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1 Introduction

This note presents in some detail the formulae for the test statistics used by
the kanova() function from the kanova package. These statistics are based
on, and generalise, the ideas discussed in Diggle et al. (2000) and in Hahn
(2012). (See also Diggle et al. (1991).)
The statistics consist of sums of integrals (over the argument r of the K-
function) of the usual sort of analysis of variance “regression” sums of squares,
down-weighted over r by the estimated variance of the quantities being
squared. The limits of integration r0 and r1 could be specified in the software
(e.g. in the related spatstat function studpermu.test() they can be spec-
ified in the argument rinterval). However there is currently no provision
for this in kanova(), and r0 and r1 are taken to be the min and max of the r
component of the "fv" object returned by Kest(). Usually r0 is 0 and r1 is
1/4 of the length of the shorter side of the bounding box of the observation
window in question.
There are test statistics for:

• one-way analysis of variance (one grouping factor),

• main effects in a two-way (two grouping factors) additive model, and

• a model with interaction versus an additive model in a two-way context.
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2 The data

In the context of a single classification factor A, with a levels, the data consist
of K-functions Kij(r), i = 1, . . . , a, k = 1, . . . , ni. The function Kij(r) is
constructed (estimated) from an observed point pattern Xij.
In the context of two classification factors A and B, with a levels and b
levels respectively, the data consist of K-functions Kijk(r), i = 1, . . . , a,
j = 1, . . . , b, k = 1, . . . , nij. The function Kijk(r) is constructed (estimated)
from an observed point pattern Xijk.

2.1 Modelling heteroscedasticity

In order to model the variances of the K-functions that appear in the current
context, we need to make the following simplifying assumptions about of the
nature of these variances:

1. with each cell of the model there is associated an underlying variance
function denoted by σ2

i (r) (i = 1, . . . , a) in the case of a one way design,
and by σ2

ij(r) (i = 1, . . . , a, j = 1, . . . , b) in the case of a two way design

2. with each observed pattern there is associated a (positive) weight, de-
pending on the number of points in the pattern and denoted by wij in
the case of a one way design and by wijk in the case of a two way design

In terms of these assumptions, we assume that the variances of the K-
functions are given by:

Var(Kij)(r) = σ2
i (r)/wij for a one way design

Var(Kijk)(r) = σ2
ij(r)/wijk for a two way design

This model has no theoretical basis and is justified only by its simplicity and
intuitive appeal.
In the single classification context the weight associated with Kij(r) is speci-
fied to be wij = mη

ij where mij is the number of points in the pattern Xij. In
the context of two classification factors, the weight associated with Kijk(r) is
specified to be wijk = mη

ijk where mijk is the number of points in the pattern
Xijk. The exponent η is taken to be a constant, to be specified by the user
of the kanova package. In the code η is denoted by expo.
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2.2 Homoscedasticity is better

After the package was completed, simulation experiments revealed that ex-
pressing the variances in terms of the proposed weights appears to be counter-
productive. The power of the tests in questions seems to be maximised when
all the weights are 1, i.e. when η (expo) is 0. More importantly, the null dis-
tribution of the p-values of the tests appears to deviate from the theoretical
ideal, i.e. the U [0, 1] distribution, unless the value of expo is 0. Hence the
tests appear to be valid only if expo = 0. (More detail will be available in
Diggle and Turner (2025).)
The code of the package was designed so as to do all of the relevant cal-
culations in terms of the aforementioned weights. To keep life simple (and
to allow for the remote possibility that in some circumstances the use of
weights might be called for) the code (and the forthcoming exposition in this
vignette) have been left expressed in terms of weights. However the default
value of expo has been set equal to 0. Hence, unless the user explicitly
changes the value of expo from its default, all of the computations will actu-
ally be carried out in an un-weighted manner. I.e. the data will be treated
as being homoscedastic.

3 Some details about the weighted means of

the observations

The test statistics used are (in general) calculated in terms of various weighted
means of the observed K-functions. Explicitly we define:

K̃i•(r) =
1

wi•

ni∑
j=1

wijKij(r)

K̃••(r) =
1

w••

a∑
i=1

ni∑
j=1

wijKij(r)

=
1

w••

a∑
i=1

wi•K̃i•(r)

K̃ij•(r) =

nij∑
k=1

wijk

wij•

Kijk(r)
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K̃i••(r) =
b∑

j=1

wij•

wi••

K̃ij•(r)

=
1

wi••

b∑
j=1

nij∑
k=1

wijkKijk(r)

K̃•j•(r) =
a∑

i=1

wij•

w•j•

K̃ij•(r)

=
1

w•j•

a∑
i=1

nij∑
k=1

wijkKijk(r) and

K̃•••(r) =
a∑
i=i

wi••

w•••

K̃i••(r)

=
b∑

j=1

w•j•

w•••

K̃•j•(r)

=
a∑

i=1

b∑
j=1

wij•

w•••

K̃ij•(r)

=
a∑

i=1

b∑
j=1

nij∑
k=1

wijk

w•••

Kijk(r)

4 Estimating the variance functions

The variances of the K-functions are assumed to be proportional to functions
which are constant over indices within each cell of the model. In the context
of a single classification factor, the variance ofKij(r) is taken to be σ2

i (r)/wij.
Under the null hypothesis of “no A effect”, it is assumed that the functions
σ2
i (r) are all equal to a single function, σ̃2(r). I.e. they do not vary with i.

This function is estimated by

s2(r) =
1

n• − a

a∑
i=1

ni∑
j=1

wij(Kij(r)− K̃i•(r))
2 .

Under the null hypothesisi, this is an unbiased estimate of σ̃2(r).
In the context of two classification factors, the variance of Kijk(r) is taken
to be σ2

ij(r)/wijk. If we are testing for an A effect, allowing for a B effect, it
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is assumed that, under the null hypothesis, the functions σ2
ij(r) do not vary

with i, and for each j are all equal to a single function σ̃2
j (r) (depending only

on the B effect). These σ̃2
j (r)) are estimated by

s2j(r) =
1

n•j

a∑
i=1

nij∑
k=1

wijk(Kijk(r)− K̃ij•(r))
2 .

Under the null hypothesis these are unbiased estimates of the σ̃2
j (r).

In the context of two classification factors, where we are testing for interaction
against an additive model (unlikely to arise as these circumstances may be)
we need estimates of σ2

ij(r). These are given by

s2ij(r) =
1

nij − 1

nij∑
k=1

wijk(Kijk(r)− K̃ij•)
2 .

These are unbiased estimates of the σ2
ij(r).

5 The test statistics

The test statistics are (numerical) integrals of certain sums of squares, pos-
sibly divided by “normalisation” or “homogenisation” coefficients. The “nor-
malisation” is analogous to the studentisation procedure used by Hahn (2012).

5.1 Single classification factor

In the setting of a single classification factor A, the statistic for testing for
an A effect is

T =
a∑

i=1

ni

∫ r1

r0

(K̃i(r)− K̃(r))2/N i(r) dr

where N i(r) is the normalisation coefficient. If the divByVar argument of
kanova() is TRUE, then N i(r) is equal to the estimated variance of K̃i(r)−
K̃(r) which is given by

s2(r)

(
1

wi•
− 1

w••

)
.

If divByVar is FALSE then N i(r) is taken to be identically equal to 1.
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5.2 Two classification factors, testing for A “allowing
for B”

In the setting of two classification factors A and B, the statistic for testing
for an A effect allowing for a B effect is

TA =
a∑

i=1

ni•

∫ r1

r0

(K̃i••(r)− K̃•••(r))
2/N i(r) dr

where N i(r) is the normalisation coefficient. If divByVar is TRUE, then N i(r)
is equal to the estimated variance of K̃i••(r)− K̃•••(r) which is given by

s̃2i (r)

(
1

wi••

− 2

w•••

)
+

1

w•••

a∑
ℓ=1

wi••

w•••

s̃2ℓ(r) .

The foregoing expression may be re-written, more compactly, and in a form
which makes it more obvious that the quantity is positive, as:

N i(r) =
1

w•••

[
a∑

ℓ=1

ζiℓ × s̃2ℓ(r)

]
where

s̃2ℓ(r) =
b∑

j=1

wℓj•

wℓ••

s2j(r), ℓ = 1, . . . , a,

ζiℓ =

{
νℓ ℓ ̸= i

(νi−1)2

νi
ℓ = i

νℓ =
wℓ••

w•••

, ℓ = 1, . . . , a.

If divByVar is FALSE then N i(r) is taken to be identically equal to 1.

5.3 Two classification factors, testing for interaction

In the setting in which there are two classification factors and we are testing
for interaction, against an additive models, the test statistic is

TAB =
a∑

i=1

b∑
j=1

nij

∫ r1

r0

(K̃ij•(r)− K̃i••(r)− K̃•j•(r) + K̃•••(r))
2/N ij(r) dr
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where N ij(r) is the normalisation coefficient. If divByVar is TRUE, then
N ij(r) is equal to the (sample) variance of K̃ij•(r)−K̃i••(r)−K̃•j•(r)+K̃•••(r).
The expression for N ij(r), when divByVar is TRUE, is even messier than the
corresponding expression for N i(r). It is given by

s2ij(r)

(
1

wij•

− 2

wi••

− 2

w•j•

+
2wij•

wi••w•j•

+
2

w•••

)
+

s̃2i•(r)

(
1

wi••

− 2

w•••

)
+ s̃2•j(r)

(
1

w•j•

− 2

w•••

)
+

s̃2(r)

w•••

(1)

where

s̃2i•(r) =
b∑

j=1

wij•

wi••

s2ij(r)

s̃2•j(r) =
a∑

i=1

wij•

w•j•

s2ij(r) and

s̃2(r) =
a∑

i=1

b∑
j=1

wij•

w•••

s2ij(r) .

(2)

Note that (1) is just (4), and (2) is just (3) (see below) with population
quantities replaced by sample (estimated) quantities.
Here are some (terse) details about the variance of K̃ij•(r)− K̃i••(r)− K̃•j•(r) + K̃(r)
as given by (4).

Var(K̃ij•(r)) =
σ2
ij(r)

wij•

Var(K̃i••(r)) =
σ̃2
i•(r)

wi••

Var(K̃•j•(r) =
σ̃2

•j(r)

w•j•

Var(K̃•••(r)) =
σ̃2(r)

w•••

Cov(K̃ij•(r), K̃i••) =
σ2
ij(r)

wi••

Cov(K̃ij•(r), K̃•j•) =
σ2
ij(r)

w•j•
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Cov(K̃ij•(r), K̃•••) =
σ2
ij(r)

w•••

Cov(K̃i••(r), K̃•j•) =
wij•σ

2
ij(r)

wi••w•j•

Cov(K̃i••(r), K̃•••) =
σ̃2
i•(r)

w•••

Cov(K̃•j•(r), K̃•••(r) =
σ̃2

•j(r)

w•••

where

σ̃2
i•(r) =

b∑
j=1

wij•

wi••

σ2
ij(r)

σ̃2
•j(r) =

a∑
i=1

wij•

w•j•

σ2
ij(r) and

σ̃2(r) =
a∑

i=1

b∑
j=1

wij•

w•••

σ2
ij(r) .

(3)

Sample calculation: to see that Cov(K̃ij•(r), K̃i••) = σ2
ij/wi••, note that K̃i••(r)

is a weighted sum over ℓ, of terms K̃iℓ•(r).The K-functions involved corre-
spond to independent patterns, and so are likewise independent. Conse-
quently K̃ij•(r) is independent of K̃iℓ•(r), and the corresponding covariances
are 0, except when ℓ = j. We thus get only a single non-zero term from the
sum of the covariances, explicitly

Cov(K̃ij•(r),
wij•

wi••

K̃ij•) =
wij•

wi••

Var(K̃ij•) =
wij•

wi••

σ2
ij

wij•

=
σ2
ij

wi••

.

Finally we can obtain the variance term of interest, which is Var(K̃ij•(r) −
K̃i••(r)− K̃j••(r) + K̃•••(r)). This expression is equal to

Var(K̃ij•(r)) + Var(K̃i••(r)) + Var(K̃•j•(r)) + Var(K̃•••(r))

− 2Cov(K̃ij•(r), K̃i••(r))− 2Cov(K̃ij•(r), K̃•j•(r)) + 2Cov(K̃ij•(r), K̃•••(r))

+ 2Cov(K̃i••(r), K̃•j•)− 2Cov(K̃i••(r), K̃•••(r))

− 2Cov(K̃•j•(r), K̃•••(r)) .

8



Collecting terms in the foregoing expression, and using the previously stated
symbolic representations of these terms, we obtain

σ2
ij(r)

(
1

wij•

− 2

wi••

− 2

w•j•

+
2wij•

wi••w•j•

+
2

w•••

)
+

σ̃i•(r)

(
1

wi••

− 2

w•••

)
+ σ̃•j(r)

(
1

w•j•

− 2

w•••

)
+

σ̃(r)

w•••

.

(4)

Replacing the population variances by their corresponding estimates (sample
quantities) we obtain (1).
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