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1 Summary

Reboussin et al.[1] created a FORTRAN program, ld98, which performs computations

related to group sequential analysis in clinical trials using spending functions. The

original method was proposed by Lan and DeMets [2] and the method has also been

described in [3]. These kinds of methods have been developed because of the eth-

ical responsibility to monitor accumulating data during a clinical trial. The trial

stops early if an interim analysis reveals a large enough difference between treatment

groups. The Fortran program is interactive and has four options which compute:

(1) bounds given analysis times and a spending function, (2) drift parameters corre-

sponding to given power and bounds, (3) probabilities given times, bounds, and drift

parameters, and (4) a confidence interval given times, bounds, and final test statistic

value. The program consists of one main program, an input routine, 17 subroutines,

and 5 functions related to probability and probability density calculations.

We created an R package [5], ldbounds, which performs essentially the same tasks,

plus has some additional functionality. The functions in the package are not inter-

active in the same way as the Fortran program (prompting for inputs, etc.). This
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package has some advantages: it uses R’s capability to work with the “whole object”

as opposed to always using loops and also uses R’s built in probability distribution

calculations, it has better output graphics, and it allows for more freedom in speci-

fying spending functions. The current version has many updates and improvements

over the previous version, as discussed in Section 4.

2 Introduction

In most clinical trials, data are accumulated over a period of time that could be years.

In these types of experiments there is a lot at stake. The amount of money and other

resources spent is very large. Also, humans are the subjects of the experiments,

leading to a very sensitive ethical situation. For these reasons, a clinical trial should

not go on longer than is necessary to show a significant result with the accumulating

data. In fact, most clinical trials experience interim review of data by an independent

Data and Safety Monitoring Board (DSMB). This board may decide to recommend

early termination of the trial. However, significance relies on the expected frequency

of certain events under the null hypothesis. If a trial is monitored at several analysis

times, the probability of observing a “significant” result increases. It has been shown

that, with 10 analysis times, the overall type I error rate of 5% increases to about

20%.[4]

This is the motivation behind group sequential methods. The goal is to allow for

several looks of the data throughout the course of a trial and still control the overall

type I error rate. Prior to the alpha spending function method, other techniques had

several limitations. Among these was the need to specify the number and exact times

of all interim analyses before a trial began. The alpha spending function method,

proposed by Lan and DeMets [2, 3], is much more flexible and interim analysis times

can be specified or adjusted at any time during the trial. The basic concept is to define

a function which determines how much of the total type I error can be “spent” at each

analysis, based only on the previous analysis times and the amount of change in the
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specified function since the last time. It should be mentioned that these methods are

not always strictly followed by a DSMB, but instead they are used more as guidelines.

Lan and DeMets also created a FORTRAN program to make computations related to

alpha spending functions and group sequential boundaries. In more recent years,

this program was revised and improved in terms of efficiency [1]. Our goal was to

create an R package to accomplish the same computations and give more flexibility

(see Section 1).

3 Methods

Formally, the group sequential method is the following: In a clinical trial, define a

set of critical values {ZC(k), k = 1, . . . , K}, one critical value at each analysis, such

that the trial is to continue if the observed statistic Z(k) satisfies |Z(k)| < ZC(k)

(two-sided test) and the overall type I error rate is α.

To see how the alpha spending function method works in the context of a one-

sided test, let B(t) be a standard Brownian motion process on [0, 1]. Next, let τ be

the stopping time defined by τ = inf{t : B(t) > b}, for some fixed b. Now, let

α∗(t) = P (τ ≤ t) = 2− 2Φ
(

b/
√
t
)

I{0 < t ≤ 1}.

We notice that, if b = zα/2, the 1 − α/2 quantile of the standard normal distribu-

tion, then α∗(1) = α. Now, assume that B(t) is only observed at times {ti : i =

1, . . . , K; 0 < t1 < · · · < tK = 1}. Define b1 to satisfy

P (B(t1) > b1) = P (τ ∈ (0, t1]) = α∗(t1).

Similarly, define b2, . . . , bK such that for i = 2, . . . , K

P (B(ti) > bi, B(tj) < bj , j = 1, . . . , i− 1) = P (τ ∈ (ti−1, ti]) = α∗(ti)− α∗(ti−1).

The idea is that the amount that α∗ has increased since the last analysis time is

alotted to the boundary crossing probability at the current analysis time. It is a very

3



straightforward task to show that

b1 =
√
t1Φ

−1
(

2Φ
(

b/
√
t1
)

− 1
)

.

However, finding b2, . . . , bK involves computing densities iteratively [4], similar to

fi(t) =
∫ bi−1

−∞

fi−1(u)
1√
2π

exp
{

−1

2
(t− u)2

}

du

This is done by numerical integration. Then, the result is integrated and the optimal

boundary is found by searching for the limit of integration.

This situation assumes fixed b. The general method can account for b(t). Of

course, in practice, the function α∗ (the alpha spending function) is specified. As long

as this function is increasing and satisfies α∗(0) = 0 and α∗(1) = α, the desired type

I error level, then the function has the desired properties to lead to a boundary. We

notice that at each step, the boundary can be calculated based on only the previous

values and times and the change in α∗. Thus, the exact number and placement of

analysis times need not be specified in advance, but instead can be specified at any

time. Also, the method has only been described for a one-sided test. For a symmetric

two-sided test, α∗/2 can be used and then the negative of the boundary calculated

is used for the lower boundary. In a similar way, the method can be applied with

different α∗’s used for the upper and the lower boundary. There are many statistical

techniques that are needed to apply these methods in cases when the data come in

different forms [1].

4 Updates in Version 2.0.0

1. The main functions from the previous version, bounds and drift, were renamed

ldBounds and ldPower.

2. Print/summary Methods

(a) New print methods for classes “ldBounds” and “ldPower”.
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(b) Edited summary method for “ldPower”: to give power when drift is known

3. Better two-sided bounds and defaults

(a) Created sides argument for ldBounds

(b) Added ability to specify the number of looks, which then automatically

creates equally spaced analysis times

(c) Sides=2, but with only one alpha, etc., creates symmetric bounds, splitting

the provided alpha in half for each, upper and lower bounds

(d) Print and summary methods updated to account for this

4. ldPower to use output from ldBounds

(a) ldPower can now accept an “ldBounds” object as the first argument, in

which case it does not require times and boundaries

(b) Defaults to drift of 0 when nothing is specified

5. Nominal alpha level at each look provided (for one-sided or symmetric bounds)

(a) Bounds now has additional value: nominal alpha at each look.

(b) Summary method displays this

6. asf changed from asf/alpha only asf

(a) asf now doesn’t use alpha (this was only a change to alphas function)

7. Strage integer errors

(a) ldBounds and alphas now have checks that take into account floats

8. Ability to specify non-alpha spending boundaries

(a) Created new function commonbounds to calculate Pocock or O’Brien-Fleming

(non-alpha-spending) bounds at equally spaced times.

(b) These also become “ldBounds” objects
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(c) Adjusted print and summary methods to accommodate

9. Calculate adjusted p-values

(a) Added p-value functionality to ldPower function; stepwise and likelihood

ratio ordering available.

(b) Uses a new adj.p function which, ironically, calls ldPower.

(c) Edited printing and summary functions to use this as well.

10. Graphics

(a) Now uses base graphics, very simple

(b) Option to show on either z-value or b-value scale

(c) Ability to add to existing plot

10. Conditional power

(a) Added a function to calculate simple conditional power

5 The ldbounds Package

The R package ldbounds is somewhat based on the FORTRAN program to do calcu-

lations related to group sequential boundaries using spending functions. It consists

of 27 functions: 8 method functions, 14 utility functions and 5 main functions (See

Figure 1). The main functions are ldBounds, ldPower, lastbound, commonbounds,

and condpower.

The package is useful in four different categories of situations: (1) to calculate

boundaries (both standard boundaries and given spending functions), (2) to calculate

the final boundary for given interim boundaries, (3) to compute treatment effect for

a given power and boundaries, (4) to calculate probabilities (e.g., power) for given

boundaries and treatment effect, (5) to compute a confidence interval or p-value at

the end of the trial, adjusted for multiple looks, and (6) to calculate conditional
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Methods

print.ldBounds

summary.ldBounds

print.summary.ldBounds

plot.ldBounds

print.ldPower

summary.ldPower

print.summary.ldPower

plot.ldPower

Main (user) Functions Utility Functions

ldBounds landem
alphas

bsearch qp

ldPower

adrift

ci glan
fcab

cprob
bisect

adj.p

condpower

commonbounds

thetaeffect

search.glan.obrien

search.glan.pocock

lastbound

Figure 1: Package ldbounds. Schematic description of relationships between

ldbounds functions.

power at an interim time. The functions ldBounds and commonbounds are used in

the first case, lastbound is used in the second, ldPower can help us in cases 3–5, and

condpower is used in the last scenario.

5.1 The ldBounds Function

The function ldBounds determines group sequential boundaries for interim analyses

of accumulating data in clinical trials using the Lan-DeMets alpha spending function

method. These can be used as guidelines for early stopping of the trial. The following

statement shows how to specify a function call:
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ldBounds(t, t2, iuse = 1, asf = NULL,

alpha = 0.05, phi = rep(1, length(alpha)),

sides = 2, ztrun = rep(8, length(alpha)))

Here t corresponds to the vector of analysis times, which must be increasing and in

(0,1], or a number of analysis times (assumed to be equally spaced); t2 is the second

time scale, usually in terms of amount of accumulating information, by default t2 is

the same as t; iuse designates the type of alpha spending function(s)or the values to

use for lower and upper bounds, respectively (in the two-sided case). The program

allows the user to specify the spending function from four different predefined options,

or the user can also specify a new spending function in which case asf must be used.

alpha is the type I error (lower and upper in two-sided situations). The overall alpha

must be greater than 0 and less than or equal to 1. phi is a vector of values used when

iuse=3 or 4, sides designates one- or two-sides boundaries, and ztrun is a vector of

values specifying where to truncate lower and upper boundaries, respectively, with a

default of (−8, 8) (or just 8 for one-sided), which is essentially no truncation.

The function ldBounds generates an object of class “ldBounds” which contains

data about the boundaries calculated and exit probabilities, among other things. A

nice way to extract information, as with most R object classes, is by using the summary

and print methods for the “ldBounds” class. This can be done by setting digit to

the desired number of digits.

To illustrate the use of ldBounds we present some examples from Reboussin, et.

al. [1]. Using 5 equally spaced interim analyses with two-sided O’Brien-Fleming type

boundaries and α = 0.05, we have:

time <- seq(0.2,1,length=5)

obf.bd <- ldBounds(time)

summary(obf.bd)

##
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## Lan-DeMets bounds for a given spending function

##

## n = 5

## Overall alpha: 0.05

##

## Type: Two-Sided Symmetric Bounds

## Lower alpha: 0.025

## Upper alpha: 0.025

## Spending function: O'Brien-Fleming

##

## Boundaries:

## Time Lower Upper Exit pr. Diff. pr. Nominal Alpha

## 1 0.2 -4.8769 4.8769 1.0777e-06 1.0777e-06 1.0777e-06

## 2 0.4 -3.3569 3.3569 7.8830e-04 7.8723e-04 7.8808e-04

## 3 0.6 -2.6803 2.6803 7.6161e-03 6.8278e-03 7.3565e-03

## 4 0.8 -2.2898 2.2898 2.4424e-02 1.6807e-02 2.2034e-02

## 5 1.0 -2.0310 2.0310 5.0000e-02 2.5576e-02 4.2255e-02

The plot method for class “ldBounds” can be used to check the plot of the boundaries

calculated. (See Figure 2).

If we want to calculate the bounds for the one-sided case, we have:

obf.bd2 <- ldBounds(5,sides=1)

summary(obf.bd)

##

## Lan-DeMets bounds for a given spending function

##

## n = 5

## Overall alpha: 0.05
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Figure 2: Boundaries. Two-sided plot for plot(obf.bd).

##

## Type: Two-Sided Symmetric Bounds

## Lower alpha: 0.025

## Upper alpha: 0.025

## Spending function: O'Brien-Fleming

##

## Boundaries:

## Time Lower Upper Exit pr. Diff. pr. Nominal Alpha

## 1 0.2 -4.8769 4.8769 1.0777e-06 1.0777e-06 1.0777e-06

## 2 0.4 -3.3569 3.3569 7.8830e-04 7.8723e-04 7.8808e-04

## 3 0.6 -2.6803 2.6803 7.6161e-03 6.8278e-03 7.3565e-03

## 4 0.8 -2.2898 2.2898 2.4424e-02 1.6807e-02 2.2034e-02

## 5 1.0 -2.0310 2.0310 5.0000e-02 2.5576e-02 4.2255e-02
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Here the boundaries are shorter than in the two-sided case, which is of course a con-

sequence of specifying the same alpha in both cases. We can also get the boundaries

plot again (See Figure 3).

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

Sequential boundaries using the Lan−DeMets method

Information Fraction

Z

Figure 3: Boundaries II. One-sided plot for plot(obf.bd).

5.2 The commonbounds Function

The commonbounds function is very similar to the ldBounds function. Both create

boundaries as an object of class “ldBounds”. However, commonbounds calculates

boudaries of O’Brien-Fleming and Pocock types, without using a spending-function

approach. For Haybittle-Peto type boundaries, see function lastbound. Specification

is:

commonbounds(looks, t = (1:looks)/looks, t2 = t,

iuse = "OF", alpha = 0.05, sides = 2)
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Here looks is a number of analysis times (equally spaced); alternatively, t specifies

the analysis times (but a warning is given if these are not equally spaced); t2 is teh

second time scale; iuse is either O’Brien-Fleming (“OF”) or Pocock (“PK”); alpha

and sides are as used in ldBounds.

5.3 The lastbound Function

This function also returns an object of class “ldBounds”. The interim analysis times

and boundaries are provided, and a final boundary is calculated and returned, along

with the earlier boundaries that were provided. Specification is:

lastbound(t, t2, alpha = 0.05, sides = 2

za = NULL, zb)

Here t, t2, alpha, and sides are the same arguments as for ldBounds. The argu-

ments za and zb are vectors of lower and upper boundaries, respectively, excluding

the final analysis time. The following example calculates a Haybittle-Peto boundary

with 3 looks and early boundaries at 3 (z-value):

hpb <- lastbound(3,zb=c(3,3))

summary(hpb)

##

## Group sequential boundaries

##

## n = 3

## Overall alpha: 0.05

##

## Type: Two-Sided Symmetric Bounds

## Lower alpha: 0.025

## Upper alpha: 0.025
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## Boundary type (non-alpha-spending): User defined to obtain final boundary value.

##

## Boundaries:

## Time Lower Upper Exit pr. Diff. pr. Nominal Alpha

## 1 0.33333 -3.0000 3.0000 0.0026998 0.0026998 0.0026998

## 2 0.66667 -3.0000 3.0000 0.0049232 0.0022234 0.0026998

## 3 1.00000 -1.9751 1.9751 0.0499998 0.0450766 0.0482603

5.4 The condpower Function

The function condpower determines conditional power, given interim results and hy-

pothesized treatment effect. Specification is:

condpower(z.crit, z.val, accr, outcome.type,

par.c, par.t, N, sigma = NULL)

Here z.crit is the critical value on the z-value scale; z.val is the current test statistic

(positive means treatment/experimental arm is estimated to have a more favorable

outcome); accr is the amount of information accrued (number of subjects for binary

and continuous outcomes, number of events for survival); outcome.type is binary

(“bin”), continuous (“mean”), or survival (“surv”); par.c and par.t are hypothesized

parameter values in control and experimental groups, respectively (unless par.t is

not specified, in which case par.c is the hypothesized treatment effect; N is the total

target sample size (or number of events); and sigma is the assumed standard deviation

(when outcome is continuous). The following example calculates conditional power

for a binary outcome with assumed rates of poor outcome of 25% and 15% in the

control and experimental groups, respectively. The total planned sample size is 900,

with interim analysis at 300. The final critical value is 2.0 (perhaps accounting for

group sequential monitoring. The interim z-statistic is 0.067 (experimental slightly

better than control).
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condpower(2.0,0.067,300,"bin",0.25,0.15,900)

## [1] 0.7452924

5.5 The ldPower Function

The ldPower function was designed to calculate different things, depending on the

arguments specified. It calculates drift (effect) if the power and the bounds are given;

it can calculate the confidence interval or p-value at the end of the trial if the last

value of the standardized test statistic is provided. Finally, it is able to return the

power and other probabilities given drift for specified boundaries. The function has

the following parameters:

ldPower(t, za = NULL, zb = NULL, t2 = t, pow = NULL,

drift = NULL, conf = NULL, method = NULL,

pvaltime = NULL, zval = zb[length(zb)])

Here t is either a vector of analysis times or an “ldBounds” obect; za is the vector of

lower boundaries and symmetric to zb by default; zb is the vector of upper boundaries;

t2 is the second time scale, pow is the desired power (in case of wanting this parameter

and drift is not specified); drift is the true drift (i.e. treatment effect when t=1);

conf is the confidence level when a confidence interval for drift is wanted; method

is the type of p-value and zval is the final observed Z statistic (i.e. when trial is

stopped), it is required when a confidence interval or p-value is requested.

Similarly to ldBounds, the function ldPower generates an object of class “ld-

Power” which contains data about the boundaries, exit probabilities, and the cor-

responding calculations (depending on what was requested). As in ldBounds, the

user can extract the information that it contains by using the summmary and print

methods.

We now show some applications of ldPower. First we want to calculate the prob-

abilities associated with a set of bondaries given drift.
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time <- c(0.13,0.4,0.69,0.9,0.98,1)

upper <- c(5.3666,3.7102,2.9728,2.5365,2.2154,1.9668)

bound.pr <- ldPower(time,zb=upper,drift=3.242)

summary(bound.pr)

##

## Lan-DeMets method for group sequential boundaries

##

## n = 6

##

## Boundaries:

## Time Lower Upper

## 1 0.13 -5.3666 5.3666

## 2 0.40 -3.7102 3.7102

## 3 0.69 -2.9728 2.9728

## 4 0.90 -2.5365 2.5365

## 5 0.98 -2.2154 2.2154

## 6 1.00 -1.9668 1.9668

##

## Power : 0.8996411

##

## Drift: 3.242

##

## Time Lower probs Upper probs Exit pr. Cum exit pr.

## 1 0.13 0.0000e+00 1.3483e-05 1.3483e-05 1.3483e-05

## 2 0.40 0.0000e+00 4.8468e-02 4.8468e-02 4.8481e-02

## 3 0.69 0.0000e+00 3.4279e-01 3.4279e-01 3.9127e-01

## 4 0.90 0.0000e+00 3.1827e-01 3.1827e-01 7.0954e-01

## 5 0.98 2.2251e-08 1.3325e-01 1.3325e-01 8.4279e-01
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## 6 1.00 6.4894e-08 5.6851e-02 5.6851e-02 8.9964e-01

Another common task is to calculate a confidence interval at the end of the trial.

In order to do this, we need, in addition to the boundaries, the last value of the

standardized test statistic zval, equal to 2.82 in this example.

time <- c(0.2292,0.3333,0.4375,0.5833,0.7083,0.8333)

upper <- c(2.53,2.61,2.57,2.47,2.43,2.38)

bound.ci <- ldPower(time,zb=upper,conf=0.95,zval=2.82)

summary(bound.ci)

##

## Lan-DeMets method for group sequential boundaries

##

## n = 6

##

## Boundaries:

## Time Lower Upper

## 1 0.2292 -2.53 2.53

## 2 0.3333 -2.61 2.61

## 3 0.4375 -2.57 2.57

## 4 0.5833 -2.47 2.47

## 5 0.7083 -2.43 2.43

## 6 0.8333 -2.38 2.38

##

## Confidence interval at the end of the trial:

##

## Confidence level: 0.95

## Last Z value: 2.82

## 95 % confidence interval: ( 0.1716782 , 4.504662 )
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The following example shows the computing of boundaries using ldBounds, and

using these in ldPower. In this example the power is provided and we want to get

the drift.

time <- seq(0.2,1,length=5)

power.fam <- ldBounds(time,iuse=3)

bound.dr <- ldPower(power.fam,pow=0.9)

summary(bound.dr)

##

## Lan-DeMets method for group sequential boundaries

##

## n = 5

##

## Boundaries:

## Time Lower Upper

## 1 0.2 -2.5758 2.5758

## 2 0.4 -2.4919 2.4919

## 3 0.6 -2.4108 2.4108

## 4 0.8 -2.3391 2.3391

## 5 1.0 -2.2754 2.2754

##

## Power : 0.9

##

## Drift: 3.455209

##

## Time Lower probs Upper probs Exit pr. Cum exit pr.

## 1 0.2 1.8858e-05 0.151361 0.151380 0.15138

## 2 0.4 1.2004e-06 0.251277 0.251278 0.40266

## 3 0.6 1.2723e-07 0.233648 0.233648 0.63631
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## 4 0.8 1.7278e-08 0.164962 0.164962 0.80127

## 5 1.0 0.0000e+00 0.098731 0.098731 0.90000

6 Discussion

The R package ldbounds is able to perform the same computations as the FORTRAN

program. It also allows for more flexibility for specifying alpha spending functions.

Many improvements have been made in the current version, including better ways to

specify arguments, more efficient argument defaults, and better graphics.
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