
Package ‘ksharp’
October 13, 2022

Title Cluster Sharpening

Version 0.1.0.1

Author Tomasz Konopka [aut, cre]

Maintainer Tomasz Konopka <tokonopka@gmail.com>

Description Clustering typically assigns data points into discrete groups, but the clusters can some-
times be indistinct. Cluster sharpening adjusts an existing clustering to create contrast be-
tween groups. This package provides a general interface for cluster sharpening along with sev-
eral implementations based on different excision criteria.

Depends R (>= 3.5.0)

Imports methods, stats

License MIT + file LICENSE

URL https://github.com/tkonopka/ksharp

BugReports https://github.com/tkonopka/ksharp/issues

LazyData true

Suggests cluster, dbscan, knitr, Rcssplot (>= 1.0.0), rmarkdown,
testthat

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.0.2

NeedsCompilation no

Repository CRAN

Date/Publication 2020-01-26 10:10:02 UTC

R topics documented:
kdata.1 . 2
kdata.2 . 2
kdata.3 . 3
kdata.4 . 3

1

https://github.com/tkonopka/ksharp
https://github.com/tkonopka/ksharp/issues

2 kdata.2

ksharp . 3
medinfo . 5
neiinfo . 6
silinfo . 7

Index 8

kdata.1 Toy dataset with two convex groups with partial overlap

Description

Toy dataset with two convex groups with partial overlap

Usage

data(kdata.1)

Format

matrix with two columns: D1, D2

kdata.2 Toy dataset with two non-overalpping and non-spherical groups

Description

Toy dataset with two non-overalpping and non-spherical groups

Usage

data(kdata.2)

Format

matrix with two columns: D1, D2

kdata.3 3

kdata.3 Toy dataset with three groups

Description

Toy dataset with three groups

Usage

data(kdata.3)

Format

matrix with two columns: D1, D2

kdata.4 Toy dataset with four groups atop a wide area of noise points

Description

Toy dataset with four groups atop a wide area of noise points

Usage

data(kdata.4)

Format

matrix with two columns: D1, D2

ksharp sharpen a clustering

Description

Each data point in a clustering is assigned to a cluster, but some data points may lie in ambiguous
zones between two or more clusters, or far from other points. Cluster sharpening assigns these
border points into a separate noise group, thereby creating more stark distinctions between groups.

4 ksharp

Usage

ksharp(
x,
threshold = 0.1,
data = NULL,
method = c("silhouette", "neighbor", "medoid"),
threshold.abs = NULL

)

Arguments

x clustering object; several types of inputs are acceptable, including objects of
class kmeans, pam, and self-made lists with a component "cluster".

threshold numeric; the fraction of points to place in noise group

data matrix, raw data corresponding to clustering x; must be present when sharpening
for the first time or if data is not present within x.

method character, determines method used for sharpening

threshold.abs numeric; absolute-value of threshold for sharpening. When non-NULL, this
value overrides value in argument ’threshold’

Details

Noise points are assigned to a group with cluster index 0. This is analogous behavior to output
produced by dbscan.

Value

clustering object based on input x, with adjusted cluster assignments and additional list components
with sharpness measures. Cluster assignments are placed in $cluster and excised data points are
given a cluster index of 0. Original cluster assignments are saved in $cluster.original. Sharpness
measures are stored in components $silinfo, $medinfo, and $neiinfo, although these details may
change in future versions of the package.

Examples

prepare iris dataset for analysis
iris.data = iris[, 1:4]
rownames(iris.data) = paste0("iris_", seq_len(nrow(iris.data)))

cluster the dataset into three groups
iris.clustered = kmeans(iris.data, centers=3)
table(iris.clustered$cluster)

sharpen the clustering by excluding 10% of the data points
iris.sharp = ksharp(iris.clustered, threshold=0.1, data=iris.data)
table(iris.sharp$cluster)

visualize cluster assignments

medinfo 5

iris.pca = prcomp(iris.data)$x[,1:2]
plot(iris.pca, col=iris$Species, pch=ifelse(iris.sharp$cluster==0, 1, 19))

medinfo compute info on distances to medoids/centroids

Description

Analogous in structure to silinfo and neiinfo, it computes a "widths" matrix assessing how well each
data point belongs to its cluster. Here, this measure is the ratio of two distances: in the numerator,
the distance from the point to the nearest cluster center, and in the denominator, from the point to
its own cluster center.

Usage

medinfo(cluster, data, silwidths)

Arguments

cluster named vector

data matrix with raw data

silwidths matrix with silhouette widths

Value

list with component widths. The widths object is a matrix with one row per data item, with column
med_ratio holding the sharpness measure.

Examples

construct a manual clustering of the iris dataset
iris.data = iris[, 1:4]
rownames(iris.data) = paste0("iris_", seq_len(nrow(iris.data)))
iris.dist = dist(iris.data)
iris.clusters = setNames(as.integer(iris$Species), rownames(iris.data))

compute sharpnessvalues based on medoids
iris.silinfo = silinfo(iris.clusters, iris.dist)
medinfo(iris.clusters, iris.data, iris.silinfo$widths)

6 neiinfo

neiinfo Compute info on ‘neighbor widths‘

Description

This function provides information on how well each data point belongs to its cluster. For each
query point, the function considers n of its nearest neighbors. The neighbor widths are defined as
the fraction of those neighbors that belong to the same cluster as the query point. These values are
termed ’widths’ in analogy to silhouette widths, another measure of cluster membership.

Usage

neiinfo(cluster, dist)

Arguments

cluster vector with assignments of data elements to clusters

dist distance object or matrix

Details

The function follows a similar signature as silinfo from this package.

Value

list with component widths. The wdiths object is a matrix with one row per data item, wth column
neighborhood holding the sharpness value.

Examples

construct a manual clustering of the iris dataset
iris.data = iris[, 1:4]
rownames(iris.data) = paste0("iris_", seq_len(nrow(iris)))
iris.dist = dist(iris.data)
iris.clusters = setNames(as.integer(iris$Species), rownames(iris.data))

compute neighbor-based sharpness widths
neiinfo(iris.clusters, iris.dist)

silinfo 7

silinfo Compute info on silhouette widths

Description

This function provides information on how well each data point belongs to its cluster. For each
query point, the function considers the average distance to other members of the same cluster and
the average distance to members of another, nearest, cluster. The widths are defined as the

Usage

silinfo(cluster, dist)

Arguments

cluster vector with assignments of data elements to clusters

dist distance object or matrix

Details

The function signature is very similar to cluster::silhouette but the implementation has important
differences. This implementation requires both the dist object and and cluster vector must have
names. This prevents accidental assignment of silhouette widths to the wrong elements.

Value

list, analogous to object within output from cluster::pam. In particular, the list has a component
widths. The widths object is matrix with one row per data item, with column sil_width holding the
silhouette width.

Examples

construct a manual clustering of the iris dataset
iris.data = iris[, 1:4]
rownames(iris.data) = paste0("iris_", seq_len(nrow(iris.data)))
iris.dist = dist(iris.data)
iris.clusters = setNames(as.integer(iris$Species), rownames(iris.data))

compute sharpness values based on silhouette widths
silinfo(iris.clusters, iris.dist)

Index

∗ datasets
kdata.1, 2
kdata.2, 2
kdata.3, 3
kdata.4, 3

kdata.1, 2
kdata.2, 2
kdata.3, 3
kdata.4, 3
ksharp, 3

medinfo, 5

neiinfo, 6

silinfo, 7

8

	kdata.1
	kdata.2
	kdata.3
	kdata.4
	ksharp
	medinfo
	neiinfo
	silinfo
	Index

