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Abstract

We describe the R package kdecopula (current version 0.9.0), which provides fast im-
plementations of various kernel estimators for the copula density. Due to a variety of
available plotting options it is particularly useful for the exploratory analysis of depen-
dence structures. It can be further used for accurate nonparametric estimation of copula
densities and resampling. The implementation features spline interpolation of the esti-
mates to allow for fast evaluation of density estimates and integrals thereof. We utilize
this for a fast renormalization scheme that ensures that estimates are bona fide copula
densities and additionally improves the estimators’ accuracy. The performance of the
methods is illustrated by simulations.

Keywords: dependence, copula, nonparametric, kernel density, exploratory data analysis, R.

1. Introduction

Dependence modeling with copulas has attracted a lot of attention in recent decades. By
now, copulas are established tools in many fields of applied statistics, such as finance (Cheru-
bini, Luciano, and Vecchiato 2004), hydrology (Salvadori and De Michele 2007), or machine
learning (Elidan 2013).

At the very heart of copula theory is the famous theorem of Sklar (Sklar 1959). It states that
any multivariate distribution function can be decomposed into the marginal distributions and
a copula, which captures the dependence between variables. Let X and Y be two continuous
random variables with joint distribution F and marginal distributions FX and FY . Then, for
all (x, y) in the support of the random vector (X,Y ),

F (x, y) = C
(
FX(x), FY (y)

)
.

The copula C : [0, 1]2 → [0, 1] is the bivariate distribution function of the random vector
(U, V ) =

(
FX(X), FY (Y )

)
which has uniform marginal distribution. If F admits a density,

we can also decompose the density f into

f(x, y) = c
(
FX(x), FY (y)

)
fX(x)fY (y), (1)

where c, fX and fY are the densities corresponding to C, FX and FY , respectively.

One of the major benefits of copula-based modeling is that inference for marginal distributions
can be separated from the modeling of the dependence structure, i.e., the copula. For the
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estimation of the copula density c, it is most common to take a two-step approach: First,
obtain estimates F̂X , F̂Y of the marginal distributions. A convenient and flexible way to do
this is to use the empirical distribution function as an estimator. Second, define pseudo-
observations

(
Û , V̂

)
=

(
F̂X(X), F̂Y (Y )

)
. The copula density is then estimated as the joint

density of
(
Û , V̂

)
.

Often, one assumes a parametric model for the copula density c and estimates its parame-
ters by maximum-likelihood. Although there is a large variety of parametric copula models,
they notoriously lack flexibility and bear the risk of misspecification. Nonparametric density
estimators remedy these issues. But since copulas live on a bounded support — the unit
hypercube — estimators have to be carefully tailored to this problem.

A specific class of nonparametric density estimators are kernel estimators. They are a popular
tool for exploratory data analysis and widely used in many disciplines (e.g., Aitken and Lucy
2004; Kie, Matthiopoulos, Fieberg, Powell, Cagnacci, Mitchell, Gaillard, and Moorcroft 2010).
The package kdecopula implements several bivariate kernel copula density estimators that
have been proposed in recent years. In a nutshell, the package provides methods for:

• estimation,

• bandwidth selection,

• simulation,

• visualization.

There exist two alternative methods for the kernel estimation of copula densities in R (R
Core Team 2016): the function kcopula from the ks package (Duong 2014) implements an
estimator that glues together two independent kernel estimates for the center and boundary
of the unit square; the function npcopula from the np package (Hayfield and Racine 2008)
derives the copula density from an estimate of the joint distribution (as proposed by Racine
2015). However, these implementation do not reflect the numerous specialized contributions
on the topic. Our package closes this gap by implementing state-of-the-art methods for kernel
copula density estimation. The implemented methods are substantially more accurate than
existing implementations. Additionally, the package provides a normalization algorithm which
ensures that estimates are a bona fide copula densities and further improves the accuracy.

Apart from kernel estimators, Schellhase (2014) implemented nonparametric copula density
estimators based on penalized likelihood estimation in the pencopula package (using B-splines
or Bernstein polynomials). The extension penDvine (Schellhase 2015) provides a convenient
version with automatic bandwidth selection. A comparison with our implementation will
show that these estimators are only competitive when the dependence is weak. The author
is not aware of any software implementations for nonparametric copula density estimation
outside of R.

In Section 2, we give a review of kernel copula density estimators and point to the relevant
literature. Section 3 describes the functionality of the package and gives examples for its
use. In Section 4, we give background on the implementation of the estimators using spline
interpolation for fast evaluation and renormalization of the estimates. The statistical accuracy
of the estimators in this package and other nonparametric copula density estimators (see
previous paragraphs) is compared in Section 5. A summary is given in Section 6.
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(b) Augmented data

Figure 1: The data augmentation process. The set in (b) is obtained by reflecting all original
data points w.r.t. to all corners and edges.

2. Kernel estimators of the copula density: a review

This section will review different approaches to kernel estimation of the copula density. As is
common in the literature, we focus on the bivariate case.

Assume we have iid observations (Ui, Vi), i = 1, . . . , n, from a bivariate copula C and are
interested in the estimation of the corresponding density c(u, v). One could apply the usual
kernel density estimator to this problem:

ĉn(u, v) =
1

n

n∑

i=1

Kbn

(
u− Ui

)
Kbn

(
v − Vi

)
, (u, v) ∈ [0, 1]2,

where we used the notation Kb(·) = K(·/b)/b. The kernel function K is typically assumed to
be a symmetric, bounded probability density function on R

2 and bn > 0 is the smoothing or
bandwidth parameter. There is a problem, however. The estimator will put a considerable
amount of probability mass outside of the unit square. This implies that ĉn is not a density
function on [0, 1]2, because it does not integrate to one. The estimator will additionally suffer
from severe bias at the boundaries (see, e.g., Charpentier, Fermanian, and Scaillet 2006).
Three different approaches to tackle this problem have emerged. All three techniques arose
initially in the context of univariate kernel density estimation on the unit line. The following
sections explain the ideas behind them (in the context of copulas) and give references for more
detailed accounts.

2.1. The mirror-reflection method

An intuitive way of adapting ĉn to make sure that it is a density on [0, 1]2 is the following:
gather all probability mass that was put outside of the unit square, and redistribute it back
to [0, 1]2. This is the idea behind the mirror-reflection technique, which was proposed for
copula density estimation by Gijbels and Mielniczuk (1990). As indicated by the name, all
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data are reflected at the corners and edges of the boundary region. The augmented data set
containing all reflections is given by

(
Ũik, Ṽik

)
k=1,...,9

=

{
(Ui, Vi), (−Ui, Vi), (Ui,−Vi), (−Ui,−Vi), (Ui, 2− Vi),

(−Ui, 2− Vi), (2− Ui, Vi), (2− Ui,−Vi), (2− Ui, 2− Vi)

}
.

A visualization of the augmented data set is given in Figure 1. The mirror-reflection estimator
is then defined as the usual kernel density estimator on the augmented data:

ĉ(MR)
n (u, v) =

1

n

n∑

i=1

9∑

k=1

Kbn

(
u− Ũik

)
Kbn

(
v − Ṽik

)
, (u, v) ∈ [0, 1]2.

By reflecting all data points at the corners and edges also the probability mass outside of the
unit square gets reflected back to the interior. As a result, the estimator now integrates to
one. A detailed analysis of the asymptotic properties and a method for automatic bandwidth
selection are given in Nagler (2014).

2.2. The beta kernel method

A second approach is to use kernels whose support matches the support of the density we
want to estimate, and vary the shape of those kernels depending on the point where density
shall be estimated. This is achieved by so-called boundary kernels, and beta kernels are one
instance. An estimator of the copula density based on this idea was proposed by Charpentier
et al. (2006):

c(β)(u, v) =
1

n

n∑

i=1

β

(
Ui;

u

bn
+ 1,

1− u

bn
+ 1

)
β

(
Vi;

v

bn
+ 1,

1− v

bn
+ 1

)
, (u, v) ∈ [0, 1]2,

where β(·; p, q) is the density of a Beta(p, q)-distributed random variable. We refer to Nagler
(2014) for details on asymptotics and bandwidth selection.

2.3. The transformation method

A third approach is inspired by the early work of Devroye and Györfi (1985) and was intro-
duced to kernel copula density estimation by Charpentier et al. (2006). The simple idea is
to transform the data so that it is supported on the full R2 (instead of the unit cube). On
this transformed domain, standard kernel techniques can be used to estimate the density. An
adequate back-transformation then yields an estimate of the copula density. For the trans-
formation, the inverse of standard normal cdf is most common since it is known that kernel
estimators tend to do well for Gaussian random variables.

Denote Φ as the standard Gaussian cdf and φ its first order derivative. Then (Xi, Yi) =(
Φ−1(Ui),Φ

−1(Vi)
)
is a random vector with Gaussian margins and copula C. By Sklar’s

Theorem, the corresponding density f can be written as

f(x, y) = c
(
Φ(x),Φ(x)

)
φ(x)φ(y). (2)
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Figure 2: The transformation estimator. (a) copula sample; (b) transformed sample; (c)
kernel density estimate for transformed sample; (d) kernel estimate of the copula density.

This density can be easily estimated by a standard kernel estimator. From such an estimator
f̂n, we can derive an estimator for the copula density c by isolating c in (2):

ĉ(T )
n (u, v) =

f̂n
(
Φ−1(u),Φ−1(v)

)

φ
(
Φ−1(u)

)
φ
(
Φ−1(v)

) , (u, v) ∈ [0, 1]2. (3)

This procedure is illustrated in Figure 2. The left panel shows the original data from the
copula density c; next to it we see the transformed data after the inverse Gaussian cdf has
been applied. The third plot shows a kernel estimate of the density of the transformed data;
and finally, the fourth plot shows the corresponding kernel estimate of the copula density.

The most natural choice for fn is the conventional kernel density estimator. More recently,
Geenens, Charpentier, and Paindaveine (2017) proposed to use a local likelihood estimator
with nearest-neighbor bandwidths instead. Another recent extension was introduced by Wen
and Wu (2015) who suggested to taper the back-transformation in the tails by increasing the
variance of the Gaussian densities in the denominator of (3). For more details, we refer to
the original papers.

3. The package’s functionality

In the following, we describe the most important functions provided by the package. All
function either produce or take objects of the S3-class kdecopula for which several methods
are available.

3.1. Estimation and bandwidth selection: kdecop

At the core of the kdecopula package is the function kdecop, which estimates the copula
density from data. The only mandatory input is an n × 2 matrix of copula data, i.e., data
with standard uniform margins. Such data is usually obtained in a first step by applying the
empirical marginal cdfs to the data. This is equivalent to a rank transformation as shown
below. The following lines of code load the package and an accompanying data set. The data
is transformed to uniform margins in the third line, and the last line fits the kernel estimator.

R> library("kdecopula")

R> data("wdbc")
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R> uv <- apply(wdbc[, c(2, 8)], 2, rank) / (nrow(wdbc) + 1)

R> fit <- kdecop(uv)

The output of the function kdecop is an object of class kdecopula that contains all information
collected during the estimation process. The most relevant information can be summarized
as follows.

R> summary(fit)

Kernel copula density estimate (tau = 0.47)

------------------------------

Variables: mean radius -- mean concavity

Observations: 569

Method: Transformation local likelihood, log-quadratic (nearest-neighbor,

'TLL2nn')

Bandwidth: alpha = 0.3519647

B = matrix(c(0.71, 0.7, -0.7, 0.71), 2, 2)

---

logLik: 201.22 AIC: -367.97 cAIC: -366.83 BIC: -293.11

Effective number of parameters: 17.23

Summary statistics such as AIC or the effective number of parameters/degrees of freedom can
be accessed via the usual generic functions.

R> logLik(fit)

'log Lik.' 201.2196 (df=17.23373)

R> AIC(fit)

[1] -367.9718

The function kdecop provides all estimation methods mentioned in Section 2. The estimation
method can be specified via the method argument, e.g., kdecop(..., method = "MR"). For
each method, we have implemented an automatic bandwidth selection procedure. Below we
list all implemented methods including a reference to the bandwidth selection procedure used:

MR

The mirror-reflection estimator of Gijbels and Mielniczuk (1990). Smoothing parameters
are selected by minimizing the AMISE using the Frank copula as the reference copula
(see Nagler 2014, Section 3.2.4).

beta

The beta kernel estimator of Charpentier et al. (2006). Smoothing parameters are
selected by minimizing the AMISE using the Frank copula as the reference copula (see,
Nagler 2014, Section 3.3.3).
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T

The transformation estimator of Charpentier et al. (2006), but allowing for a bandwidth
matrix and not just one parameter. The bandwidth matrix is set by a rule of thumb
which is the normal reference rule on the transformed domain (see, Nagler 2014, Section
3.4.4):

Brot = n−1/6Σ̂
1/2
Z

,

where Σ̂Z is the empirical covariance matrix of Φ−1(Ui) and Φ−1(Vi)
)
, i = 1, . . . , n.

TLL1, TLL2, TLL1nn, TLL2nn (default)
The transformation local likelihood estimator of Geenens et al. (2017). TLL1 approx-
imates the log-density linearly; TLL2 by quadratic polynomials. The -nn versions use
nearest-neighbor bandwidths instead of fixed ones. For fixed-bandwidth versions, the
bandwidth matrix is set by the rule of thumb

Brot = 3n−1/(4q∗+2)Σ̂
1/2
Z

, q∗ = 1 + ⌊q/2⌋,

where q is the degree of the polynomial, Σ̂Z is the empirical covariance matrix of Φ−1(Ui)
and Φ−1(Vi)

)
, i = 1, . . . , n. This rule of thumb is similar to the normal reference rule,

but ensures that the bandwidth matrix vanishes at the mean-square optimal rate. For
nearest-neighbor methods, smoothing parameters are selected based on univariate least-
squares cross-validation on the first principal component in the transformed domain (see,
Geenens et al. 2017, Section 4). Local likelihood fitting is implemented via the locfit

package (Loader 2013).

TTCV, TTPI
Tapered transformation estimator of Wen and Wu (2015)1. Smoothing parameters are
selected in the transformed domain by profile cross-validation (TTCV, see, Wen and Wu
2015, Section 4.2) or plug-in minimization of the AMISE (TTPI, see, Wen and Wu 2015,
Section 4.1).

It is possible to specify the bandwidths manually using the bw argument of kdecop, although
we recommend against it. If it is necessary to manually make an estimate more or less smooth,
we advise to use the bandwidth multiplier argument kdecop(..., mult = 1). Values larger
than one will make the estimate smoother; values less than one make the estimate less smooth.

3.2. Working with the estimated density: (d/p/r)kdecop

In analogy to the usual (d/p/r)-prefixes for distribution families in R, we provide (d/p/r)-
versions for the kdecop-family. The functions dkdecop and pkdecop can be used to evaluate
the density and cdf of a kdecopula object, respectively.

R> dkdecop(c(0.1, 0.2), fit)

[1] 1.691764

1The implementation of the tapered transformation estimators was kindly provided by Kuangyu Wen.
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(c) marginal normal contour plot

Figure 3: Three ways to visualize a copula density.

R> pkdecop(cbind(c(0.1, 0.9), c(0.1, 0.9)), fit)

[1] 0.0327257 0.8505370

The rkdecop function simulates data from the estimated density. This can be done in two
ways: a) using pseudo-random numbers based on runif, b) using quasi-random numbers
based on ghalton from the qrng package (Hofert and Lemieux 2015).

R> pseudo <- rkdecop(500, fit)

R> quasi <- rkdecop(500, fit, quasi = TRUE)

3.3. Visualization: the plot and contour generics

For many people, the most interesting feature is probably to make exploratory plots. There
are three common ways to visualize a copula density: (a) a surface (or perspective) plot of
the copula density, (b) a contour plot of the copula density, (c) a contour plot of the copula
density when combined with standard normal margins. The following three lines of code
produce the plots shown in Figure 3. Optionally, further arguments can be passed to improve
the aesthetics.

R> plot(fit)

R> contour(fit, margins = "unif")

R> contour(fit)

In the author’s experience, the most useful plot is (c), the marginal normal contour plot. Cop-
ula densities usually explode at some corners of the unit square. As a result, it is not possible to
reasonably visualize the raw density (a) on the whole [0, 1]2. The function plot.kdecopula()

therefore restricts the displayed area to [0.01, 0.99]2. Obviously, this hides some information
in the tails. This can be problematic because the tails are often of particular interest in cop-
ula models. But even on the restricted domain the copula density often attains values larger
than 20 when there is strong dependence in the tails. On this scale, the shape of the copula
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Figure 4: Marginal normal contour plots for several parametric copula families.

density close to the center of the unit square is difficult to assess. Similarly, the contours of
the raw density (b) are inappropriate to reflect the tail behavior because contour lines near
to the corners become too close to be visually distinguishable. The marginal normal contour
plot overcomes these issues by transforming the margins such that the transformed density is
bounded. It has the additional advantage that it allows for an intuitive interpretation that is
relative to the Gaussian copula as explained in the following paragraph.

If the true copula is the independence copula, the contours are perfect circles (see, Figure 4a).
This is obviously not the case for the estimated density in Figure 3. Figure 4b shows a
Gaussian copula with Kendall’s τ set to the estimated τ from the data. A Gaussian copula
combined with Gaussian margins results in a bivariate Gaussian density and its contours are
ellipses. Since most statisticians are familiar with this kind of distribution it seems natural
to use this as a benchmark when interpreting the marginal normal contour plot for other
copulas. The next plot, Figure 4c, shows the Student t copula (df = 3). Here the contours
look like a diamond due to the higher density values in the tails (i.e., the corners of the square).
This reflects that — in contrast to the Gaussian copula — the Student t copula exhibits tail
dependence (e.g., Joe 2014), a concept that is very important in the modeling of risks. In
general, a spiky shape in the corners of the contours is an indication of tail dependence in
the respective corner. This can be observed again in Figure 4d and Figure 4e, where the
Gumbel and Clayton copula are shown, respectively. The Gumbel copula is asymmetric and
features upper tail dependence only. This is reflected by a spiky shape in the upper right



10 kdecopula: An R Package for the Kernel Estimation of Bivariate Copula Densities

corner and a flatter shape in the lower left corner. For the Clayton copula it is the other
way around. Finally the Frank copula has no tail dependence and has lighter tails than the
Gaussian, which corresponds to a more flat shape of the contours.

Going back to the estimated density in Figure 3, we see a rather flat shape in the lower left
corner and a more spiky shape in the upper right corner. This would indicate that there is
no lower, but upper tail dependence. Hence, the Gumbel copula is the most appropriate fit
choosing from the parametric families in Figure 4. However, we also observe some asymmetry
with respect to the main diagonal. This is not reflected by any of the parametric models
under consideration.

3.4. Dependence measures

It is often useful to summarize the dependence in a single number, a dependence measure.
Many of the popular dependence measures are functionals of the copula. In fact, this prop-
erty is required by Rényi’s axioms, see Schweizer and Wolff (1981). Such measures can be
calculated for copula density estimates fitted with kdecop(). For example, Kendall’s τ can
be expressed as

τ = 4

∫

[0,1]2
C(u, v) c(u, v)dudv − 1. (4)

There are several ways to calculate this measure for a copula density estimate. A straight-
forward way is to solve the integral numerically with the cubature package (Narasimhan and
Johnson 2016):

R> library("cubature")

R> f <- function(u) pkdecop(u, fit) * dkdecop(u, fit)

R> int <- adaptIntegrate(f, lowerLimit = c(0, 0), upperLimit = c(1, 1))

R> 4 * int$integral - 1

[1] 0.4666633

This method is quite slow because two numerical integrals (one is in pkdecop) are nested.
A second way to compute τ utilizes a stochastic interpretation of (4). Note that τ =
4E[C(U, V )] − 1, where (U, V ) is a random vector with density c. The expectation can then
be approximated by Monte Carlo integration:

R> uv_qmc <- rkdecop(10^4, fit, quasi = TRUE)

R> 4 * mean(pkdecop(uv_qmc, fit)) - 1

[1] 0.4685433

The third way is to compute the sample version of Kendall’s τ on simulated data. This
method is asymptotically equivalent to the other methods, but simpler and faster:

R> cor(uv_qmc[, 1], uv_qmc[, 2], method = "kendall")

[1] 0.4718781
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We see that the three methods lead to different results, but are close. The two Monte Carlo
methods have the drawback that their result is random. A large number of samples need to
be drawn to get an accuracy of multiple digits, but only the first one or two digits are useful
for interpretation of the measure.

Other copula-based measures of dependence can be computed similarly. The function
dep_measures() automates these computations for Kendall’s τ , Spearman’s ρ, Blomqvist’s
β, Gini’s γ, van der Waerden’s coefficient, Mutual Information, and Linfoot’s correlation
coefficient. For the definition of these measures, see, e.g., Nelsen (2006), Genest and Verret
(2005), and Joe (1989).

R> dep_measures(fit)

kendall spearman blomqvist gini vd_waerden minfo linfoot

0.4708465 0.6527604 0.4980365 0.5368616 0.6561498 0.3277878 0.6934384

kdecopula can be used similarly to detect other dependence properties, like positive quadrant
dependence (see, Gijbels, Omelka, and Sznajder 2010; Racine 2015).

4. Implementation based on spline interpolation

Typically, the evaluation of a kernel density estimate requires going back to the original data.
As a result, the computational effort increases with the sample size. We avoid that issue
by evaluating the actual density estimate only once on a fixed number of grid points. For
further evaluations we use cubic spline interpolation between the values on this grid. This
way, the density can be evaluated efficiently — independently of the sample size. It has the
additional advantage that analytical expressions for integrals of the (interpolated) density
estimate become available. We make use of that fact to implement a fast renormalization
scheme that ensures that the the density estimate is close to a bona fide copula density.

4.1. Evaluating the estimate by cubic spline interpolation

Recall that the support of a copula density is the unit cube [0, 1]2. Let m ∈ N and define a
finite set of points pj ∈ [0, 1] such that 0 ≤ p1 < · · · < pm ≤ 1. Then, the set

Pm = {(uj , vk) : (j, k) ∈ {1, . . . ,m}2} = {(pj , pk) : (j, k) ∈ {1, . . . ,m}2}

defines a symmetric grid on the unit cube. Cubic splines are piecewise cubic polynomials that
can be used to approximate or interpolate some function between points on a grid. We will
show how cubic spline interpolation can be used to approximate a copula density estimate.
We explain in detail how a one-dimensional cubic spline interpolation is constructed when
one of the coordinates is fixed. The two-dimensional case is a straightforward extension and
only sketched.

The one-dimensional case

Let us first fix vk and assume that the values of an estimate ĉ(·, vk) : [0, 1] → R+ are available
on the grid points uj , 1 ≤ j ≤ m. We want to interpolate the function ĉ(·, vk) at another
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point u∗, where uj < u∗ < uj+1 for some j ∈ {2, . . . ,m−2}. We define the interpolated curve
segment c̃j,j+1(·, vk) : [uj , uj+1] → R as some cubic polynomial

c̃j,j+1(u, vk) = aj,j+1
0 + aj,j+1

1 (u− uj) + aj,j+1
2 (u− uj)

2 + aj,j+1
3 (u− uj)

3.

A cubic polynomial defined on a closed interval is fully determined by its function values and
first derivatives at the boundary points. Define c̃j,j+1

1 as the partial derivative of c̃j,j+1 w.r.t.
its first argument. After some simple algebraic manipulations, we find that the coefficients of
a cubic spline approximation can be written as

aj,j+1
0 = c̃j,j+1(uj , vk),

aj,j+1
1 = c̃j,j+1

1 (uj , vk),

aj,j+1
2 = −3c̃j,j+1(uj , vk) + 3c̃j,j+1(uj+1, vk)− 2c̃j,j+1

1 (uj , vk)− c̃j,j+1
1 (uj+1, vk),

aj,j+1
3 = 2c̃j,j+1(uj , vk)− 2c̃j,j+1(uj+1, vk) + c̃j,j+1

1 (uj , vk) + c̃j,j+1
1 (uj+1, vk).

Now we replace c̃j,j+1(uj , vk) and c̃j,j+1(uj+1, vk) by the known values ĉ(uj , vk) and ĉ(uj+1, vk).

Similarly, we want to replace the derivatives c̃j,j+1
1 (uj , vk) and c̃j,j+1

1 (uj+1, vk) by ĉ1(uj , vk)
and ĉ1(uj+1, vk). These are unknown, but can approximated by a finite difference scheme.
We set

c̃j,j+1
1 (uj , vk) =

ĉ(uj , vk)− ĉ(uj−1, vk)

uj − uj−1
−

ĉ(uj+1, vk)− ĉ(uj−1, vk)

uj+1 − uj−1
+

ĉ(uj+1, vk)− ĉ(uj , vk)

uj+1 − uj
,

c̃j,j+1
1 (uj+1, vk) =

ĉ(uj+1, vk)− ĉ(uj , vk)

uj+1 − uj
−

ĉ(uj+2, vk)− ĉ(uj , vk)

uj+2 − uj
+

ĉ(uj+2, vk)− ĉ(uj+1, vk)

uj+2 − uj+1
.

Note that these can only be computed for 2 ≤ j ≤ m−2, since four distinct values ĉ(uj+j∗ , vk),
j∗ = −1, 0, 1, 2, show up in the above formulas. For fixed vk and some u ∈ [u2, uk−1), the
spline approximation c̃(u, vk) of the function ĉ(u, vk) can then be written as

c̃(u, vk) =
m−2∑

j=2

c̃j,j+1(u, vk)1[uj ,uj+1)(u).

We extended this to allow for the full range (u ∈ [0, 1]) by extrapolating the ‘outer’ two
polynomials at the borders, i.e.,

c̃(u, vk) =
m−2∑

j=2

c̃j,j+1(u, vk)1Aj
(u), where Aj =





[0, u3) for j = 2,

[uj , uj+1) for 3 ≤ j ≤ k − 3,

[um−2, 1] for j = m− 2.

The advantage of cubic spline interpolation is that it is easy to compute. In particular,
the computational effort only depends on m, the number of knots. Additionally, the above
approximation allows to write integrals as a sum of quartic polynomials, which can be com-
puted equally fast. This will prove advantageous in Section 4.2, where we use such integrals
to renormalize the copula density estimates.

The two-dimensional case
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Figure 5: (a) Visualization of a two-dimensional interpolation as the sequence of two one-
dimensional interpolations. (b) A grid with 20 knots that is equally spaced after transforma-
tion with the inverse Gaussian cdf .

Bivariate functions can be approximated similarly by a sequence of two one-dimensional inter-
polations. We will illustrate this by a small example and omit any further details (for more,
cf., Habermann and Kindermann 2007). Figure 5a shows the unit cube with grid points
(uj , vk) = (j/5, k/5), j, k = 0, . . . , 5, indicated as dots. Assume we know all function values
ĉ(uj , vk) on this grid and want to approximate the function at the point (0.5, 0.5) indicated by
a cross. We first do four one-dimensional (horizontal) interpolations c̃(0.5, vk), j = 1, 2, 3, 4
(triangles). Note that all values that are required to calculate the spline coefficients are known.
Another one-dimensional (vertical) interpolation based on the four new values c̃(0.5, vk) gives
us the final interpolated value c̃(0, 5, 0.5).

Choice of grid

In Figure 5a we showed a grid that has equal spacings between grid points. This seems
natural, but in our context we found it more appropriate to use a grid that is equally spaced
after a transformation by the inverse Gaussian cdf . Figure 5b depicts such a grid with 20
knots. It was constructed by placing 20 equidistant knots on the line segment [−3, 3] and
then applying the Gaussian cdf to them. The two-dimensional set-product of these 20 points
yields the final two-dimensional grid.

We see that the grid points are more sparse in the center of the unit square and concentrate
towards the boundaries and corners. This choice takes into account that for copula densities
the areas near the corners are most important. In those areas, copula densities often explode
while being rather flat in the center. This allows us to keep the approximation errors in the
important areas small. A nice side-effect is that the marginal normal contour plots described
in the last section can be visualized more nicely. The number of knots can be controlled by
the knots argument of kdecop and defaults to 30. A smaller number reduces computation
time, but comes at the cost of a larger approximation error.
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4.2. Renormalization of the density estimate

We now introduce the idea of iterative renormalization of kernel copula density estimators.
Recall that by the definition of a copula, the marginal densities have to be uniform, i.e.,

∫ 1

0
c(u, s)ds =

∫ 1

0
c(s, u)ds = 1, for all u ∈ [0, 1]. (5)

This property is of particular importance, when other functionals of the density are of interest.
For example, assume that we integrate the density estimate to obtain an estimate for the
corresponding conditional cdf, C(v|u) =

∫ v
0 c(u, s)ds. This is a common task in vine copula

models which gained a lot of popularity following the seminal paper of Aas, Czado, Frigessi,
and Bakken (2009). If the estimated density does not satisfy the uniform margins property,
the estimate of the conditional cdf may exceed unity, which makes it problematic. The lack
of uniform margins was mostly ignored in the literature, although kernel estimates usually do
not satisfy the uniform margins property (5).

Now let ĉ(u, v) be a consistent kernel estimator of c(u, v) for all (u, v) ∈ [0, 1]2. From Sklar’s
theorem for density functions (1), we know that dividing a bivariate density by the product of
its marginal densities yields a copula density. Hence, a simple way to adjust the estimator is
to divide the initial estimate by

∫ 1
0 ĉ(u, s)ds

∫ 1
0 ĉ(s, v)ds. The renormalized estimator writes

ĉ∗(u, v) =
ĉ(u, v)

∫ 1
0 ĉ(u, s)

∫ 1
0 ĉ(s, v)ds

. (6)

and is asymptotically equivalent to the original one under mild conditions. For sophisticated
kernel estimators — such as the beta kernel or local likelihood estimators — the two integrals
have to be computed numerically. Conveniently, the spline approximations introduced in the
previous section allow for fast computation of the integrals in (5).

The proposed renormalization procedure can be split into two steps.

1. Find a spline approximation of the initial estimate that is defined by its values on a finite
grid.

2. Renormalize the approximated density values on this grid by dividing by the (approxi-
mated) marginal densities (see Equation 6).

The resulting estimate will typically be closer to a bona fide copula density. However, the
renormalization is only carried out on a finite number of grid points. Apart from that grid, the
renormalized estimate typically still does not satisfy the uniform margins property. But we
can simply repeat the two steps above until a satisfactory result is achieved. Our experience
suggests that a very small number of iterations is sufficient. The number of iterations can be
set by the renorm.iter argument of kdecop and defaults to three.

The renormalization will turn out to have two benefits: functionals of kernel estimates will
show the desired behavior and, additionally, the estimates are more accurate (see Section 5).
For the latter there is an intuitive interpretation. By ensuring that margins are uniform, we
incorporate additional information about the true density. This reduces the set of plausible
estimates and increases the probability of being ‘close’ to the true one.
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(c) Mixture III

Figure 6: Marginal normal contour plots of copulas derived from mixtures of multivariate
Gaussian distributions.

5. Comparison of methods

We compare all estimators implemented in this package in a simulation study. Additionally,
we include results for other nonparameteric copula density estimators available in R.

5.1. Setup

We consider the following estimators:

• MR, beta, T, TLL1, TLL2, TLL1nn, TLL2nn TTPI, TTCV: These estimators are
provided by the kdecop function presented in this paper (cf., Section 2).

• np: The kernel estimator provided by the npcopula function in the np package (Hayfield
and Racine 2008).

• ks: The kernel estimator provided by the kcopula.de function in the ks package (Duong
2014).

• bern, bspl: The penalized Bernstein polynomial and B-spline estimators provided by
the paircopula function in the penDvine package (Schellhase 2015).

Default settings are used for all implementations. In particular, smoothing parameters are
selected automatically.

As a performance measure, we use the integrated absolute error (IAE)

IAE
[
ĉ(u, v)

]
=

∫

[0,1]

∫

[0,1]

∣∣ĉ(u, v)− c(u, v)
∣∣dudv,

where we estimate the integrals as the mean over the grid (j/101, k/101), j, k = 1, . . . , 100.

We study several target copula densities and two sample sizes (n = 200, n = 1000). We use
three families from Figure 4 (Independence, Gaussian, Gumbel) and three copulas derived
from multi-modal mixtures of bivariate Gaussian distributions (marginal normal contour plots
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Figure 7: Mean of the integrated absolute error achieved by all methods in different scenarios.
Each bar is split in two parts, where the larger corresponds to n = 200 and the smaller to
n = 1000.
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are shown in Figure 6). For the Gaussian and Gumbel copulas we create scenarios with weak
and strong dependence (Kendall’s τ of 0.3 and 0.7). For mixture families we use the package
GMCM (Bilgrau, Eriksen, Rasmussen, Johnsen, Dybkær, and Bøgsted 2016).

5.2. Error analysis

Figure 7 shows the mean of the IAE over 100 replication for various scenarios. The figure is
divided into 8 panels, each representing a different target density. Each panel shows results
for the nine estimators implemented in kdecopula (left of the dotted line) and four estimators
implemented in other packages on CRAN. Each estimator is represented by a bar which is
split in two parts. The solid part indicates the mean IAE for n = 1000, the transparent part
indicates the mean IAE for n = 200. As expected, all estimators improve when the sample
size increases.

Two scenarios, the independence and Mixture III copulas, show somewhat different results
from the others. We shall discuss them in more detail later. In all other scenarios, TLL2nn is
the top performer and TLL2 is a close second. In general, the transformation methods seem
to work better than MR and beta. The estimators from the np and ks packages are often
among the least accurate. The methods from the penDvine package work rather well when
there is weak dependence, but struggle when dependence is strong. The relative performance
is largely consistent across the two sample sizes.

The density of the independence copula is constant. The two estimators from penDvine

perform best for this target. The reason is that their basis function formulation can reproduce
constants, so they behave similar to a parametric estimator in this case. The independence
copula is an example where the transformation approach is suboptimal. A constant density
can be estimated easily because there is no curvature. But after transformation, the target
density is a bivariate Gaussian which is more difficult to estimate.

The second scenario standing out is where Mixture III is the target density. The B-spline
estimator from penDvine is most accurate, followed by TTCV and TTPI. This scenario is
the only one where the other transformation methods are consistently outperformed by non-
kdecopula methods. The issue here is how the bandwidth matrix is selected. Methods T,
TLL1, TLL2, TLL1nn, and TLL2nn all use a bandwidth matrix that is proportional to square
root of the empirical covariance. This is often a good choice because it ‘stretches’ the kernels
in a way that resembles the shape of the data. For Mixture III, the overall correlation is
negative. The correlation in each mixture component, however, is strongly positive. In this
case the shape of the kernels does not reflect to the local orientation of the data. TTCV,
TTPI, and non-kdecopula methods do better in this scenario because they do not rely on
such a rule of thumb, but use more sophisticated criteria. This comes at a cost in terms of
speed, as we shall see in Section 5.4.

5.3. The effect of renormalization

In Section 4.2 we claimed that the renormalization algorithm implemented in this package
improves the performance of the estimators. The results presented in Figure 7 are based on
default settings, i.e., three iterations of the algorithm. Table 1 show the relative reduction of
IAE compared to non-normalized estimators averaged over all scenarios.

We observe that the performance has improved for all estimators. The average gain ranges
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MR beta T TLL1 TLL2 TLL1nn TLL2nn TTCV TTPI

13% 15% 25% 39% 21% 28% 29% 24% 22%

Table 1: The effect of renormalization: numbers indicate by how much the IAE could be
improved after three iterations of the renormalization algorithm (rounded to the next integer).

between 13% and 39%. This contributed significantly to the good performance observed in
Figure 7. In fact, the estimator that could be improved the second most is TLL2nn, the top
performer in our initial study.

5.4. Computation time

Some design choices in kdecopula prioritize speed over accuracy. One example is the use of
spline interpolation, another is the choice of bandwidth selection methods. Table 2 shows the
computation time for most methods. Methods TLL1 and TLL1nn are omitted to make the
table more compact; they are slightly faster than their ‘nn’-variants.

n MR beta T TLL2 TLL2nn TTCV TTPI np ks bern bs

200 0.11 0.26 0.07 0.31 0.62 3.76 0.35 3.03 4.61 1.88 2.10
1000 0.37 0.99 0.11 0.68 1.30 58.10 13.63 37.84 41.96 3.08 3.45

Table 2: Computation time (in seconds) required for estimating the density and evaluating it
on a 100× 100 grid.

All kdecopula methods except TTCV and TTPI are much faster than estimators from other
packages. The difference gets larger for larger sample sizes. Note that TTCV, TTPI, np, and
ks are much slower when n = 1000. This is caused by them using sophisticated bandwidth
selection techniques that have large complexity with respect to sample size.

6. Summary and extensions

We have described the R package kdecopula, which implements several cutting-edge kernel
estimation techniques for copula densities. The package allows for automatic selection of the
smoothing parameter and resampling. Several plotting options make it particularly useful
for the exploratory analysis of copula data. Its abilities have been illustrated by small code
examples.

The implementation utilizes spline interpolation for fast evaluation and renormalization of
the density estimates. Simulations show that the implementations in this package perform
best among available methods for nonparametric copula density estimation. A contributing
factor for the good performance is the renormalization of the estimators, which was shown to
notably improve the accuracy.

Compared with the functionality provided by the np package, kdecopula lacks two features:

1. It does not provide functionality for estimating copula densities when the data contain
discrete variables. A problem is that the copula is not unique when margins are dis-
crete, but there are infinitely many copulas that, when combined with the marginal
distributions, lead to the same joint distribution (see, e.g., Genest and Nešlehová 2007).
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It is unclear which of these copulas shall be estimated and how to justify the choice.
Additionally, estimating a copula from discrete data necessarily involves modeling of
the marginal distributions, which is deliberately avoided in kdecopula.

2. It does not allow for more than two variables. One major issue is that kdecopula uses
interpolation to evaluate and renormalize the estimators. In more than two dimensions
the number of grid points explodes rapidly and renders the interpolation approach
infeasible.

A kdecopula-based solution for both points is the kdevine package (Nagler 2017b). It imple-
ments a kernel estimator of general multivariate densities based on vine copulas (Nagler and
Czado 2016), which use marginal densities and bivariate copulas as building blocks. Contin-
uous convolution (Nagler 2017a) is used to handle discrete variables, which induces copulas
similar to the multilinear copula (see, Genest and Nešlehová 2007; Genest, Nešlehová, Rémil-
lard et al. 2014).
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