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Introduction

Exploratory Spatial Data Analysis (ESDA) & Spatial autocorrelation

Spatial autocorrelation is a method of Exploratory Spatial Data Analysis (ESDA). The latter set of methods
allow for the study and understanding of the spatial distribution and spatial structure as well as they allow
for detecting spatial dependence or autocorrelation in spatial data. More specifically, spatial autocorrelation
is the correlation between the values of a single variable that is strictly due to the proximity of these values
in geographical space by introducing a deviation from the assumption of independent observations of classical
statistics (Griffith, 2003). The most common spatial autocorrelation indicators in the literature are: the
Moran’s I, the Geary’s ¢, and the Getis’ G.

Moran’s 1

Moran’s I is one of the oldest statistics used to examine spatial autocorrelation. This global statistic was
first proposed by Moran (1948, 1950). Later, Cliff and Ord (1973, 1981) present a comprehensive work on
spatial autocorrelation and suggested a formula to calculate the I which is now used in most textbooks and
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all pairs in the system, z; = x; — T where x is the value of the variable at location ¢ and Z the mean value of
the variable in question (Eq. 5.2 Kalogirou, 2003).

The original implementation here (function moransI) allows only nearest neighbour weighting schemes.
However, the function moransI.w allows for any weighting scheme if by means of a weighting matrix.
Using the package Ilctools, the latter can be computed by the function w.matrix that currently supports a
fixed (straight distance) and an adaptive (number of nearest neighbours) spatial kernels. Resampling and
randomization null hypotheses have been tested following the discussion of Goodchild (1986, pp. 24-26).

Exploring the data

The Ictools package has some built in data to allow for practicing the various spatial analysis techniques.
One of the datasets is GR.Municipalities. The latter is a SpatialPolygonsDataFrame that refers to the 325
Municipalities in Greece (Programme Kallikratis) in 2011. The descriptive data for each municipality include
demographic and economic variables the source of which are the 2001 Census of Population and the General
Secretariat for Information Systems, respectively.

library(lctools)
data(GR.Municipalities)
names (GR.Municipalities@data)

## [1] "OBJECTID" "X "y "Name" "CodeELSTAT"
## [6] "PopMO1l" "PopFO1" "PopTotO1" "UnemrMO1" "UnemrF01"
## [11] "UnemrTO1" "PrSectO1" "Foreig0O1" "IncomeO1"



To learn more about the above data set, try help(GR.Municipalities).

Calculate the global Moran’s 1

To calculate the global Moran’s I statistic one can: 1. make use of the function MoransI with three arguments:
the coordinates of the observations, the number of nearest neighbours and the variable for which the statistic
will be calculated for, or 2. calculate the weights matrix using the function w.matrix (arguments being the
coordinates of the observations, the bandwidth -fixed or adaptive, and the weighting scheme) and then use
the function moransI.w with two arguments: the weights matrix and the variable in question.

The coordinates refer to the geometric centro-ids of the municipalities in Greece. In the next two examples,
the number of nearest neighbours is set to 6 and the straight distance bandwidth to 50 kilometres. The
selected weights are binary (w;;=1 for neighbours and =0 for non-neighbours. The variable to be analysed
refers to the mean annual recorded income in 2001 (in Euros).

Case 1: function MoransI

Coords <- cbind(GR.Municipalities@data$X, GR.Municipalities@data$¥)

bw <- 6

mI <- moransI(Coords,bw,GR.Municipalities@data$Income01)

moran.table <- matrix(data=NA,nrow=1,ncol=6)

col.names <- c("Moran's I", "Expected I", "Z resampling", "P-value resampling",
"Z randomization", "P-value randomization")

colnames (moran.table) <- col.names

moran.table[1,1] <- mI$Morans.I

moran.table[1,2] <- mI$Expected.I

moran.table[1,3] <- mI$z.resampling

moran.table[1,4] <- mI$p.value.resampling

moran.table[1,5] <- mI$z.randomization

moran.table[1,6] <- mI$p.value.randomization

Using table formatting the results can be shown as follows:

Moran’s I  Expected I ~ Z resampling  P-value resampling Z randomization P-value randomization

0.65441 -0.00309 22.27952 0 22.40946 0

Case 2: functions w.matriz and Moransl.w

The above calculation can be repeated as follows:

#adaptive kernel
w.adaptive <- w.matrix(Coords,6, WIype='Binary', family='adaptive')

mI.adaptive <- moransI.w(GR.Municipalities@data$IncomeOl, w.adaptive)
mI.adaptive <- t(as.numeric(as.matrix(mI.adaptive[1:6])))

colnames(mI.adaptive) <- col.names

Using table formatting the results can be shown as follows:

Moran’s I  Expected I ~ Z resampling  P-value resampling Z randomization P-value randomization
0.65441 -0.00309 22.27952 0 22.40946 0




An example Moran’s I calculation with a fixed spatial kernel and a 50 km radius as the bandwidth can be
computed as follows:

#fized kernel
w.fixed <- w.matrix(Coords, 50000, WType='Binary', family='fixed')

## The bandwidth 50000 will result 5 observations without neighbours.
## To avoid this you could set the bandwidth to at least: 146287.7

mI.fixed<- moransI.w(GR.Municipalities@data$Income0Ol, w.fixed)
mI.fixed <- t(as.numeric(as.matrix(mI.fixed[1:6])))

colnames(mI.fixed) <- col.names

The above bandwidth is such that 5 observations will have no neighbours. This is a result of a check that is
printed out from the moransI.w function. These observations refer to isolated islands, such as Megisti east of
Rhodes, which is 150 km away from its nearest neighbour. Using table formatting the results can be shown
as follows:

Moran’s I  Expected I  Z resampling  P-value resampling 7 randomization P-value randomization

0.4813 -0.00309 16.50666 0 16.60292 0

The above results suggest a strong positive spatial autocorrelation that is statistically significant using either
the randomization or resampling hypotheses (Cliff and Ord, 1973; 1981; Goodchild, 1986). In order to
examine the sensitivity of the above results, one could try different bandwidth sizes (i.e. number of nearest
neighbours). This can be done by either a loop or by using the function moransI.v that computes a number
of Moran’s I statistics with different kernel sizes of the same family and optionally shows a scatter plot with
the Moran’s I for each kernel size.

bws <- c(3, 4, 6, 9, 12, 18, 24)
moran <- moransI.v(Coords, bws, GR.Municipalities@data$IncomeO1)
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The Moran’s I along with significance tests for all spatial kernels are presented in the table below. The
Moran’s I statistics for the mean annual recorded income is above 0.5 in all cases suggesting a strong positive
spatial autocorrelation. They are also statistically significant in all cases.

ID k  Moran’s I  Expected I  Z resampling P-value res. Z randomization P-value rand.
1 3 0.6823 -0.0031 16.4559 0 16.5519 0
2 4 0.6797 -0.0031 18.8569 0 18.9669 0
3 6 0.6544 -0.0031 22.2795 0 22.4095 0
4 9 0.6422 -0.0031 26.7714 0 26.9274 0
5 12 0.6206 -0.0031 29.9977 0 30.1725 0
6 18 0.5802 -0.0031 34.8110 0 35.0136 0
7T 24 0.5523 -0.0031 38.8086 0 39.0342 0

Local Moran’s 1

The next step is the calculation of local Moran I; using the function 1.moransI, which creates a Moran’s I
Scatter Plot by default, as follows:

1.moran<-1.moransI(Coords,6,GR.Municipalities@data$Income01)
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The object 1.moran generated includes a plethora of results that can be plotted or mapped.
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