.216e-17 4.859e-01 -1.636e-01

18

19

20

7.331e-01 -7.331e-01 -2.781e-16

f1 <- factor(f1)

f2 <- factor(f2)

summary (Im(y ~ x1 + f1 + £2))

##

## Call:

## Im(formula = y ~ x1 + f1 + £2)

##

## Residuals:

## 1 2 3

## 2.095e-01 7.331e-01 6.886e-17

#i#t 8 9 10

## -2.134e-17 6.029e-01 -3.822e-16

## 15 16 17

## -8.366e-02 6.192e-17 -2.095e-01

##

## Coefficients: (1 not defined because of
## Estimate Std. Error t value
## (Intercept) 0.6742 0.8930 0.755
## x1 1.9609 0.2854 6.872
## £10.2 -2.4282 1.4826 -1.638
## £10.3 -0.2382 1.5798 -0.151
## £10.4 -1.9502 1.6137 -1.208
## £10.5 -0.1680 1.1778 -0.143
## £10.6 -1.7645 1.6753 -1.053
## £10.7 -4.0375 1.5625 -2.584
## £10.8 -2.4642 1.5037 -1.639
## £20.2 2.1776 1.0249 2.125
## £20.3 2.6178 1.4837 1.764
## £20.4 1.2401 1.6508 0.751
## £20.5 0.1681 1.3269 0.127
## £20.6 1.5816 1.1080 1.428
## £20.7 NA NA NA
## £20.8 2.1528 1.3808 1.559
## ——

## Signif. codes: O 's*xx' 0.001 '*xx' 0.01
##

#it

##
##

singularities)

Pr(>Itl)
.484267

.162390
.886042
.280892
.892114
.340448

.162193
.086978 .
.137940
.486366
.904134
.212781
NA
0.179716

O O O OO OO OO OO O oo

'x' 0.05 '.

.049189 *

.000998 **x*

' 0.1

Residual standard error: 0.8097 on 5 degrees of freedom
Multiple R-squared:
F-statistic: 23.23 on 14 and 5 DF,

0.9849, Adjusted R-squared:

0.9425

p-value: 0.001318
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3. Identification with three or more factors

In the case with three or more factors, there is no general intuitive theory (yet)
for handling identification problems. Ife resorts to the simple-minded approach that
non-obvious multicollinearities arise among the first two factors, and assumes it is
sufficient with a single reference level for each of the remaining factors, i.e. that
they in principle could be specified as ordinary dummies. In other words, the order
of the factors in the model specification is important. A typical example would be
3 factors; individuals, firms and education:

est <- felm(logwage ~ x1 + x2 | id + firm + edu)
getfe(est)

This will result in the same number of references as if using the model
logwage ~ x1 + x2 + edu | id + firm

though it may run faster (or slower).
Alternatively, one could specify the model as

logwage ~ x1 + x2 | firm + edu + id

This would not account for a partitioning of the labour market along individ-
ual/firm, but along firm/education, using a single reference level for the individuals.
In this example, there is some reason to suspect that it is not sufficient, depending
on how edu is specified. There exists no general scheme that sets up suitable refer-
ence groups when there are more than two factors. It may happen that the default
is sufficient. The function getfe will check whether this is so, and it will yield a
warning about 'non-estimable function’ if not. With some luck it may be possible
to rearrange the order of the factors to avoid this situation.

There is nothing special with Ife in this respect. You will meet the same problem
with 1m, it will remove a reference level (or dummy-variable) in each factor, but
the system will still contain multicollinearities. You may remove reference levels
until all the multicollinearities are gone, but there is no obvious way to interpret
the resulting coefficients.

To illustrate, the classical example is when you include a factor for age (in
years), a factor for observation year, and a factor for year of birth. You pick a
reference individual, e.g. age=50, year=2013 and birth=1963, but this is not suffi-
cient to remove all the multicollinearities. If you analyze this problem (see e.g. [6])
you will find that the coefficients are only identified up to linear trends. You may
force the linear trend between birth=1963 and birth=1990 to zero, by removing
the reference level birth=1990, and the system will be free of multicollinearities.
In this case the birth coefficients have the interpretation as being deviations from
a linear trend between 1963 and 1990, though you do not know which linear trend.
The age and year coeflicients are also relative to this same unknown trend.

In the above case, the multicollinearity is obviously built into the model, and
it is possible to remove it and find some intuitive interpretation of the coefficients.
In the general case, when either 1m or getfe reports a handful of non-obvious
spurious multicollinearites between factors with many levels, you probably will not
be able to find any reasonable way to interpret coefficients. Of course, certain linear
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combinations of coefficients will be unique, i.e. estimable, and these may be found
by e.g. the procedures in [5, 8], but the general picture is muddy.

Ife does not provide a solution to this problem, however, getfe will still provide
a vector of coefficients which results from finding a non-unique solution to a certain
set of equations. To get any sense from this, an estimable function must be applied.
The simplest one is to pick a reference for each factor and subtract this coefficient
from each of the other coefficients in the same factor, and add it to a common
intercept, however in the case this does not result in an estimable function, you
are out of luck. If you for some reason believe that you know of an estimable
function, you may provide this to getfe via the ef-argument. There is an example
in the getfe documentation. You may also test it for estimability with the function
is.estimable, this is a probabilistic test which almost never fails (see [4, Remark
6.2]).

4. Specifying an estimable function
A model of the type
y “xl +x2 + f1l + £f2 + £3

may be written in matrix notation as
(1) y=XpB+ Da+e,

where X is a matrix with columns x1 and x2 and D is matrix of dummies con-
structed from the levels of the factors £1,f2,£3. Formally, an estimable function in
our context is a matrix operator whose row space is contained in the row space of
D. That is, an estimable function may be written as a matrix. Like the contrasts
argument to 1lm. However, the lfe package uses an R-function instead. That is,
felm is called first, it uses the Frisch-Waugh-Lovell theorem to project out the Da
term from (1) (see [4, Remark 3.2]):

est <- felm(y ~ x1 + x2 | f1 + £2 + £3)

This yields the parameters for x1 and x2, i.e. B To find &, the parameters for
the levels of £1,£2,£3, getfe solves a certain linear system (see [4, eq. (14)]):

(2) Dy=p

where the vector p can be computed when we have 3. This does not identify ~
uniquely, we have to apply an estimable function to . The estimable function F
is characterized by the property that Fy; = Fvys whenever v; and -, are solutions
to equation (2). Rather than coding F' as a matrix, lfe codes it as a function. It

is of course possible to let the function apply a matrix, so this is not a material
distinction. So, let’s look at an example of how an estimable function may be made:

library(1lfe)

x1 <- rnorm(100)

f1 <- sample(7, 100, replace = TRUE)

f2 <- sample(8, 100, replace TRUE) / 8

f3 <- sample(10, 100, replace = TRUE) / 10

el <- sin(f1) + 0.02 * £27°2 + 0.17 * £3°3 + rnorm(100)
y <= 2.5 * x1 + (el - mean(el))
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summary (est <- felm(y ~ x1 | f1 + £2 + £3))

##

## Call:

#Hit felm(formula = y ~ x1 | f1 + £2 + £3)

#i#t

## Residuals:

## Min 1Q Median 3Q Max
## -2.18822 -0.55222 0.09278 0.62858 2.31181
##

## Coefficients:
## Estimate Std. Error t value Pr(>|t])

## x1 2.5538 0.1026 24.88 <2e-16 *xx

## ——-

## Signif. codes: O '*x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#it

## Residual standard error: 0.9963 on 76 degrees of freedom

## Multiple R-squared(full model): 0.9086 Adjusted R-squared: 0.8809

## Multiple R-squared(proj model): 0.8907 Adjusted R-squared: 0.8576

## F-statistic(full model):32.84 on 23 and 76 DF, p-value: < 2.2e-16

## F-statistic(proj model): 619.2 on 1 and 76 DF, p-value: < 2.2e-16

## *x*x Standard errors may be too high due to more than 2 groups and exactDOF=FALSE

In this case, with 3 factors we can not be certain that it is sufficient with a
single reference in two of the factors, but we try it as an exercise. (lfe does not
include an intercept, it is subsumed in one of the factors, so it should tentatively
be sufficient with a reference for the two others).

The input to our estimable function is a solution 7 of equation (2). The ar-
gument addnames is a logical, set to TRUE when the function should add names to
the resulting vector. The coefficients is ordered the same way as the levels in the
factors. We should pick a single reference in factors £2,£3, subtract these, and add
the sum to the first factor:

ef <- function(gamma, addnames) {
ref2 <- gammal[[8]]
ref3 <- gammal[[16]]
gamma[1:7] <- gamma[1:7] + ref2 + ref3
gamma [8:15] <- gamma[8:15] - ref2
gamma[16:25] <- gamma[16:25] - ref3
if (addnames) {
names (gamma) <- c(

paste("f1", 1:7, sep = "."),
paste("f2", 1:8, sep = "."),
paste("£f3", 1:10, sep = ".")
)
}
gamma

}

is.estimable(ef, fe = est$fe)
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## [1] TRUE
getfe(est, ef = ef)
## effect
## f1.1 -0.013634682
## £1.2 0.727611420
## £1.3 -0.521386749
## £1.4 -0.646496809
## f£1.5 -1.568204155
## £1.6 -0.151511048
## £1.7  0.286980841
## £2.1 0.000000000
## £2.2 -0.289569658
## £2.3 0.168627982
## £2.4 -0.658310494
## £2.5  0.253613291
## £2.6  0.427094488
## £2.7 -0.249330433
## £2.8 -0.772323808
## £3.1 0.000000000
## £3.2 -0.004888500
## £3.3 -0.205494033
## £3.4 0.449689498
## £3.5 0.729926376
## £3.6 0.697845803
## £3.7 0.569065140
## £3.8 0.583417051
## £3.9 0.113820998
## £3.10 0.005328265

We may compare this to the default estimable function, which picks a reference
in each connected component as defined by the two first factors.

getfe(est)

## effect obs comp fe idx
## f1.1 -0.74124610 16 1 f1 1
## £1.2 0.00000000 19 1 f1 2
## £1.3 -1.24899817 15 1 f1 3
## £1.4 -1.37410823 12 1 f1 4
## £1.5 -2.29581558 10 1 f1 5
## £1.6 -0.87912247 16 1 f1 6
## £1.7 -0.44063058 12 1 f1 7
## £2.0.125 1.29667656 11 1 £2 0.125
## £2.0.25 1.00710691 15 1 £f2 0.25
## £2.0.375 1.46530454 14 1 £2 0.375
## £2.0.5 0.63836607 11 1 £f2 0.5
## £2.0.625 1.55028985 12 1 £2 0.625
## £2.0.75 1.72377105 12 1 £2 0.75
## £2.0.875 1.04734613 14 1 £2 0.875



##
##
H#it
##
##
##
##
Hit
##
##
##

and some more information, added like this:

f2.
£3.
£3.
8.
£3.
£3.
£3.
£3.
£3.
£3.
£3.

B O O O OO OO O O =
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0.52435275
-0.56906514
-0.57395364
-0.77455917
-0.11937564
.16086124
0.12878066
0.00000000
0.01435191
-0.45524415
-0.56373688

© 00 NO O WN -
o

11
8
11
10
7
11
7
14
13
5
14

NN DNNNDDNDNDNDDNDDNDE-

£2
£3
£3
£3
£3
£3
£3
£3
£3
£3
£3

O OO OO OO OO
= O 00 NO Ok WN - =

We see that the default has some more information. It uses the level names,

efactory(est)

## function (v, addnames)

##
Hit
##
##
##
##
Hi
##
##
##
##
##
##
##

## <bytecode: 0x626412d91b70>

{

3

esum <- sum(v[extrarefs])

df <- v[refsubs]

sub <- ifelse(is.na(df), 0, d4f)

df <- v[refsubal

add <- ifelse(is.na(df), 0, df + esum)
v <- v - sub + add

if (addnames) {

names (v) <- nm
attr(v, "extra") <- list(obs

idx = idx)

## <environment: 0x6264129f7b10>

information as a list (or data.frame) as an attribute ’extra’.

obs,

comp = comp,

fe

fef,

L.e. when asked to provide level names, it is also possible to add additional

The vectors

extrarefs,refsubs,refsuba etc. are precomputed by efactory for speed effi-

ciency.

f1
£2
£3
ef

Here is the above example, but we create an intercept instead, and don’t report
the zero-coefficients, so that it closely resembles the output from 1m

<- factor(f1)
<- factor(f2)
<- factor(£3)

<- function(gamma, addnames) {

refl <- gamma[[1]]
ref2 <- gammal[[8]]
ref3 <- gammal[[16]]
# put the intercept in the first coordinate
gamma[[1]] <- refl + ref2 + ref3
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gamma[2:7] <- gamma[2:7] - refl
gamma [8:14] <- gamma[9:15] - ref2
gamma [15:23] <- gamma[17:25] - ref3
length(gamma) <- 23
if (addnames) {

names (gamma) <- c(

"(Intercept)", paste("f1", levels(f1)[2:7], sep = ""),
paste("f2", levels(£2)[2:8], sep = ""),
paste("£3", levels(£3)[2:10], sep = "")
)
}
gamma

}

getfe(est, ef = ef, bN = 1000, se = TRUE)

#i# effect se

## (Intercept) -0.013634682 0.5114435

## £12 0.741246102 0.3160189

## £13 -0.507752065 0.3373377

## f14 -0.632862126 0.3572938

## 15 -1.554569472 0.3811126

## 16 -0.137876368 0.3402928

## £17 0.300615524 0.3485067

## £20.25 -0.289569657 0.4047196

## £20.375 0.168627982 0.3873691

## £20.5 -0.658310496 0.4563872

## £20.625 0.253613289 0.4170575

## £20.75 0.427094489 0.4318387

## £20.875 -0.249330434 0.4006819

## f21 -0.772323808 0.4004357

## £30.2 -0.004888501 0.4376401

## £30.3 -0.205494035 0.4464411

## £30.4 0.449689499 0.4995956

## £30.5 0.729926375 0.4339349

## £30.6 0.697845804 0.4643069

## £30.7 0.569065141 0.4218616

## £30.8 0.583417050 0.4345362

## £30.9 0.113820992 0.5315648

## £31 0.005328265 0.4159621

# compare with Im
summary (Im(y ~ x1 + f1 + £2 + £3))

#it

## Call:

## Im(formula = y ~ x1 + f1 + £2 + £3)

##

## Residuals:

## Min 1Q Median 3Q Max
## -2.18822 -0.55222 0.09278 0.62858 2.31181
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##

## Coefficients:

#Hit Estimate Std. Error t value Pr(>[tl)

## (Intercept) -0.013635 0.579452 -0.024 0.981289

## x1 2.553781  0.102627 24.884 < 2e-16 *xx
## £12 0.741246  0.385522 1.923 0.058264 .

## £13 -0.507752  0.393773 -1.289 0.201151

## f14 -0.632862 0.420832 -1.504 0.136768

## £15 -1.554569  0.444675 -3.496 0.000792 *xx*
## £16 -0.137876  0.387709 -0.356 0.723111

## £17 0.300616  0.417071  0.721 0.473257

## £20.25 -0.289570  0.455406 -0.636 0.526785

## £20.375 0.168628  0.457298 0.369 0.713340

## £20.5 -0.658310 0.516023 -1.276 0.205934

## £20.625 0.253613 0.475630 0.533 0.595440

## £20.75 0.427094 0.503638 0.848 0.399090

## £20.875 -0.249330 0.458179 -0.544 0.587913

## f21 -0.772324 0.460361 -1.678 0.097524 .

## £30.2 -0.004889 0.491509 -0.010 0.992091

## £30.3 -0.205494 0.510660 -0.402 0.688513

## £30.4 0.449689 0.567468 0.792 0.430565

## £30.5 0.729926  0.504571  1.447 0.152113

## £30.6 0.697846  0.546266 1.277 0.205320

## £30.7 0.569065 0.466883 1.219 0.226667

## £30.8 0.583417  0.473972 1.231 0.222152

## £30.9 0.113821  0.584693 0.195 0.846172

## £31 0.0056328 0.467270 0.011 0.990932

## ——-

## Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 0.9963 on 76 degrees of freedom
## Multiple R-squared: 0.9086, Adjusted R-squared: 0.8809
## F-statistic: 32.84 on 23 and 76 DF, p-value: < 2.2e-16

5. Non-estimability

We consider another example. To ensure spurious relations there are almost
as many factor levels as there are observations, and it will be hard to find enough
estimable function to interpret all the coefficients. The coefficient for x1 is still
estimated, but with a large standard error. Note that this is an illustration of
non-obvious non-estimability which may occur in much larger datasets, the author
does not endorse using this kind of model for the kind of data you find below.

set.seed(55)

x1 <- rnorm(25)

f1 <- sample(9, length(xl), replace = TRUE)

f2 <- sample(8, length(xl), replace = TRUE)

f3 <- sample(8, length(xl), replace = TRUE)

el <- sin(f1) + 0.02 * £27°2 + 0.17 * £373 + rnorm(length(x1))
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y <= 2.5 % x1 + (el - mean(el))
summary (est <- felm(y ~ x1 | f1 + f2 + £3))

##

## Call:

## felm(formula = y ~ x1 | f1 + £2 + £3)

##

## Residuals:

## Min 1Q Median 3Q Max
## -0.43725 -0.09946 0.00000 0.05047 0.38973
#it

## Coefficients:

#it Estimate Std. Error t value Pr(>|tl)

## x1  0.9735 1.3111  0.743 0.593

##

## Residual standard error: 1.146 on 1 degrees of freedom

## Multiple R-squared(full model): 0.9999 Adjusted R-squared: 0.9977

## Multiple R-squared(proj model): 0.3554 Adjusted R-squared: -14.47

## F-statistic(full model):447.3 on 23 and 1 DF, p-value: 0.03731

## F-statistic(proj model): 0.5514 on 1 and 1 DF, p-value: 0.5934

## xx*x Standard errors may be too high due to more than 2 groups and exactDOF=FALSE

The default estimable function fails, and the coefficients from getfe are not
useable. getfe yields a warning in this case.

ef <- efactory(est)

is.estimable(ef, est$fe)

## Warning in is.estimable(ef, est$fe): non-estimable function, largest
error 2e-04 in coordinate 4 ("f1.4")

## [1] FALSE

Indeed, the rank-deficiency is larger than expected. There are more spurious
relations between the factors than what can be accounted for by looking at com-
ponents in the two first factors. In this low-dimensional example we may find the
matrix D of equation (2), and its (column) rank deficiency is larger than 2.

f1 <- factor(f1)
f2 <- factor(f2)
f3 <- factor(£f3)
D <- makeDmatrix(list(f1, f2, £3))

dim(D)

## [1] 25 25

ncol(D) - as.integer(rankMatrix(D))
## [1] 3

Alternatively we can use an internal function in lfe for finding the rank defi-
ciency directly.

1fe:::rankDefic(list(f1, f2, £3))
## [1] 3
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This rank-deficiency also has an impact on the standard errors computed by

felm. If the rank-deficiency is small relative to the degrees of freedom the standard
errors are scaled slightly upwards if we ignore the rank deficiency, but if it is large,
the impact on the standard errors can be substantial. The above mentioned rank-
computation procedure can be activated by specifying exactDOF=TRUE in the call
to felm, but it may be time-consuming if the factors have many levels. Computing
the rank does not in itself help us find estimable functions for getfe.

summary (est <- felm(y ~ x1 | f1 + £2 + £3, exactDOF = TRUE))

Hi
##
##
##
##
##
##
##
##
##
##
Hit
##
##
##
##
Hit

Call:

felm(formula = y ~ x1 | f1 + £2 + £3, exactDOF = TRUE)
Residuals:

Min 1Q Median 3Q Max

-0.43725 -0.09946 0.00000 0.05047 0.38973
Coefficients:

Estimate Std. Error t value Pr(>|tl)
x1  0.9735 0.9271 1.05 0.404
Residual standard error: 0.8105 on 2 degrees of freedom

Multiple R-squared(full model): 0.9999  Adjusted R-squared: 0.9988
Multiple R-squared(proj model): 0.3554 Adjusted R-squared: -6.735
F-statistic(full model):935.2 on 22 and 2 DF, p-value: 0.001069
F-statistic(proj model): 1.103 on 1 and 2 DF, p-value: 0.4038

We can get an idea what happens if we keep the dummies for £3. In this case,

with 2 factors, lfe will partition the dataset into connected components and account
for all the multicollinearities among the factors £1 and £2 just as above, but this is
not sufficient. The interpretation of the resulting coefficients is not straightforward.

summary(est <- felm(y ~ x1 + £3 | f1 + £2, exactDOF = TRUE))

##
is
#H#
is
##
##
#H#
#i#
##
##
##
##
##
##
##

Warning in chol.default(mat, pivot = TRUE, tol = tol): the matrix
either rank-deficient or not positive definite
Warning in chol.default(mat, pivot = TRUE, tol = tol): the matrix
either rank-deficient or not positive definite

Call:
felm(formula = y ~ x1 + £3 | £f1 + £2, exactDOF = TRUE)

Residuals:

Min 1Q Median 3Q Max
-0.43725 -0.09946 0.00000 0.05047 0.38973
Coefficients:

Estimate Std. Error t value Pr(>|tl)
x1 0.9735 0.9271 1.050 0.403842
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##
##
H#it
##
##
##
##
Hit
##
##
##
##
##
##

##
getfe(est)
##

## f1.1 -24.
## £1.2 -25.
## £1.3 -24.
## f1.4 55
## £1.5 -27.
## f1.6 -22
## £1.7 -24.
## £1.8 -24.
## £1.9 -26
## £f2.1 -0
## £2.2 -0
## £2.3 3
## £f2.4 -4
## £2.5 -1
## £2.6 0
## £2.7 1
## £2.8 3

reference among these).

£32
£33
£34
£35
£36
£37
£38

© o1 O

18
34.
55.

L4317
.1696
.8295

0791
7134
0727

NaN

Signif. codes:

=N RN

.0394
.13568
.1756
.3493
.3414
.4197

NA

Vkkk!

0

Residual standard error:
Multiple R-squared(full
Multiple R-squared(proj
F-statistic(full model)
F-statistic(proj model):

SIMEN GAURE

0.415
4.552
4.518
14.140
14.826
38.791
NaN

.001 'x*

0.8105

model) :
model) :
:935.2 on 22 and 2 DF, p-value: 0.001069
425 on 8 and 2 DF, p-value: 0.002349

effect obs comp

1184347
6317181
5567621
.0365226
5445226
. 7734034
3570518
6884849
.3355630
.2701644
.5039046
.6656524
.0858605
.3292328
.0000000
.0658610
.3786353

5

N OO P P, P WNWWNDNDNRE W

e e e e e T e e e T e T = S =

fe idx
f1
f1
f1
f1
f1
f1
f1
f1
f1
£2
£2
£2
£2
£2
£2
£2
£2

O ~NO U WNE O 00N U D WN -

.718239
.045034 *
.045659 *
.004964 **
.004519 =%
.000664 *x**
NaN

O O O O O O

*' 0.01 'x'" 0.05 '." 0.1 " "1

on 2 degrees of freedom
0.9999 Adjusted R-squared: 0.9988
0.9994 Adjusted R-squared: 0.9929

In this particular example, we may use a different order of the factors, and we
see that by partitioning the dataset on the factors £1,f3 instead of £1,f2, there
are 2 connected components (the factor £2 gets its own comp-code, but this is not
a graph theoretic component number, it merely indicates that there is a separate

summary(est <- felm(y ~ x1 | f1 + £3 + £2, exactDOF = TRUE))

##

## Call:
felm(formula = y

##
##

## Residuals:

##

Min

1Q

~x1 | f1 + £3 + f2, exactDOF = TRUE)

Median

3Q Max



##
##
H#it
##
##
##
##
Hit
##
##

## F-statistic(proj model): 1.103 on 1 and 2 DF, p-value: 0.4038
is.estimable(efactory(est), est$fe)
## [1] TRUE

getfe(est)

## effect obs comp fe idx
## f1.1 0.0000000 5 1 f1 1
## £1.2 -1.5132833 4 1 f1 2
## £1.3 -0.4383273 3 1 f1 3
## £1.4 0.0000000 1 2 f1 4
## f1.5 -3.4260877 2 1 f1 5
## £1.6 1.3450313 2 1 f1 6
## £1.7 -0.2386171 2 1 f1 7
## £1.8 -0.5700503 3 1 f1 8
## £1.9 -2.2171283 3 1 f1 9
## £3.1 -24.1184347 3 1 £3 1
## £3.2 -23.6867840 2 1 £3 2
## £3.3 -18.9488113 4 1 £3 3
## £3.4 -14.2889719 1 1 £3 4
## £3.5 -5.0393265 5 1 £3 5
## £3.6 10.5949811 4 1 £3 6
## £3.7 30.9542674 5 1 £3 7
## £3.8 55.0365226 1 2 £3 8
## £2.1 -0.2701643 2 3 f2 1
## £2.2 -0.5039045 3 3 f2 2
## £2.3 3.6656524 1 3 f2 3
## £2.4 -4.0858606 1 3 f2 4
## £2.5 -1.3292328 4 3 f2 5
## £2.6 0.0000000 6 3 f2 6
## £2.7 1.0658611 6 3 f2 7
## £2.8 3.3786355 2 3 f2 8

MULTICOLLINEARITY, IDENTIFICATION, AND ESTIMABLE FUNCTIONS

-0.43725 -0.09946 0.00000 0.05047 0.38973

Coefficients:
Estimate Std. Error t value Pr(>|t])
x1l  0.9735 0.9271 1.05 0.404
Residual standard error: 0.8105 on 2 degrees of freedom

Multiple R-squared(full model): 0.9999  Adjusted R-squared:
Multiple R-squared(proj model): 0.3554 Adjusted R-squared:

15

0.9988
-6.735

F-statistic(full model):935.2 on 22 and 2 DF, p-value: 0.001069

Below is the same estimation in 1m. We see that the coefficient for x1 is identical
to the one from felm, but there is no obvious relation between e.g. the coefficients
for £1; the difference £14-f15 is not the same for 1m and felm. Since these are in
different components, they are not comparable. But of course, if we compare in the
same component, e.g. £16-£17 or take a combination which actually occurs in the
dataset, it is unique (estimable):
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data.frame(f1, f2, £3)[1, ]

f1 £2 £3
1 2 6 3

##
##

Le. if we add the coefficients £1.2 + £f2.6 + £3.3 and include the intercept
for 1m, we will get the same number for both 1m and felm. That is, for predicting
the actual dataset, estimability plays no role, we obtain the same residuals anyway.

It is only for predicting outside of the dataset estimability is important.

summary(est <- lm(y ~ x1 + f1 + £2 + £3))

##
##
##
Hi
##
##
##
##
##
##
##
##
##
##
Hit
##
##
##
##
Hit
##
##
##
##
##
##
##
##
##
##
Hit
##
##
##
##
Hit
##
##

“x1 + f1 + £2 + £3)

3

-4.899e-02 1.485e

10

3.883e-01 -3.407e

17

4.899e-02 -1.485e

24

9.143e-18 -9.946e

(1 not defined because of

Estimate Std. Error t value

Call:
Im(formula = y
Residuals:
1 2
3.883e-01 -2.873e-01
8 9
5.047e-02 -4.372e-01
15 16
2.302e-17 -4.637e-17
22 23
-2.398e-01 -3.393e-01
Coefficients:
(Intercept) -24.3886
x1 0.9735
f12 =il . B1ES
£13 -0.4383
f14 79.1550
f15 -3.4261
f16 1.3450
£17 -0.2386
£18 -0.5701
£19 -2.2171
£22 -0.2337
£23 3.9358
£24 =8 BB
£25 -1.0591
£26 0.2702
£27 1.3360
£28 3.6488
£32 0.4317
£33 5.1696
£34 9.8295
£35 19.0791
£36 34.7134

NFE,NFRP,PPRPPPORFR,WONMNMNENONEFEFNRELRFEOR

.1202 -21.772
.9271 1.050
.2712  -1.190
.0229 -0.429
.2569 35.073
.2614 -2.716
.8879  0.466
.9916 -0.241
.0710 -0.275
.1201 -1.979
.2869 -0.102
L7071 1.454
.1342 -1.217
.2320 -0.860
.9701 0.278
.1119 1.202
L4917 2.446
.0394  0.415
.1368  4.552
.1756  4.518
.3493 14.140
.3414 14.826

4 5
-01 3.378e-01
11 12
-01 -5.047e-02
18 19
-01 9.143e-18
25
-02
singularities)
Pr(>1tl)

.002103 *x*
.403842
.356003
.710016
.000812 *x*x*
.113027
.687194
.832255
.808947
.186330
.927917
.283177
.347584
.480585
.806791
.352520
.134276
.718239
.045034 *
.045659 *
.004964 *x*
.004519 *x*

O O O OO OO OO0OOOOOOO OO0 OO oo

6
2.302e-17
13
5.078e-17
20
3.897e-01

7
-5.047e-02
14
3.393e-01
21
-4.899e-02
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## £37 55.0727 1.4197 38.791 0.000664 *xxx

## £38 NA NA NA NA

## ——-

## Signif. codes: O '*xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 0.8105 on 2 degrees of freedom
## Multiple R-squared: 0.9999, Adjusted R-squared: 0.9988
## F-statistic: 935.2 on 22 and 2 DF, p-value: 0.001069

6. Weeks-Williams partitions

There is a partial solution to the non-estimability problem in [8]. Their idea
is to partition the dataset into components in which all differences between factor
levels are estimable. The components are connected components of a subgraph of
an e-dimensional grid graph where e is the number of factors. That is, a graph is
constructed with the observations as vertices, two observations are adjacent (in a
graph theoretic sense) if they differ in at most one of the factors. The dataset is then
partitioned into (graph theoretic) connected components. It’s a finer partitioning
than the above, and consequently introduces more reference levels than is necessary
for identification. I.e. it does not find all estimable functions, but in some cases
(e.g. in [7]) the largest component will be sufficiently large for proper analysis. It
is of course always a question whether such an endogenous selection of observations
will yield a dataset which results in unbiased coefficients. This partitioning can be
done by the compfactor function with argument WW=TRUE:

fe <- list(f1, f2, £3)
wwcomp <- compfactor(fe, WW = TRUE)

It has more levels than the rank deficiency

1fe:::rankDefic(fe)
## [1] 3

nlevels (wwcomp)

## [1] 17

and each of its components are contained in a component of the previously
considered components, no matter which two factors we consider. For the case of
two factors, the concepts coincide.

nlevels(interaction(compfactor(fe), wwcomp))

## [1] 17

wwdata <- data.frame(y, x1, f1, £2, £3) [wwcomp == 1, ]
print (wwdata)

## y x1 f1 £2 £3

## 2 28.45513 -1.812376850 2 7 7

## 3 30.61452 0.151582984 3 6 7

## 5 32.35977 0.001908206 1 7 7

## 11 31.19345 -0.048910950 3 7 7
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## 14 34.32095 -0.360763148 1 8 7
## 20 12.57960 0.993657777 3 T 6

That is, we can start in one of the observations and travel through all of them
by changing just one of £1,£2,f3 at a time. Though, in this particular example,
there are more parameters than there are observations, so an estimation would not
be feasible.

efactory cannot easily be modified to produce an estimable function corre-
sponding to WW components. The reason is that efactory, and the logic in
getfe, work on partitions of factor levels, not on partitions of the dataset, these
are the same for the two-factor case.

WW partitions have the property that if you pick any two of the factors and
partition a WW-component into the previously mentioned non-WW partitions,
there will be only one component, hence you may use any of the estimable functions
from efactory on each partition. That is, a way to use WW partitions with 1fe is
to do the whole analysis on the largest WW-component. felm may still be used on
the whole dataset, and it may yield different results than what you get by analysing
the largest WW-component.

Here is a larger example:

set.seed(135)
x <- rnorm(10000)
f1 <- sample(1000, length(x), replace = TRUE)
f2 <- (f1 + sample(18, length(x), replace = TRUE)) %% 500
£3 <- (£2 + sample(9, length(x), replace = TRUE)) %% 500
y <- x + le-4 x f1 + sin(£272) +
cos(£f3)"3 + 0.5 * rnorm(length(x))
dataset <- data.frame(y, x, f1, f2, £3)
summary(est <- felm(y ~ x | f1 + £2 + £3,
data = dataset, exactDOF = TRUE
))
##
## Call:
#it felm(formula =y ~ x | £f1 + £2 + £3, data = dataset, exactDOF = TRUE)
##
## Residuals:

## Min 1Q Median 3Q Max
## -1.63055 -0.29857 -0.00236 0.30599 1.79423
##

## Coefficients:
## Estimate Std. Error t value Pr(>|t|)

## x 0.998552  0.005548 180  <2e-16 *xx*

# -

## Signif. codes: O 'x*x' 0.001 'x*' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#t

## Residual standard error: 0.4957 on 8001 degrees of freedom

## Multiple R-squared(full model): 0.9058 Adjusted R-squared: 0.8822
## Multiple R-squared(proj model): 0.8019  Adjusted R-squared: 0.7524
## F-statistic(full model):38.49 on 1998 and 8001 DF, p-value: < 2.2e-16
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## F-statistic(proj model): 3.239e+04 on 1 and 8001 DF, p-value: < 2.2e-16

We count the number of connected components in £1,£2, and see that this is
sufficient to ensure estimability

nlevels(est$cfactor)

## [1] 1
is.estimable(efactory(est), est$fe)
## [1] TRUE

nrow(alpha <- getfe(est))

## [1]1 2000

It has rank deficiency one less than the number of factors :

1fe:::rankDefic(est$fe)
## [1] 2

Then we analyse the largest WW-component

wwcomp <- compfactor(est$fe, WW = TRUE)
nlevels (wwcomp)

## [1] 933

wwset <- wwcomp ==
sum(wwset)
## [1] 3129
summary (wwest <- felm(y ~ x | f1 + £2 + £3,
data = dataset, subset = wwset, exactDOF = TRUE
))

##

## Call:

## felm(formula =y ~ x | f1 + £2 + £3, data = dataset, exactDOF = TRUE, subset = wws
##

## Residuals:

## Min 1Q Median 3Q Max

## -1.3765 -0.2784 0.0000 0.2791 1.5951

##

## Coefficients:

##  Estimate Std. Error t value Pr(>|t|)

## x 0.994390 0.009889  100.6  <2e-16 *x**

## ———

## Signif. codes: O '*¥x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.4858 on 2314 degrees of freedom

## Multiple R-squared(full model): 0.9182  Adjusted R-squared: 0.8894

## Multiple R-squared(proj model): 0.8138 Adjusted R-squared: 0.7483

## F-statistic(full model):31.91 on 814 and 2314 DF, p-value: < 2.2e-16

## F-statistic(proj model): 1.011e+04 on 1 and 2314 DF, p-value: < 2.2e-16
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We see that we get the same coefficient for x in this case. This is not surprising,
there is no obvious reason to believe that our selection of observations is skewed in
this randomly created dataset.

This one has the same rank deficiency:

1fe:::rankDefic(wwest$fe)
## [1] 2

but a smaller number of identifiable coeflicients.

nrow(wwalpha <- getfe(wwest))
## [1] 816

We may compare effects which are common to the two methods:

head (wwalpha)

## effect obs comp fe idx
## £1.35 1.9324241 1 1 f1 35
## £1.38 0.8049655 3 1 f1 38
## £1.40 0.2392413 3 1 £f1 40
## £1.41 1.0896624 2 1 f1 41
## £1.42 0.6428771 4 1 £f1 42
## £1.43 1.4268411 4 1 f1 43

alphalc(35, 38, 40:43), ]
## effect obs comp fe idx

## £1.35 0.9581560 10 1 f1 35
## £1.38 0.6367389 9 1 f1 38
## £1.40 0.8802631 12 1 f1 40
## £1.41 0.8586243 13 1 £f1 41
## £1.42 0.8983645 13 1 f1 42
## £1.43 1.2634715 12 1 f1 43

but there is no obvious relation between e.g. £1.35 - £1.36, they are very
different in the two estimations. The coefficients are from different datasets, and
the standard errors are large (= 0.7) with this few observations for each factor level.
The number of identified coefficients for each factor varies (these figures contain the
two references):

table(wwalphal, "fe"])

##
## f1 £f2 13
## 417 198 201
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