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Abstract

Longitudinal studies commonly arise in various fields such as psychology, social sci-
ence, economics and medical research, etc. It is of great importance to understand the
dynamics in the mean function, covariance and/or correlation matrices of repeated mea-
surements. However, high-dimensionality (HD) and positive-definiteness (PD) constraints
are two major stumbling blocks in modelling of covariance and correlation matrices. It
is evident that Cholesky-type decomposition based methods are effective in dealing with
HD and PD problems, but those methods were not implemented in statistical software
yet, causing a difficulty for practitioners to use. In this paper, we first introduce recently
developed Cholesky decomposition based methods for joint modelling of mean and covari-
ance structures, namely modified Cholesky decomposition (MCD), alternative Cholesky
decomposition (ACD) and hyperspherical parameterization of Cholesky factor (HPC). We
then introduce our newly developed R package jmcm which is currently able to handle
longitudinal data that follows a Gaussian distribution using the MCD, ACD and HPC
methods. Demonstration is provided by running the package jmcm and comparison of
those methods is made through analysing two real data sets.

Keywords: Cholesky decomposition, covariance matrix estimator, longitudinal data, joint
mean-covariance models.

1. Introduction

A longitudinal study usually involves repeated observations of the same variables over a
long period of time and is often used in psychology, sociology and medical research. The
covariance matrix plays a prominent role in analysing data from longitudinal studies since
the components of collected measurements within the same subject are not independent. A
good covariance modelling approach improves statistical inference of the mean of interest and
the covariance structure itself may be of scientific interest in some circumstances (Diggle and
Verbyla 1998).

However, modelling of covariance structure is challenging because the estimated covariance
matrices in general should be positive definite and there are many parameters in covariance
matrices. To overcome these two obstacles, Pourahmadi (1999) advocated a data-driven joint
mean-covariance modelling method based on a modified Cholesky decomposition (MCD) of
the marginal within-subject covariance matrix. The decomposition leads to a reparameteri-
zation where entries can be interpreted in terms of innovation variances and autoregressive
coefficients. See Pan and Mackenzie (2003) for a related discussion. Another Cholesky-type
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decomposition (ACD) proposed by Chen and Dunson (2003) can be understood as modelling
certain innovation variances and moving average parameters, and the method is compared
with MCD in details by Pourahmadi (2007). These two Cholesky-type approaches demon-
strate parsimonious and effective strategies, but their corresponding variance functions cannot
be directly interpreted as those of the repeated observations. Therefore additional efforts are
needed for interpreting the variance and covariance functions. More recently, Zhang, Leng,
and Tang (2015) considered a regression approach based on the standard Cholesky decomposi-
tion of the correlation matrix and the hyperspherical parameterization (HPC) of its Cholesky
factor, of which parameters are directly interpretable with respect to variance and correlation.
A brief review of these approaches is presented in the following sections. Note this paper is
not an exhaustive survey, and many other covariance structure modelling methods are also
commonly used in the literature, see Fan, Liao, and Liu (2016) for a more general overview
on the estimation of large covariance and precision matrices.

Software for analysis of longitudinal data by some conventional approaches has been imple-
mented in R (R Core Team 2015) environment for many years. For instance, several packages
provide functions for determining maximum likelihood estimates of the parameters in linear
mixed-effect model (LMM) that incorporates both fixed effects and random effects in the
linear predictor, such as the lme function in package nlme (Pinheiro, Bates, DebRoy, Sarkar,
and R Core Team 2015) and the lmer function in package lme4 (Bates, Mächler, Bolker, and
Walker 2015). Similar commercial statistical programs are also available for LMM such as
PROC MIXED in SAS (SAS Institute Inc. 2013), MIXED in SPSS (SPSS Inc. 2015) and fitlme

in MATLAB (The MathWorks Inc. 2015). The method of generalized estimating equation
(GEE) (Liang and Zeger 1986) is widely used as it focuses on models for the mean of the cor-
related observations without fully specifying the joint distribution of the responses. Several
implementations of GEE are available through package gee (Carey, Lumley, and Ripley 2015)
and geepack (Halekoh, Højsgaard, and Yan 2006). Gaussian copula model provides a flexi-
ble general framework for marginal regression analysis of continuous, discrete and categorical
responses, and is available through package gcmr (Masarotto, Varin et al. 2012). However
all of these procedures are based on specific model assumptions like existence of an expec-
tation or homogeneous variances and are not intuitive for a joint mean-covariance modelling
framework. In this paper we focus on the joint mean-covariance modelling for both balanced
and unbalanced longitudinal data, and we present a user friendly R package jmcm (freely
available from CRAN at http://CRAN.R-project.org/package=jmcm) that can be used to
handle such joint models. For efficiency, the core part of package jmcm is implemented in
compiled C++ code using Rcpp (Eddelbuettel and François 2011; Eddelbuettel 2013) and
RcppArmadillo (Eddelbuettel and Sanderson 2014) for numerical linear algebra. All the im-
plemented R functions are well documented with some examples. The main objective of this
paper is to introduce the joint mean-covariance modelling approaches in package jmcm to a
wide audiences of statisticians and practitioners who need to analyze longitudinal data.

The rest of the paper is organized as follows. In Section 2 we present the joint mean-covariance
modelling methods, and discuss different choices for modelling strategies of covariance struc-
ture mentioned above. Furthermore, we consider the maximum likelihood estimations for each
type of the models, with particular emphasize on numerical optimization techniques. Section
3 provides detailed implementation of the methods introduced in Section 2 using the package
jmcm and gives a brief illustration of the computational tools and Section 4 concludes the
paper with further discussions.

http://CRAN.R-project.org/package=jmcm
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2. Joint mean-covariance modelling framework

2.1. Joint mean-covariance models

Denote longitudinal measurements by yi = (yi1, yi2, · · · , yimi)
> (i = 1, 2, · · · , n) that are

collected from n subjects and measured at times points ti = (ti1, ti2, · · · , timi)
>. Here we

assume the number of measurements mi and time ti are subject specific, so that unbalanced
longitudinal data sets with observations taken at irregular time points can be modelled.

The basic linear model used in joint mean-covariance modelling frame work of longitudinal
data analysis can be described by the distribution of a vector-valued random response variable
yi, which is assumed to be multivariate normal,

yi ∼ Nmi(µi,Σi)

where µi = (µi1, µi2, · · · , µimi)
> is an mi × 1 vector and Σi is an mi × mi within-subject

covariance matrix. The mean µi of yi is usually modelled by a linear regression,

µi = Xiβ (1)

where Xi denotes an mi× (p+1) model matrix with an intercept on the first column followed
by covariates of the ith subject, β is a (p+ 1)× 1 regression coefficient vector. The subject-
specific within-subject covariance matrix, Σi, may be modelled similarly based on different
decomposition approaches, and will be discussed in detail in the following sections.

Estimates of the joint mean-covariance model parameters θ, including θ1 = β in the mean
model and other unspecified parameters θ2 in the covariance matrices, can be obtained by
Maximum Likelihood (ML estimation). In particular, a maximum likelihood estimator (MLE)
of the unknown parameter vector is defined as any solution θ̂n of:

θ̂n = argmin
θ∈Θ
{−2l(θ)} (2)

where

−2l(θ) =

n∑
i=1

log |Σi|+
n∑
i=1

(yi − µi(θ1))>Σ−1
i (θ2)(yi − µi(θ1)) (3)

is the minus twice of the log-likelihood function without the constant term. Note that it
is the form of the log-likelihood function that is implemented by default in the package,
though value of the full log-likelihood including the constant term can be easily obtained
by setting a specific option before the model fitting. After obtaining the score functions
U(θ) = (U(θ1)>, U(θ2)>)> based on f(θ) = −2l(θ) by direct calculations, we then estimate
θ via the iterative quasi-Newton method (BFGS) that solves the score equations. More
specifically, we apply the following quasi-Newton algorithm.

1. Select an initial value θ(0) = ((θ
(0)
1 )>, (θ

(0)
2 )>)>. Set the superscript k = 0 for iteration

number. A convenient initial value for θ
(0)
1 = β(0) is its ordinary least-squares estimates,

β(0) = (
∑n

i=1X
>
i Xi)

−1(
∑n

i=1X
>
i yi) while the initial value for θ0

2 is set to form a diag-
onal covariance matrix, and will be discussed in details respectively with the choice of
covariance structure models later.
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2. Initialize score function U0 = U(θ0) and the inverse Hessian H0 as identity matrix.

3. Update search direction (Newton step) and compute step size λ̃ by performing an ap-
proximate line minimization

p(k) = −H(k)U (k), λ̃ = arg min
0<λ̃≤1

f(θ(k) + λ̃p(k)). (4)

4. Update θ as

θ(k+1) = θ(k) + λ̃p(k) (5)

and then the new gradient

U (k+1) = U(θ(k+1)). (6)

5. Compute the difference θ(k+1) − θ(k) and U (k+1) − U (k) and update the inverse Hessian
with the BFGS updating formula

Hi+1 =Hi +
(θ(k+1) − θ(k))(θ(k+1) − θ(k))>

(θ(k+1) − θ(k))>(U (k+1) − U (k))

− [H(k)(U (k+1) − U (k))][H(k)(U (k+1) − U (k))]>

(U (k+1) − U (k))>H(k)(U (k+1) − U (k))

+ (U (k+1) − U (k))>H(k)(U (k+1) − U (k))uu>

(7)

where u is defined as the following vector

u ≡ (θ(k+1) − θ(k))

(θ(k+1) − θ(k))>(U (k+1) − U (k))
− H(k)(U (k+1) − U (k))

(U (k+1) − U (k))>H(k)(U (k+1) − U (k))
. (8)

6. Set k = k + 1 and repeat steps 3 to 5 until a pre-specified criterion is met.

See Press, Teukolsky, Vetterling, and Flannery (2007) for a more detailed discussion of BFGS
optimization algorithm with line-search and its implementations. Note that currently only
BFGS algorithm is implemented in the package since it proves to be one of the best quasi-
Newton methods for solving smooth unconstrained optimization problem and works very well
in our problem. Other quasi-Newton algorithms will also be implemented as alternatives in
the future. In practice, we find the estimates of parameters θ of the joint mean-covariance
model can be further improved by solving the parameters one by one with other parameters
fixed in the optimization, and will be discussed in more detail in the following sections.

2.2. Modified Cholesky decomposition (MCD)

The two major obstacles in modelling covariance matrices are high-dimensionality (HD) and
positive-definiteness (PD). The HD problem usually alleviated from regressions analysis with
a large number of covariates and the PD problem can be removed by infusing regression-based
ideas into Cholesky decomposition (Pourahmadi 2013). The standard Cholesky decomposition
of an mi ×mi positive definite covariance matrix is of the following form

Σi = CiC
>
i (9)
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where Ci = (cijk) is a lower triangular matrix with positive diagonal elements and its entries
are difficult to interpret (Pinheiro and Bates 1996). We will find that the task of statistical
interpretation can be much easier by reducing Ci to unit lower triangular matrices by post-
and pre-multiply the inverse of Di = diag(ci11, ci22, · · · , cimimi).

Defining modified Cholesky decomposition (MCD)

The first case, post-multiplying Ci by the inverse of Di, leads to the modified Cholesky
decomposition (MCD) and keeps Di inside (Zhang and Leng 2012),

Σi = (CiD
−1
i )(DiDi)(D

−1
i C>i ) = LiD

2
iL
>
i (10)

or in another more commonly used form (Pourahmadi 1999),

TiΣiT
>
i = D2

i (11)

where Ti = L−1
i and Li = CiD

−1
i can be considered as a standardised version of Ci, dividing

each column by its corresponding diagonal entry (Maadooliat, Pourahmadi, and Huang 2013).

The below-diagonal entries of Ti are the negatives of the so-called generalized autoregressive
parameters (GARPs), φijk, in

yij = µij +

j−1∑
k=1

φijk(yik − µik) + εij (12)

the AR model for the actual measurements on subject i. The diagonal entries of D2
i are the

innovation variance σ2
ij = V ar(εij), see Pourahmadi (1999) for the details. It is helpful to

invert Equation 12 by using yi1 = εi1 and repeating substitution for yit in terms of εit to
obtain

yij − µij = εij +

j−1∑
k=1

φ̃ijkεik (j = 2, · · · ,mi) (13)

where the matrix form reveals Li = (φ̃ijk) so that its entries on the jth row can be inter-
preted as regression parameters when yij is regressed on the present and past innovations
εij , εi(j−1), · · · , εi1. Then we can prove

COV(yis, yit) =

min(s,t)∑
k=1

φ̃iskφ̃itkσ
2
ik (14)

by setting φ̃ijj = 1 and φ̃ijk = 0 for j < k and 1 ≤ s, t ≤ mi. Thus, the correlation coefficient
between yis and yit depends on both the φ̃ijk’s and the σ2

ij ’s.

Maximum likelihood estimation of MCD

Using the idea of linear models and employing covariates as in Pan and Mackenzie (2003),
the unconstrained parameters ζij ≡ log σ2

ij and φijk are modelled as

ζij = z>ijλ, φijk = w>ijkγ (15)
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where zij and wijk are (d+1)×1 and (q+1)×1 vectors of covariates, λ = (λ0, λ1, · · · , λd)> and
γ = (γ0, γ1, · · · , γq)> are unknown parameters for the innovation variances and autoregressive
coefficients, respectively.

Under model in (15), the minus twice log-likelihood function, except for a constant, is given
by

−2l =

n∑
i=1

log |T−1
i D2

i T
−>
i |+

n∑
i=1

r>i T
>
i D

−2
i Tiri (16)

where rij = yij − x>ijβ is the jth element of ri = yi − Xiβ, the vector of residuals for ith
subject.

The maximum likelihood estimating equations for β, λ and γ become

U1(β) =
n∑
i=1

X>i Σ−1
i (yi −Xiβ)

U2(λ) =
1

2

n∑
i=1

Z>i (D−2
i ei − 1mi)

U3(γ) =
n∑
i=1

G>i D
−2
i (ri −Giγ)

(17)

where the matrix Gi, of order mi × (q + 1), has typical row g>ij =
∑j−1

k=1 rikw
>
ijk. Also, Zi =

(z>i1, z
>
i2, · · · , z>imi

)>, ei = (ei1, ei2, · · · , eimi)
> with eij = (rij − r̂ij)2 and r̂ij =

∑j−1
k=1 φijkrik,

are the mi × (d + 1) matrix of covariates and the mi × 1 vector of squared fitted residuals
respectively, and 1mi is the mi × 1 vector of 1’s.

The initial guess β(0) can be set by employing a simple linear regression:

R> lm.obj <- lm(Y ~ X - 1)

R> bta0 <- coef(lm.obj)

After we exact residuals from the linear model, the starting value λ(0) is obtained by fitting
its linear regression model in (15) while γ(0) is simply assumed to be a vector of 0’s so that
Ti is constructed as an identity matrix :

R> resid(lm.obj) -> res

R> lmd0 <- coef(lm(log(res ^ 2) ~ Z - 1))

R> gma0 <- rep(0, lgma)

We then estimate θ by minimizing expression in (16) via the iterative quasi-Newton algorithm,
as explained in Section 2.1, after substitution of U(θ) by (−2U1(β)>,−2U2(λ)>,−2U3(γ)>)>.

Since the solutions satisfy Equation 17 and the parameters β, λ, γ are asymptotically inde-
pendent (Ye and Pan 2006), the three parameters can also be sequentially solved one by one
with other parameters kept fixed. More specifically, we apply the following algorithm.

1. Initialize the parameters as θ(0) = ((β(0))>, (λ(0))>, (γ(0))>)>. Set k = 0.
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2. Compute Σi by using λ(k) and γ(k). Update β as

β = (

n∑
i=1

X>i Σ−1
i Xi)

−1
n∑
i=1

X>i Σ−1
i yi.

3. Given β = β(k+1) and γ = γ(k), update λ via the iterative quasi-Newton algorithm after
substitution of f(θ) = −2l(θ) by f(λ) and U(θ) by −2U2(λ) since there is no explicit
form for the solution of λ.

4. Given β = β(k+1) and λ = λ(k+1), update γ as

γ = (

n∑
i=1

G>i D
−2
i Gi)

−1
n∑
i=1

G>i D
−2
i ri.

5. Update search direction as

p(k) = θ(k+1) − θ(k),

Compute step size λ̃ by performing an approximate line minimization

λ̃ = arg min
0<λ̃≤1

f(θ(k) + λ̃p(k)).

6. Update θ(k+1) again as

θ(k+1) = θ(k) + λ̃p(k).

7. Set k = k + 1 and repeat steps 2 to 6 until a pre-specified criterion is met.

2.3. Alternative Cholesky decomposition (ACD)

Defining alternative Cholesky decomposition (ACD)

The second case, pre-multiplying Ci by the inverse of Di, leads to alternative Cholesky de-
composition (ACD) (Chen and Dunson 2003) and keeps Di outside,

Σi = Di(D
−1
i Ci)(C

>
i D

−1
i )Di = DiL̃iL̃

>
i Di

where L̃i = D−1
i Ci is obtained from a slightly different standardised Ci, dividing each row by

its corresponding diagonal entry (Maadooliat et al. 2013).

For statistical interpretation of the below-diagonal entries of L̃i, it is clear thatD−1
i (yi−µi) has

L̃iL̃
>
i as the standard Cholesky decomposition of its covariance matrix and εi = (DiL̃i)

−1(yi−
µi), its vector of innovations, has COV(εi) = Imi . Thus, with L̃i = (φ̃ijk), Di = (σij) and
from D−1

i (yi − µi) = L̃iεi we obtain variable-order, MA representation for the standardized
(yij − µij)/σij as

(yij − µij)/σij = εij +

j−1∑
k=1

φ̃ijkεik (18)
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Then we can prove

COV(yis, yit) = σisσit

min(s,t)∑
k=1

φ̃itkφ̃isk (19)

for any 1 ≤ s, t ≤ mi, so that the correlation coefficient between yis and yit given by

CORR(yis, yit) =

∑min(s,t)
k=1 φ̃itkφ̃isk√

(
∑s

k=1 φ̃
2
isk

∑t
k=1 φ̃

2
itk)

(20)

is determined solely by φ̃ijk’s.

Maximum likelihood estimation of ACD

Following the similar approach in Pan and Mackenzie (2003), the log-innovation variance
ζij = log σ2

ij and moving average parameters φ̃ijk in ACD are modelled as

ζij = z>ijλ, φ̃ijk = v>ijkγ (21)

where zij and vijk are (d+ 1)× 1 and (q + 1)× 1 vectors of covariates, λ = (λ0, λ1, · · · , λd)>
and γ = (γ0, γ1, · · · , γq)> are unknown parameters for the innovation variances and moving
average regression coefficients, respectively.

Under model in (21), the minus twice log-likelihood function, except for a constant, is given
by

−2l =
n∑
i=1

log |DiL̃iL̃
>
i Di|+

n∑
i=1

r>i D
−1
i L̃−>i L̃−1

i D−1
i ri (22)

where rij = yij − x>ijβ is the jth element of ri = yi − Xiβ, the vector of residuals for ith
subject.

The score functions can be obtained and simplified as

U1(β) =

n∑
i=1

X>i Σ−1
i (yi −Xiβ)

U2(λ) =
1

2

n∑
i=1

Z>i (hi − 1mi)

U3(γ) =

n∑
i=1

(ε>i ⊗ Imi)
∂L̃>i
∂γ

L̃−>i εi

(23)

where Zi = (z>i1, z
>
i2, · · · , z>imi

)>, hi = diag(L̃−1
i D−1

i rir
>
i D
−1
i ), εi = (εi1, · · · , εimi)

> = L̃−1
i D−1

i ri,
thus εi1, · · · , εimi are independent standard normal random variables, and Imi is an mi ×mi

identity matrix.

Since covariance structure of MCD and ACD are quite close, the initial guess of parameters
β(0), λ(0) and γ(0) in ACD can be obtained using the same approach described in initial
parameter setting of MCD:

R> lm.obj <- lm(Y ~ X - 1)

R> bta0 <- coef(lm.obj)
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R> resid(lm.obj) -> res

R> lmd0 <- coef(lm(log(res ^ 2) ~ Z - 1))

R> gma0 <- rep(0, lgma)

We then estimate θ by minimizing expression in (22) via the iterative quasi-Newton algorithm,
as explained in Section 2.1, after substitution of U(θ) by (−2U1(β)>,−2U2(λ)>,−2U3(γ)>)>.

Since the solutions satisfy Equation 23 and the parameters λ and γ are not asymptotically
orthogonal (Maadooliat et al. 2013), the three parameters can be split into two groups, θ1 = β
and θ2 = (λ>, γ>)> and can be sequentially solved one by one with other parameter kept fixed.
More specifically, we apply the following algorithm.

1. Initialize the parameters as θ(0) = ((θ
(0)
1 )>, (θ

(0)
2 )>)> = ((β(0))>, (λ(0))>, (γ(0))>)>. Set

k = 0.

2. Compute Σi by using λ(k) and γ(k). Update θ1 = β as

β = (
n∑
i=1

X>i Σ−1
i Xi)

−1
n∑
i=1

X>i Σ−1
i yi.

3. Given β = β(k+1), update θ2 via the iterative quasi-Newton algorithm after substitution
of f(θ) = −2l(θ) by f(θ2) and U(θ) by (−2U2(λ)>,−2U3(γ)>)>.

4. Update search direction as

p(k) = θ(k+1) − θ(k),

Compute step size λ̃ by performing an approximate line minimization

λ̃ = arg min
0<λ̃≤1

f(θ(k) + λ̃p(k)).

5. Update θ(k+1) again as

θ(k+1) = θ(k) + λ̃p(k).

6. Set k = k + 1 and repeat steps 2 to 5 until a pre-specified criterion is met.

2.4. Hyperspherical parameterization of Cholesky factor (HPC)

Even though modified Cholesky decomposition (MCD) (Pourahmadi 1999) and alternative
Cholesky decomposition (ACD) (Chen and Dunson 2003) provide parsimonious unconstrained
and statistically interpretable parameterization of a covariance matrix, the innovation variance
is not same as the marginal variances of the repeated measurements within the same subject.

Defining hyperspherical parameterization of Cholesky factor(HPC)

It is well known that variance-correlation decomposition has the form below

Σi = HiRiHi (24)
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where Hi = diag(σi1, σi2, · · · , σimi) with σij being the standard deviation of jth measurement
for subject i and Ri = (ρijk)

mi
j,k=1 is the correlation matrix of yi with ρijk = CORR(yij , yik)

being the correlation between the jth and kth observations of the ith subject. By using
this decomposition, one can directly model the variances and correlations of observations
separately.

Not surprisingly, the development of a regression method to model the correlation structure
proves to be difficult. Specifically, a correlation matrix must be positive semidefinite and
symmetric with 1’s as the main diagonal entries and values between -1 and 1 as the off-diagonal
entries. The new challenge is mitigated by employ the standard Cholesky decomposition on
correlation matrix Ri,

Ri = BiB
>
i (25)

and parameterize its Cholesky factor Bi via hyperspherical co-ordinates (HPC) (Zhang et al.
2015),

Bi =


1 0 0 . . . 0
ci21 si21 0 . . . 0
ci31 ci32si31 si32si31 . . . 0

...
...

...
. . .

...

cimi1 cimi2simi1 cimi3simi2simi1 . . .
∏mi−1
l=1 simil


where cijk = cos(θijk) and sijk = sin(θijk).

Equivalently, the non-zeros entries in the lower triangular matrix Bi = (bijk) are given as
bi11 = 1, bij1 = cij1 = cos(θij1) for j = 1, 2, · · · ,mi and

bijk =


cos(θijk)

k−1∏
l=1

sin(θijl), 2 ≤ k < j ≤ mi,

k−1∏
l=1

sin(θijl), k = j, j = 2, · · · ,mi.

where θijk are some angles in [0, π) (Rapisarda, Brigo, and Mercurio 2007)

Maximum likelihood estimation of HPC

The correlation matrix Ri is guaranteed positive semi-definite since it is constructed by its
corresponding standard Cholesky factor Bi and the angle parameters in Bi are unconstrained
except that θijk ∈ [0, π). We are free to model the log-variances and angles through regression
by using some covariates

log σ2
ij = z>ijλ, θijk = g>ijkγ (26)

As for the range of θijk, our experience from data analysis and simulation study indicates all
the estimated θijks fall in the range [0, π). Transformation such as the inverse tangent trans-
formation can be applied to ensure that θijk definitely falls in [0, π), and can be implemented
in a future version. Under model in (26), the minus twice log-likelihood function, except for
a constant, is given by

−2l =

n∑
i=1

log |HiBiB
>
i Hi|+

n∑
i=1

r′iH
−1
i B−>i B−1

i H−1
i ri (27)
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where rij = yij − x>ijβ is the jth element of ri = yi − Xiβ, the vector of residuals for ith
subject.

The score functions can be obtained and simplified as

U1(β) =

n∑
i=1

X>i Σ−1
i (yi −Xiβ)

U2(λ) =
1

2

n∑
i=1

Z>i (hi − 1mi)

U3(γ) =
n∑
i=1

((ε>i ⊗ Imi)
∂B>i
∂γ

B>−1
i εi −

mi∑
j=1

∂ logBijj
∂γ

)

(28)

where Zi = (z>i1, z
>
i2, · · · , z>imi

)>, hi = diag(B−1
i H−1

i rir
>
i H

−1
i ), εi = (εi1, · · · , εimi)

> = B−1
i H−1

i ri,
thus εi1, · · · , εimi are independent standard normal random variables, and Imi is an mi ×mi

identity matrix.

The initial guess β(0) can be set by employing a simple linear regression:

R> lm.obj <- lm(Y ~ X - 1)

R> bta0 <- coef(lm.obj)

After we exact residuals from the linear model, the starting value λ(0) is obtained by fitting
its linear regression model in (26) while γ(0) is simply assumed to be a vector whose first
element is 1

2π and followed by 0’s so that Bi is constructed as an identity matrix :

R> resid(lm.obj) -> res

R> lmd0 <- coef(lm(log(res ^ 2) ~ Z - 1))

R> gma0 <- c(pi / 2, rep(0, lgma-1))

We then estimate θ by minimizing expression in (27) via the iterative quasi-Newton algorithm,
as explained in Section 2.1, after substitution of U(θ) by (−2U1(β)>,−2U2(λ)>,−2U3(γ)>)>.

Since the solutions satisfy Equation 28 and the parameters λ and γ are not asymptotically
independent (Zhang et al. 2015), the three parameters can be split into two groups, θ1 = β
and θ2 = (λ>, γ>)> and can be sequentially solved one by one with other parameters kept
fixed. More specifically, we apply the following algorithm.

1. Initialize the parameters as θ(0) = ((θ
(0)
1 )>, (θ

(0)
2 )>)> = ((β(0))>, (λ(0))>, (γ(0))>)>. Set

k = 0.

2. Compute Σi by using λ(k) and γ(k). Update θ1 = β as

β = (
n∑
i=1

X>i Σ−1
i Xi)

−1
n∑
i=1

X>i Σ−1
i yi.

3. Given β = β(k+1), update θ2 via the iterative quasi-Newton algorithm after substitution
of f(θ) = −2l(θ) by f(θ2) and U(θ) by (−2U2(λ)>,−2U3(γ)>)>.
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4. Update search direction as
p(k) = θ(k+1) − θ(k),

Compute step size λ̃ by performing an approximate line minimization

λ̃ = arg min
0<λ̃≤1

f(θ(k) + λ̃p(k)).

5. Update θ(k+1) again as
θ(k+1) = θ(k) + λ̃p(k).

6. Set k = k + 1 and repeat steps 2 to 5 until a pre-specified criterion is met.

2.5. Comparison of MCD, ACD and HPC

For modelling the covariance and correlation structure, the three discussed Cholesky-type
decomposition-based approaches have been demonstrated to be effective in the sense that
estimated covariance and correlation are guaranteed positive (semi)definite, and number of
parameters is largely reduced through regression techniques.

It is clear that MCD and ACD has a more close relationship since they are constructed
similarly through standardize the Cholesky factor Ci, and the resulting unconstrained pa-
rameters have a nice statistical interpretation in terms of innovation variance, autoregressive
and moving average parameters respectively. The main drawbacks of these two approaches
are the potential needs for a natural order (e.g., time series), which makes it difficult to find
a reasonable statistical interpretation and may result in different estimation of covariance
and correlation matrix with each single ordering. A recent application of Cholesky-based
approach for estimating covariance matrix of multiple stocks within a portfolio and more
detailed discussion of ordering problem can be find in Dellaportas and Pourahmadi (2012),
Pedeli, Fokianos, and Pourahmadi (2015). Additional effort and extra care are needed in
practice for interpreting their corresponding variance and correlation functions. Moreover,
owning to the decomposition, resulting correlation function of MCD depends on both the
innovation variance and autoregressive parameters, indicating MCD is not robust against
the misspecification of innovation variance when correlation is the main interest (Maadooliat
et al. 2013). We also need to note that MCD is most computationally efficient among three
approaches due to the fact that its Fisher information matrix is block diagonal (Ye and Pan
2006).

The parameterization of HPC is very attractive because the resulting parameters are uncon-
strained and directly interpretable with respect to the variances and correlations. The angles
in the Cholesky factor of correlation matrix have a geometric connection with correlations.
However, modelling covariance and correlation using HPC can be computationally expensive
since it transforms the problem of estimating Cholesky factor into the one that actually first
estimates a matrix consists of angles. See details in Zhang et al. (2015).

3. Examples of use

3.1. Analysis of a balanced longitudinal dataset
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In this section, we provide our first example that illustrates how to apply joint mean-covariance
models in analysing a balanced longitudinal data by using jmcm. Kenward (1987) reported an
experiment on cattle intestinal paasites controls in which the cattle were assigned randomly
to two treatment groups A and B, and their weights were recorded. Thirty animals received
treatment A and another thirty received treatment B. The animals were weighted n = 11
times over a 133-day period; the first 10 measurements on each animal were made at two-
week intervals and the final measurement was made one week later. Since no observation was
missing, it is considered to be a balanced longitudinal dataset. The data is loaded simply
using the data() instruction:

R> library("jmcm")

R> data("cattle", package = "jmcm")

R> head(cattle)

id day group weight

1 1 0 A 233

2 1 14 A 224

3 1 28 A 245

4 1 42 A 258

5 1 56 A 271

6 1 70 A 287

We present in Figure 1 the subject-specific longitudinal profiles of the cattle data using fol-
lowing code:

R> library("lattice")

R> xyplot(weight ~ day | group, group = id, data = cattle, xlab = "days",

+ ylab = "weight", col = 1, type = "l")

and observes that in both groups the variability of weights seems to increase over time with
a severe weight loss on the final measurement in group B.

Following Pourahmadi (1999), Pan and Mackenzie (2003), Pan and MacKenzie (2006), Pan
and MacKenzie (2007) and Zhang et al. (2015), we re-analysed group A data by using a
saturated mean model with the common measurement time rescaled to t = 1, 2, · · · , 10, 10.5.
The Bayesian Information Criterion (BIC), which is closely related to Akaike Information
Criterion (AIC) and introduces a larger penalty term for the number of parameters in the
model than the AIC aiming to solve the problem of over-fitting, is used as the criterion to
select the optimum model

BIC(p, d, q) = −2l̂max/n+ (p+ d+ q + 3) log(n)/n (29)

where p, d and q are respectively the orders of three polynomials and l̂max is the value of
maximum log-likelihood function for the given order. By default, the value of likelihood
does not include the constant term as defined in Equation (3) but it can be switched to
the full likelihood containing the constant term easily by explicitly specifying control =

jmcmControl(ignore.const.term = F) in jmcm function.

The basic use of jmcm is to indicate the model formula, data, choice of poly(p, d, q) and
covariance structure model. For example, a joint mean-covariance model based on modified
Cholesky decomposition (MCD) are estimated using:
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Figure 1: Subject-specific weight against time for group A and B.

R> cattleA <- cattle[cattle$group=='A', ]

R> fit1 <- jmcm(weight | id | I(day/14 + 1) ~ 1 | 1, data = cattleA,

+ triple = c(8, 3, 4), cov.method = 'mcd')
R> fit1

Joint mean-covariance model based on MCD ['jmcmMod']
Formula: weight | id | I(day/14 + 1) ~ 1 | 1

Poly: c(8, 3, 4)

Data: cattleA

logLik: -771.0007

BIC: 53.4408

Mean Parameters:

[1] 1.832e+02 1.244e+02 -1.403e+02 7.881e+01 -2.362e+01 4.071e+00

[7] -4.052e-01 2.162e-02 -4.787e-04

Innovation Variance Parameters:

[1] 5.366409 -0.878890 0.132427 -0.006371

Autoregressive Parameters:

[1] 0.297055 0.619888 -0.396189 0.069150 -0.003696

The R package Formula of Zeileis and Croissant (2010) is used to extract information from a
two-sided linear formula object which is used to describe both longitudinal data and covariates
of the model, with the response, subject id and observation time point on the left of a ”∼”
operator separated by vertical bars (”|”) and covariates for the mean model and innovation
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variance, also separated by a ”|” operator, on the right. Here both covariates for mean
model and innovation variance are marked as 1, and only time is used to construct design
matrices. Optimal model selection involves identifying the best integer triple poly(p, d, q),
specified by option triple, representing the degrees of three polynomial functions for the
mean structure, log innovation variance and autoregressive coefficients respectively. To make
the model fitting comparable with the results reported in the literature, in this paper we focus
on the fitting using polynomials in time. The use of other covariates is also possible and will
be demonstrated later. By default, the jmcm function uses the profile likelihood for having
a better estimating result. Alternatively, non-profile method can be applied by specifying
control = jmcmConstrol(profile = F). When the estimation for the fitted model is ready,
an object of the S4 class jmcmMod is returned from the function and it automatically displays
the basic information by calling the generic print function. The getJMCM function can be
used to extract various objects (e.g., estimation of mean vector and covariance matrix) from
a fitted joint mean-covariance model. In this example, the global optimum triple poly(8,3,4)
reported in Pan and Mackenzie (2003) is modelled, produced a better result with l̂max =
-771.0007 and BIC = 53.4408.

Since it is a balanced longitudinal dataset, we produced the sample regressograms and fitted
curves for the cattle data using the following function:

R> regressogram(fit1, time = 1:11)

By examining the log innovation variance versus time in Figure 2, it is clear that curvature
pattern is well captured by the fitted polynomial function curve. Figure 2 also indicates a
good fit for autoregressive coefficients by examining the autoregressive coefficient versus time
lag between measurements and the fitted curve.
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Figure 2: Group A analysis of Kenward’s cattle data. Sample regressograms and MCD model
fits based on the triple ploy(8, 3, 4) for log innovation variances (left) and autoregressive
coefficients (right).

Same triple poly(8,3,4), representing the degrees of three polynomial functions for the mean
structure, the log innovation variance and moving average coefficients respectively, is used



16 jmcm: Joint Mean-Covariance Modelling of Longitudinal Data in R

in joint mean-covariance model fitting based on ACD for cattle data. The covariance struc-
ture option should be specified as cov.method = ’acd’. By comparing the maximized log-
likelihood and BIC for MCD modelling, we clearly see that ACD method produces a larger
likelihood l̂max = −747.6994 and a smaller BIC-value 51.8873.

R> fit2 <- jmcm(weight | id | I(day/14 + 1) ~ 1 | 1, data = cattleA,

+ triple = c(8, 3, 4), cov.method = 'acd')
R> fit2

Joint mean-covariance model based on ACD ['jmcmMod']
Formula: weight | id | I(day/14 + 1) ~ 1 | 1

Poly: c(8, 3, 4)

Data: cattleA

logLik: -747.6994

BIC: 51.8873

Mean Parameters:

[1] 1.784e+02 1.360e+02 -1.511e+02 8.400e+01 -2.503e+01 4.299e+00

[7] -4.267e-01 2.272e-02 -5.020e-04

Innovation Variance Parameters:

[1] 4.959622 -0.625990 0.084538 -0.003963

Moving Average Parameters:

[1] 0.5216849 0.4795778 -0.1049448 0.0105871 -0.0003623

Regressograms for ACD can be produced by the same command:

R> regressogram(fit2, time = 1:11)

By examining the log innovation variance versus time (left) and moving average coefficient
versus time lag (right) in Figure 3, similar conclusion can be drawn that the proposed poly-
nomial model fitting well captured trend in sample regressogram.

When the joint mean-covariance model approach based on HPC is applied to the cattle data,
the covariance structure option should be specified as cov.method = ’hpc’. Same two-sided
linear formula object is used to describe both longitudinal data and covariates of the model,
but on the right of a ”∼” operator, covariates for mean model and variance is specified on
the right side of the operator instead of mean model and innovation variance in MCD and
ACD. The integer triple poly(p, d, q) is specified by option triple, representing the degrees
of three polynomial functions for the mean structure, log variance and angles respectively.
More specifically, the optimal triple ploy(8, 2, 2) of HPC model fitting reported in Zhang
et al. (2015) can be reproduced using the following command:

R> fit3 <- jmcm(weight | id | I(day/14 + 1) ~ 1 | 1, data = cattleA,

+ triple = c(8, 2, 2), cov.method = 'hpc')
R> fit3
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Figure 3: Group A analysis of Kenward’s cattle data. Sample regressograms and ACD model
fits based on the triple ploy(8, 3, 4) for log innovation variances (left) and moving average
coefficients (right).

Joint mean-covariance model based on HPC ['jmcmMod']
Formula: weight | id | I(day/14 + 1) ~ 1 | 1

Poly: c(8, 2, 2)

Data: cattleA

logLik: -746.9001

BIC: 51.4939

Mean Parameters:

[1] 1.781e+02 1.373e+02 -1.528e+02 8.500e+01 -2.535e+01 4.359e+00

[7] -4.330e-01 2.307e-02 -5.101e-04

Variance Parameters:

[1] 4.0263 0.3148 -0.0113

Angle Parameters:

[1] 0.729414 0.092111 -0.004424

A slightly better result with l̂max = -746.9001 and BIC = 51.4939 is produced compared to
reported l̂max = -755.00 and BIC = 52.03. Similarly, model fitting can be checked by plot the
two regressograms using:

R> regressogram(fit3, time = 1:11)

We need to note that there is no general form for calculating angles. The corresponding angles
φijk of the empirical correlation matrix is calculated iteratively using expression

θijk = arccos(bijk/
k−1∏
l=1

sin(arccos(θijl))), 1 ≤ k < j ≤ mi, (30)



18 jmcm: Joint Mean-Covariance Modelling of Longitudinal Data in R

where
∏0

1 is taken as 1. By examining the log variance versus time (left) and angle versus
time lag (right) in Figure 4, it is clear that curvature patterns on two sample regressograms
is well captured by the two fitted model, indicating a good model fitting.
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Figure 4: Group A analysis of Kenward’s cattle data. Sample regressograms and HPC model
fits based on the triple ploy(8, 2, 2) for log variances (left) and angles (right).

The comparisons between MCD, ACD and HPC based joint mean-covariance models on cattle
data are made in Table 1 with different choices of triple and execution time (in seconds) are
measured for each model fitting. We find that HPC-based model is more desirable in most
cases with a larger value in log likelihood and smaller BIC when compared to MCD and ACD
based models at the cost of a much longer execution time. From Table 1, we also find that
MCD and ACD will produce quite close results in term of value of likelihood and BIC while
MCD based model is most time efficient among three approaches. Our tests were conducted
under Windows 10 (64-bit version) on ThinkPad T410 equipped with an Intel(R) Core(TM)
i5 M 480@2.67GHz with 4.00GB of RAM.

(p,d,q) No. of MCD ACD HPC
parms. lmax BIC Time lmax BIC Time lmax BIC Time

(8,3,4) 18 -771.0007 53.4408 0.53 -747.6994 51.8873 3.54 -745.2783 51.7259 6.61
(8,2,2) 15 -789.6174 54.3418 0.57 -750.8567 51.7577 2.78 -746.9001 51.4939 6.28
(10,10,10) 33 -739.1477 53.0178 4.77 -740.7159 53.1224 88.68 -739.6031 53.0482 128.10
(6,1,1) 11 -823.8421 56.1699 0.47 -763.5859 52.1528 1.33 -759.5982 51.8870 4.09
(3,3,3) 12 -825.3397 56.3831 1.05 -800.8213 54.7486 6.03 -798.1533 54.5707 16.69
(4,4,3) 14 -791.1545 54.3309 0.80 -760.6863 52.2996 3.21 -760.2976 52.2737 10.25
(7,2,2) 14 -791.7968 54.3737 0.47 -755.7579 51.9711 2.14 -751.8171 51.7084 6.17
(8,7,4) 22 -769.5302 53.7962 1.89 -745.1182 52.1688 4.97 -743.1843 52.0398 16.19
(9,1,3) 16 -794.7426 54.7968 0.38 -750.0146 51.8149 2.94 -746.7736 51.5989 9.39
(9,4,3) 19 -783.2143 54.3684 0.61 -746.3733 51.9123 5.41 -744.9879 51.8200 9.98
(9,8,5) 25 -754.3422 53.1238 2.09 -743.2145 52.3820 28.67 -741.6877 52.2802 37.91

Table 1: Kenward’s cattle data. Comparison of MCD, ACD and HPC with different triples.
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3.2. Analysis of an unbalanced longitudinal dataset

In this section, we apply the proposed joint mean-covariance modelling approach to an un-
balanced CD4+ cell dataset analysed by Ye and Pan (2006) and Zhang et al. (2015). The
dataset comprises a total of 2376 CD4+ cell counts of 369 HIV-infected men covering a period
of approximately eight and half year. The number of measurement mi for each individual
varies from 1 to 12 and the times are not equally spaced. The CD4+ cell data are highly
unbalanced and included in the package.

R> data("aids", package = "jmcm")

R> head(aids)

time cd4 age packs drugs sex cesd id

1 -0.741958 548 6.57 0 0 5 8 10002

2 -0.246407 893 6.57 0 1 5 2 10002

3 0.243669 657 6.57 0 1 5 -1 10002

4 -2.729637 464 6.95 0 1 5 4 10005

5 -2.250513 845 6.95 0 1 5 -4 10005

6 -0.221766 752 6.95 0 1 5 -5 10005

We present in Figure 5 the scatter plot of CD4+ cell counts against time, with the first six
individuals profiles superimposed:

R> library("lattice")

R> xyplot(sqrt(cd4) ~ time, data = aids,

panel = function(x, y, ...) {

panel.xyplot(x, y, ...)

panel.lines(x[aids$id==10002], y[aids$id==10002], col = 2, lwd = 2)

panel.lines(x[aids$id==10005], y[aids$id==10005], col = 3, lwd = 2)

panel.lines(x[aids$id==10029], y[aids$id==10029], col = 4, lwd = 2)

panel.lines(x[aids$id==10039], y[aids$id==10039], col = 5, lwd = 2)

panel.lines(x[aids$id==10048], y[aids$id==10048], col = 6, lwd = 2)

panel.lines(x[aids$id==10052], y[aids$id==10052], col = 7, lwd = 2)

},

xlab = "Time", ylab = "CD4 cell numbers", col = 1)

and observe that the data is highly unbalanced with unclear profile patterns for each individ-
ual.

As in Zhang et al. (2015), square roots of the CD4 cell counts are used to make the response
variable closer to the Normal distribution. The optimal triplet poly(8, 1, 3) of MCD method
reported in Zhang et al. (2015) is fitted using the following command:

R> fit4 <- jmcm(I(sqrt(cd4)) | id | time ~ 1 | 1, data = aids,

+ triple = c(8, 1, 3), cov.method = 'mcd')
R> fit4
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Figure 5: Scatter plot of CD4+ cell counts against time, with the first six individuals profiles
superimposed.

Joint mean-covariance model based on MCD ['jmcmMod']
Formula: I(sqrt(cd4)) | id | time ~ 1 | 1

Poly: c(8, 1, 3)

Data: aids

logLik: -4979.193

BIC: 27.2278

Mean Parameters:

[1] 29.217447 -4.100596 -1.279396 1.073685 0.195578 -0.166439

[7] -0.001842 0.009407 -0.001020

Innovation Variance Parameters:

[1] 3.2646 -0.0886

Autoregressive Parameters:

[1] 0.67990 -0.57684 0.17741 -0.01815

Here the CD4 data is again re-analysed with MCD based joint mean-covariance model using
time as the main covariates and values of l̂max = -4979.193 and smaller BIC = 27.2278 are
obtained. Note that jmcm function do allow adding other covariates in the mean model and
innovation variance model. For instance, the linear formula part of jmcm function in this
example can be replaced by I(sqrt(cd4)) | id | time ~ age | age + packs, which in
turn generates the new vectors of covariates for the mean and innovation variance with the
following form

xij = (1, tij , t
2
ij , · · · , t

p
ij , age)

>,

zij = (1, tij , t
2
ij , · · · , tdij , age, packs)>.

The joint mean-covariance model based on ACD and HPC approaches can also be fitted with



Jianxin Pan, Yi Pan 21

other covariate in a similar way, and currently the fitted models can be compared with other
model fittings using the value of log likelihood and BIC.

Since CD4+ cell data are unbalanced, sample covariance matrix cannot be obtained and using
instruction regressogram() with the model fitting result will simply lead to an error message.
Instead we produced fitted curves and its 95% confidence interval based on bootstrap using
the following function:

R> bootcurve(fit4, nboot = 1000)

where number of bootstrap replications can be specified by option nboot and there are 1000
bootstrap samples in this example. Figure 6 shows the fitted curve of the mean, log inno-
vation variance, autoregressive coefficient and their corresponding 95% confidence intervals.
From Figure 6, we also observed the monotone-decreasing relationship of fitted log innovation
variance with the time, and a curvature pattern of fitted autoregressive coefficient with the
time lag.
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Figure 6: CD4 cell data. MCD model fits based on the triple poly(8,1,3). Fitted curves of the
mean against time (top), the log innovation variance against time (left) and the autoregressive
coefficient against lag (right): - - - - - -, 95% confidence intervals.

The same triple poly(8,1,3) is used in joint mean-covariance model fitting based on ACD for
aids data, and we clearly see that ACD method produces a larger likelihood l̂max = -4927.492
and a smaller BIC-value 26.9476.
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R> fit5 <- jmcm(I(sqrt(cd4)) | id | time ~ 1 | 1, data = aids,

+ triple = c(8, 1, 3), cov.method = 'acd')
R> fit5

Joint mean-covariance model based on ACD ['jmcmMod']
Formula: I(sqrt(cd4)) | id | time ~ 1 | 1

Poly: c(8, 1, 3)

Data: aids

logLik: -4927.492

BIC: 26.9476

Mean Parameters:

[1] 29.0395978 -4.0577291 -1.0767686 0.9747427 0.1479554 -0.1416514

[7] -0.0002373 0.0076762 -0.0008416

Innovation Variance Parameters:

[1] 3.2441 -0.1163

Moving Average Parameters:

[1] 0.580633 -0.151159 0.056772 -0.006433

Fitted curves for ACD can be produced by the same command:

R> bootcurve(fit5, nboot = 1000)

From Figure 7, again we observed the monotone-decreasing relationship of fitted log innovation
variance with the time, and a curvature pattern of fitted moving average coefficient with the
time lag.

When the optimal triplet poly(8, 1, 1) of HPC approach reported in Zhang et al. (2015) is
fitted, the optimal BIC-value turns out to be 26.7268, and l̂max = -4892.68, producing the best
model among the three proposed covariance and correlation structure modelling methods.

R> fit6 <- jmcm(I(sqrt(cd4)) | id | time ~ 1 | 1, data = aids,

+ triple = c(8, 1, 1), cov.method = 'hpc')
R> fit6

Joint mean-covariance model based on HPC ['jmcmMod']
Formula: I(sqrt(cd4)) | id | time ~ 1 | 1

Poly: c(8, 1, 1)

Data: aids

logLik: -4892.68

BIC: 26.7268

Mean Parameters:

[1] 29.0352214 -4.1553878 -0.9452119 0.9969254 0.1066325 -0.1394301

[7] 0.0026802 0.0072015 -0.0008294

Variance Parameters:
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Figure 7: CD4 cell data. ACD model fits based on the triple poly(8,1,3). Fitted curves of
the mean against time (top), the log innovation variance against time (left) and the moving
average coefficient against lag (right): - - - - - -, 95% confidence intervals.

[1] 3.64089 0.03252

Angle Parameters:

[1] 1.06980 0.05357

Similarly, model fitting can be checked by plot the fitted curves using

R> bootcurve(fit6, nboot = 1000)

and from Figure 8, we observe the monotone increasing relationship of fitted log variance with
the time, and fitted angles with the time lag.

We also compared the MCD, ACD and HPC based joint mean-covariance models on the
CD4+ cell data in Table 2. We find that HPC-based model proves better model fitting in
most cases with a larger value in log likelihood and smaller BIC when compared to MCD and
ACD based models at the cost of a much longer execution time, ACD based model slightly
outperforms compared to MCD, and MCD based model again provides the most time-efficient
model fitting.
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Figure 8: CD4 cell data. HPC model fits based on the triple poly(8,1,1). Fitted curves of
the mean against time (top), the log variance against time (left) and the angle against lag
(right): - - - - - -, 95% confidence intervals.

4. Conclusion

In this article, we have illustrated the capabilities of package jmcm for the joint mean-
covariance modelling of both balanced and unbalanced longitudinal data using three pop-
ular covariance and correlation structure modelling approaches. In particular, we provide:
functions for estimation of MCD, ACD and HPC based joint mean-covariance models, de-
vices for displaying regressograms and fitted model curves. By using these models, the esti-
mated covariance and correlation are guaranteed to be positive (semi)definite and the esti-
mation of high-dimensional covariance and correlation matrix is reduced to solving a series
of regression problems. The likelihood-based estimation procedure permits extensions such
as regularization-based model selection, so that the package can be compared with other
likelihood-based R packages.

However, the package is currently limited to handle longitudinal data with a multivariate
Gaussian distribution. It is worthwhile to develop methods further that are robust with non-
Normally distributed data by introducing the Cholesky-based covariance structure modelling
methods to GEE model and/or Gaussian copula model. We plan to update the package
jmcm on a regular basis with new statistical procedures available for joint mean-covariance
modelling approach.



Jianxin Pan, Yi Pan 25

(p,d,q) No. of MCD ACD HPC
parms. lmax BIC Time lmax BIC Time lmax BIC Time

(8,1,1) 13 -5008.753 27.3560 2.11 -4928.924 26.9233 37.28 -4892.680 26.7268 134.64
(8,1,3) 15 -4979.193 27.2278 2.80 -4927.492 26.9476 39.72 -4890.396 26.7465 112.79
(6,1,1) 11 -5018.470 27.3766 1.88 -4937.227 26.9362 25.06 -4902.175 26.7463 79.32
(3,3,3) 12 -5006.176 27.3260 3.22 -4951.234 27.0282 40.57 -4919.522 26.8563 120.88
(4,4,3) 14 -4995.509 27.3002 3.36 -4934.265 26.9682 56.34 -4902.100 26.7939 177.25
(8,3,3) 17 -4974.683 27.2354 3.31 -4919.700 26.9374 58.68 -4886.337 26.7565 155.85
(8,7,4) 22 -4971.712 27.2994 7.16 -4914.223 26.9878 270.25 -4881.736 26.8117 763.83
(9,1,3) 16 -4974.104 27.2162 3.00 -4918.684 26.9158 63.18 -4881.266 26.7130 120.09
(9,4,3) 19 -4970.209 27.2432 5.06 -4909.363 26.9134 66.25 -4875.877 26.7319 212.51
(9,8,5) 25 -4962.655 27.2983 7.70 -4901.841 26.9687 221.10 -4871.577 26.8047 662.64

Table 2: CD4 cell data. Comparison of MCD, ACD and HPC with different triples.
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