
Package ‘ivmte’
July 22, 2025

Title Instrumental Variables: Extrapolation by Marginal Treatment
Effects

Version 1.4.0

Maintainer Joshua Shea <jkcshea@uchicago.edu>

Description The marginal treatment effect was introduced by Heckman and
Vytlacil (2005) <doi:10.1111/j.1468-0262.2005.00594.x> to provide a
choice-theoretic interpretation to instrumental variables models that
maintain the monotonicity condition of Imbens and Angrist (1994)
<doi:10.2307/2951620>. This interpretation can be used to extrapolate from
the compliers to estimate treatment effects for other subpopulations. This
package provides a flexible set of methods for conducting this
extrapolation. It allows for parametric or nonparametric sieve estimation,
and allows the user to maintain shape restrictions such as monotonicity. The
package operates in the general framework developed by Mogstad, Santos and
Torgovitsky (2018) <doi:10.3982/ECTA15463>, and accommodates either point
identification or partial identification (bounds). In the partially
identified case, bounds are computed using either linear programming
or quadratically constrained quadratic programming. Support for
four solvers is provided. Gurobi and the Gurobi R API
can be obtained from <http://www.gurobi.com/index>. CPLEX can be obtained
from <https://www.ibm.com/analytics/cplex-optimizer>. CPLEX R APIs 'Rcplex'
and 'cplexAPI' are available from CRAN. MOSEK and the MOSEK R API can be
obtained from <https://www.mosek.com/>. The lp_solve library is freely
available from <http://lpsolve.sourceforge.net/5.5/>, and is included when
installing its API 'lpSolveAPI', which is available from CRAN.

Depends R (>= 3.6.0)

Imports Formula, methods, stats, utils

Suggests gurobi (>= 8.1-0), slam (>= 0.1-42), cplexAPI (>= 1.3.3),
lpSolveAPI (>= 5.5.2.0-17), Rmosek (>= 9.2.38), testthat (>=
2.0.0), data.table (>= 1.12.0), splines2 (>= 0.2.8),
future.apply (>= 1.6.0), future (>= 1.18.0), Matrix, knitr,
rmarkdown, pander, AER, lsei, ggplot2, gridExtra

License GPL-2 | GPL-3

Encoding UTF-8

1

https://doi.org/10.1111/j.1468-0262.2005.00594.x
https://doi.org/10.2307/2951620
https://doi.org/10.3982/ECTA15463
http://www.gurobi.com/index
https://www.ibm.com/analytics/cplex-optimizer
https://www.mosek.com/
http://lpsolve.sourceforge.net/5.5/

2 Contents

LazyData true

RoxygenNote 7.1.1

VignetteBuilder knitr

NeedsCompilation no

Author Alexander Torgovitsky [aut],
Joshua Shea [aut, cre]

Repository CRAN

Date/Publication 2021-09-17 12:20:07 UTC

Contents
AE . 5
altDefSplinesBasis . 5
argstring . 6
audit . 6
bound . 13
boundCI . 16
boundPvalue . 17
bX . 18
checkU . 18
classFormula . 19
classList . 19
combinemonobound . 20
constructConstant . 20
criterionMin . 21
design . 23
extractcols . 24
fmtResult . 25
funEval . 25
genBasisSplines . 26
genboundA . 26
gendist1 . 28
gendist1e . 29
gendist2 . 29
gendist3 . 30
gendist3e . 30
gendist4 . 31
gendist5e . 32
gendist6e . 32
gendistBasic . 33
gendistCovariates . 33
gendistMosquito . 34
gendistSplines . 34
genej . 35
genGamma . 35
genGammaSplines . 37

Contents 3

genGammaSplinesTT . 38
genGammaTT . 39
gengrid . 39
genmonoA . 40
genmonoboundA . 42
genSSet . 44
genTarget . 47
genWeight . 49
getXZ . 50
gmmEstimate . 51
interactSplines . 53
isfunctionstring . 54
ivEstimate . 55
ivmte . 56
ivmteEstimate . 64
ivmteSimData . 71
l . 72
lpSetup . 72
lpSetupBound . 75
lpSetupCriterion . 76
lpSetupCriterionBoot . 77
lpSetupEqualCoef . 78
lpSetupInfeasible . 78
lpSetupSolver . 79
magnitude . 79
matrixTriplets . 80
mInt . 80
modcall . 81
momentMatrix . 81
monoIntegral . 82
negationCheck . 82
olsj . 84
optionsCplexAPI . 84
optionsCplexAPISingle . 85
optionsCplexAPITol . 86
optionsGurobi . 86
optionsLpSolveAPI . 87
optionsRmosek . 87
parenthBoolean . 88
permute . 88
permuteN . 89
piv . 89
polyparse . 90
polyProduct . 91
popmean . 92
print.ivmte . 92
propensity . 93
qpSetup . 94

4 Contents

qpSetupBound . 94
qpSetupCriterion . 95
qpSetupInfeasible . 96
removeSplines . 96
rescaleX . 97
restring . 98
rhalton . 98
runCplexAPI . 99
runGurobi . 100
runLpSolveAPI . 100
runMosek . 101
selectViolations . 101
sOls1d . 103
sOls2d . 103
sOls3 . 104
sOlsSplines . 104
splineInt . 105
splinesBasis . 105
splineUpdate . 106
statusString . 107
sTsls . 107
sTslsSplines . 108
subsetclean . 108
summary.ivmte . 109
sWald . 109
symat . 110
tsls . 110
unstring . 111
uSplineBasis . 111
uSplineInt . 112
vecextract . 114
wate1 . 114
watt1 . 115
wAttSplines . 115
watu1 . 116
weights . 116
wgenlate1 . 117
whichforlist . 117
wlate1 . 118

Index 119

AE 5

AE Angrist Evans Data

Description

Angrist Evans Data

Usage

AE

Format

A data frame with 209,133 rows and 8 columns.

worked indicator for whether worked in the previous year

hours weekly hours worked in the previous year

morekids indicator for having more than two children vs. exactly two children.

samesex indicator for the first two children having the same sex (male-male or female-female)

yob the year the woman was born

black indicator that mother is Black

hisp indicator that mother is Hispanic

other indicator that mother is neither Black nor Hispanic

Source

Derived from Angrist and Evans (1998, The American Economic Review).

altDefSplinesBasis (Alternative) Defining single splines basis functions, with interactions

Description

This function returns a numerically integrable function corresponding to a single splines basis func-
tion. It was not implemented because it was slower than using the function from the splines2
package.

Usage

altDefSplinesBasis(splineslist, j, l, v = 1)

6 audit

Arguments

splineslist a list of splines commands and names of variables that interact with the splines.
This is generated using the command removeSplines.

j the index for the spline for which to generate the basis functions.
l the index for the basis.
v a constant that multiplies the spline basis.

Value

a vectorized function corresponding to a single splines basis function that can be numerically inte-
grated.

argstring Auxiliary function: extract arguments from function in string form

Description

Auxiliary function to extract arguments from a function that is in string form.

Usage

argstring(string)

Arguments

string the function in string form.

Value

string of arguments.

audit Audit procedure

Description

This is the wrapper for running the entire audit procedure. This function sets up the LP/QCQP
problem of minimizing criterion. for the set of IV-like estimands, while satisfying boundedness and
monotonicity constraints declared by the user. Rather than enforce that boundedness and mono-
tonicity hold across the entire support of covariates and unobservables, this procedure enforces the
conditions over a grid of points. This grid corresponds to the set of values the covariates can take,
and a set of values of the unobservable term. The size of this grid is specified by the user in the
function arguments. The procedure first estimates the bounds while imposing the shape constraints
for an initial subset of points in the grid. The procedure then goes on to check (’audit’) whether the
constraints are satisfied over the entire grid. Any point where either the boundedness or monotonic-
ity constraints are violated are incorporated into the initial grid, and the process is repeated until the
audit no longer finds any violations, or until some maximum number of iterations is reached.

audit 7

Usage

audit(
data,
uname,
m0,
m1,
pm0,
pm1,
splinesobj,
vars_mtr,
terms_mtr0,
terms_mtr1,
vars_data,
initgrid.nu = 20,
initgrid.nx = 20,
audit.nx = 2500,
audit.nu = 25,
audit.add = 100,
audit.max = 25,
audit.tol,
audit.grid = NULL,
m1.ub,
m0.ub,
m1.lb,
m0.lb,
mte.ub,
mte.lb,
m1.ub.default = FALSE,
m0.ub.default = FALSE,
mte.ub.default = FALSE,
m1.lb.default = FALSE,
m0.lb.default = FALSE,
mte.lb.default = FALSE,
m0.dec = FALSE,
m0.inc = FALSE,
m1.dec = FALSE,
m1.inc = FALSE,
mte.dec = FALSE,
mte.inc = FALSE,
equal.coef0,
equal.coef1,
sset,
gstar0,
gstar1,
orig.sset = NULL,
orig.criterion = NULL,
criterion.tol = 1e-04,
solver,

8 audit

solver.options,
solver.presolve,
solver.options.criterion,
solver.options.bounds,
rescale = TRUE,
smallreturnlist = FALSE,
noisy = TRUE,
debug = FALSE

)

Arguments

data data.frame or data.table used to estimate the treatment effects.

uname variable name for the unobservable used in declaring the MTRs. The name can
be provided with or without quotation marks.

m0 one-sided formula for the marginal treatment response function for the control
group. Splines may also be incorporated using the expression uSpline, e.g.
uSpline(degree = 2, knots = c(0.4, 0.8), intercept = TRUE). The intercept
argument may be omitted, and is set to TRUE by default.

m1 one-sided formula for the marginal treatment response function for the treated
group. See m0 for details.

pm0 A list of the monomials in the MTR for the control group.

pm1 A list of the monomials in the MTR for the treated group.

splinesobj list of spline components in the MTRs for treated and control groups. Spline
terms are extracted using removeSplines. This object is supposed to be a dic-
tionary of splines, containing the original calls of each spline in the MTRs, their
specifications, and the index used for naming each basis spline.

vars_mtr character, vector of variables entering into m0 and m1.

terms_mtr0 character, vector of terms entering into m0.

terms_mtr1 character, vector of terms entering into m1.

vars_data character, vector of variables that can be found in the data.

initgrid.nu integer determining the number of points in the open interval (0, 1) drawn from a
Halton sequence. The end points 0 and 1 are additionally included. These points
are always a subset of the points defining the audit grid (see audit.nu). These
points are used to form the initial constraint grid for imposing shape restrictions
on the u components of the MTRs.

initgrid.nx integer determining the number of points of the covariates used to form the
initial constraint grid for imposing shape restrictions on the MTRs.

audit.nx integer determining the number of points on the covariates space to audit in each
iteration of the audit procedure.

audit.nu integer determining the number of points in the open interval (0, 1) drawn from
a Halton sequence. The end points 0 and 1 are additionally included. These
points are used to audit whether the shape restrictions on the u components of
the MTRs are satisfied. The initial grid used to impose the shape constraints in
the LP/QCQP problem are constructed from a subset of these points.

audit 9

audit.add maximum number of points to add to the initial constraint grid for imposing
each kind of shape constraint. For example, if there are 5 different kinds of
shape constraints, there can be at most audit.add * 5 additional points added
to the constraint grid.

audit.max maximum number of iterations in the audit procedure.

audit.tol feasibility tolerance when performing the audit. By default to set to be 1e-
06, which is equal to the default feasibility tolerances of Gurobi (solver =
"gurobi"), CPLEX (solver = "cplexapi"), and Rmosek (solver = "rmosek").
This parameter should only be changed if the feasibility tolerance of the solver
is changed, or if numerical issues result in discrepancies between the solver’s
feasibility check and the audit.

audit.grid list, contains the A matrix used in the audit for the original sample, as well as the
RHS vector used in the audit from the original sample.

m1.ub numeric value for upper bound on MTR for the treated group. By default, this
will be set to the largest value of the observed outcome in the estimation sample.

m0.ub numeric value for upper bound on MTR for the control group. By default, this
will be set to the largest value of the observed outcome in the estimation sample.

m1.lb numeric value for lower bound on MTR for the treated group. By default, this
will be set to the smallest value of the observed outcome in the estimation sam-
ple.

m0.lb numeric value for lower bound on MTR for the control group. By default, this
will be set to the smallest value of the observed outcome in the estimation sam-
ple.

mte.ub numeric value for upper bound on treatment effect parameter of interest.

mte.lb numeric value for lower bound on treatment effect parameter of interest.

m1.ub.default boolean, default set to FALSE. Indicator for whether the value assigned was by
the user, or set by default.

m0.ub.default boolean, default set to FALSE. Indicator for whether the value assigned was by
the user, or set by default.

mte.ub.default boolean, default set to FALSE. Indicator for whether the value assigned was by
the user, or set by default.

m1.lb.default boolean, default set to FALSE. Indicator for whether the value assigned was by
the user, or set by default.

m0.lb.default boolean, default set to FALSE. Indicator for whether the value assigned was by
the user, or set by default.

mte.lb.default boolean, default set to FALSE. Indicator for whether the value assigned was by
the user, or set by default.

m0.dec logical, set to FALSE by default. Set equal to TRUE if the MTR for the control
group should be weakly monotone decreasing.

m0.inc logical, set to FALSE by default. Set equal to TRUE if the MTR for the control
group should be weakly monotone increasing.

m1.dec logical, set to FALSE by default. Set equal to TRUE if the MTR for the treated
group should be weakly monotone decreasing.

10 audit

m1.inc logical, set to FALSE by default. Set equal to TRUE if the MTR for the treated
group should be weakly monotone increasing.

mte.dec logical, set to FALSE by default. Set equal to TRUE if the MTE should be weakly
monotone decreasing.

mte.inc logical, set to FALSE by default. Set equal to TRUE if the MTE should be weakly
monotone increasing.

equal.coef0 character, a vector containing all the terms in m0 that should have the same co-
efficients in m1. The order of the variables must match those of equal.coef1,
which contains all the corresponding terms in m1. The reason the terms are
entered separately for m0 and m1 is because the spline terms may be named dif-
ferently across treatment and control groups.

equal.coef1 character, a vector containing all the terms in m1 that should have the same co-
efficients in m0. See the description for equal.coef0 for more details.

sset a list containing the point estimates and gamma moments for each IV-like spec-
ification.

gstar0 set of expectations for each terms of the MTR for the control group, correspond-
ing to the target parameter.

gstar1 set of expectations for each terms of the MTR for the control group, correspond-
ing to the target parameter.

orig.sset list, only used for bootstraps. The list contains the gamma moments for each
element in the S-set, as well as the IV-like coefficients.

orig.criterion numeric, only used for bootstraps. The scalar corresponds to the minimum ob-
servational equivalence criterion from the original sample.

criterion.tol tolerance for the criterion function, and is set to 1e-4 by default. The criterion
measures how well the IV-like moments/conditional means are matched using
the l1-norm. Statistical noise may prohibit the theoretical LP/QCQP problem
from being feasible. That is, there may not exist a set of MTR coefficients that
are able to match all the specified moments. The function thus first estimates
the minimum criterion, which is reported in the output under the name ’mini-
mum criterion’, with a criterion of 0 meaning that all moments were able to be
matched. The function then relaxes the constraints by tolerating a criterion up
to minimum criterion * (1 + criterion.tol). Set criterion.tol to a value
greater than 0 to allow for more conservative bounds.

solver character, name of the programming package in R used to obtain the bounds on
the treatment effect. The function supports 'gurobi', 'cplexapi', rmosek,
'lpsolveapi'. The name of the solver should be provided with quotation
marks.

solver.options list, each item of the list should correspond to an option specific to the solver
selected.

solver.presolve

boolean, default set to TRUE. Set this parameter to FALSE if presolve should be
turned off for the LP/QCQP problems.

solver.options.criterion

list, each item of the list should correspond to an option specific to the solver
selected. These options are specific for finding the minimum criterion.

audit 11

solver.options.bounds

list, each item of the list should correspond to an option specific to the solver
selected. These options are specific for finding the bounds.

rescale boolean, set to TRUE if the MTR components should be rescaled to improve
stability in the LP/QCQP optimization.

smallreturnlist

boolean, default set to FALSE. Set to TRUE to exclude large intermediary compo-
nents (i.e. propensity score model, LP/QCQP model, bootstrap iterations) from
being included in the return list.

noisy boolean, default set to TRUE. If TRUE, then messages are provided throughout
the estimation procedure. Set to FALSE to suppress all messages, e.g. when
performing the bootstrap.

debug boolean, indicates whether or not the function should provide output when ob-
taining bounds. The option is only applied when solver = 'gurobi' or solver
= 'rmosek'. The output provided is the same as what the Gurobi API would
send to the console.

Value

a list. Included in the list are estimates of the treatment effect bounds; the minimum violation of
observational equivalence of the set of IV-like estimands; the list of matrices and vectors defining
the LP/QCQP problem; the points used to generate the audit grid, and the points where the shape
constraints were violated.

Examples

dtm <- ivmte:::gendistMosquito()

Declare empty list to be updated (in the event multiple IV like
specifications are provided
sSet <- list()

Declare MTR formulas
formula0 = ~ 1 + u
formula1 = ~ 1 + u

Construct object that separates out non-spline components of MTR
formulas from the spline components. The MTR functions are
obtained from this object by the function 'genSSet'
splinesList = list(removeSplines(formula0), removeSplines(formula1))

If splines are interacted with other variables, the
'interactSplines' should be used.
splinesList <- interactSplines(splinesobj = splinesList,
m0 = formula0,
m1 = formula1,
data = data,
uname = 'u')

Construct MTR polynomials

12 audit

polynomials0 <- polyparse(formula = formula0,
data = dtm,
uname = u,
as.function = FALSE)

polynomials1 <- polyparse(formula = formula1,
data = dtm,
uname = u,
as.function = FALSE)

Generate propensity score model
propensityObj <- propensity(formula = d ~ z,

data = dtm,
link = "linear")

Generate IV estimates
ivEstimates <- ivEstimate(formula = ey ~ d | z,

data = dtm,
components = l(intercept, d),
treat = d,
list = FALSE)

Generate target gamma moments
targetGamma <- genTarget(treat = "d",

m0 = ~ 1 + u,
m1 = ~ 1 + u,
target = "atu",
data = dtm,
splinesobj = splinesList,
pmodobj = propensityObj,
pm0 = polynomials0,
pm1 = polynomials1)

Construct S-set, which contains the coefficients and weights
corresponding to various IV-like estimands
sSet <- genSSet(data = dtm,

sset = sSet,
sest = ivEstimates,
splinesobj = splinesList,
pmodobj = propensityObj$phat,
pm0 = polynomials0,
pm1 = polynomials1,
ncomponents = 2,
scount = 1,
yvar = "ey",
dvar = "d",
means = TRUE)

Perform audit procedure and return bounds
audit(data = dtm,

uname = u,
m0 = formula0,
m1 = formula1,

bound 13

pm0 = polynomials0,
pm1 = polynomials1,
splinesobj = splinesList,
vars_data = colnames(dtm),
vars_mtr = "u",
terms_mtr0 = "u",
terms_mtr1 = "u",
sset = sSet$sset,
gstar0 = targetGamma$gstar0,
gstar1 = targetGamma$gstar1,
m0.inc = TRUE,
m1.dec = TRUE,
m0.lb = 0.2,
m1.ub = 0.8,
audit.max = 5,
solver = "lpSolveAPI")

bound Obtaining TE bounds

Description

This function estimates the bounds on the target treatment effect. The LP model must be passed as
an environment variable, under the entry $model. See lpSetup.

Usage

bound(
env,
sset,
solver,
solver.options,
noisy = FALSE,
smallreturnlist = FALSE,
rescale = FALSE,
debug = FALSE

)

Arguments

env environment containing the matrices defining the LP problem.

sset a list containing the point estimates and gamma components associated with
each element in the S-set. This object is only used to determine the names of
terms. If it is no submitted, then no names are provided to the solution vector.

solver string, name of the package used to solve the LP problem.

solver.options list, each item of the list should correspond to an option specific to the LP solver
selected.

14 bound

noisy boolean, set to TRUE if optimization results should be displayed.
smallreturnlist

boolean, set to TRUE if the LP model should not be returned.

rescale boolean, set to TRUE if the MTR components should be rescaled to improve
stability in the LP/QP/QCP optimization.

debug boolean, indicates whether or not the function should provide output when ob-
taining bounds. The option is only applied when solver = 'gurobi' or solver
= 'rmosek'. The output provided is the same as what the Gurobi API would
send to the console.

Value

a list containing the bounds on the treatment effect; the coefficients on each term in the MTR
associated with the upper and lower bounds, for both counterfactuals; the optimization status to the
maximization and minimization problems; the LP problem that the optimizer solved.

Examples

dtm <- ivmte:::gendistMosquito()

Declare empty list to be updated (in the event multiple IV like
specifications are provided
sSet <- list()

Declare MTR formulas
formula0 = ~ 1 + u
formula1 = ~ 1 + u

Construct object that separates out non-spline components of MTR
formulas from the spline components. The MTR functions are
obtained from this object by the function 'genSSet'.
splinesList = list(removeSplines(formula0), removeSplines(formula1))

Construct MTR polynomials
polynomials0 <- polyparse(formula = formula0,

data = dtm,
uname = u,
as.function = FALSE)

polynomials1 <- polyparse(formula = formula1,
data = dtm,
uname = u,
as.function = FALSE)

Generate propensity score model
propensityObj <- propensity(formula = d ~ z,

data = dtm,
link = "linear")

Generate IV estimates
ivEstimates <- ivEstimate(formula = ey ~ d | z,

data = dtm,

bound 15

components = l(intercept, d),
treat = d,
list = FALSE)

Generate target gamma moments
targetGamma <- genTarget(treat = "d",

m0 = ~ 1 + u,
m1 = ~ 1 + u,
target = "atu",
data = dtm,
splinesobj = splinesList,
pmodobj = propensityObj,
pm0 = polynomials0,
pm1 = polynomials1)

Construct S-set. which contains the coefficients and weights
corresponding to various IV-like estimands
sSet <- genSSet(data = dtm,

sset = sSet,
sest = ivEstimates,
splinesobj = splinesList,
pmodobj = propensityObj$phat,
pm0 = polynomials0,
pm1 = polynomials1,
ncomponents = 2,
scount = 1,
yvar = "ey",
dvar = "d",
means = TRUE)

Only the entry $sset is required
sSet <- sSet$sset

Define additional upper- and lower-bound constraints for the LP
problem
A <- matrix(0, nrow = 22, ncol = 4)
A <- cbind(A, rbind(cbind(1, seq(0, 1, 0.1)),

matrix(0, nrow = 11, ncol = 2)))
A <- cbind(A, rbind(matrix(0, nrow = 11, ncol = 2),

cbind(1, seq(0, 1, 0.1))))
sense <- c(rep(">", 11), rep("<", 11))
rhs <- c(rep(0.2, 11), rep(0.8, 11))

Construct LP object to be interpreted and solved by
lpSolveAPI. Note that an environment has to be created for the LP
object. The matrices defining the shape restrictions must be stored
as a list under the entry \code{$mbobj} in the environment.
modelEnv <- new.env()
modelEnv$mbobj <- list(mbA = A,

mbs = sense,
mbrhs = rhs)

Convert the matrices defining the shape constraints into a format
that is suitable for the LP solver.
lpSetup(env = modelEnv,

16 boundCI

sset = sSet,
solver = "lpsolveapi")

Setup LP model so that it is solving for the bounds.
lpSetupBound(env = modelEnv,

g0 = targetGamma$gstar0,
g1 = targetGamma$gstar1,
sset = sSet,
criterion.tol = 0,
criterion.min = 0,
solver = "lpsolveapi")

Declare any LP solver options as a list.
lpOptions <- optionsLpSolveAPI(list(epslevel = "tight"))
Obtain the bounds.
bounds <- bound(env = modelEnv,

sset = sSet,
solver = "lpsolveapi",
solver.options = lpOptions)

cat("The bounds are [", bounds$min, ",", bounds$max, "].\n")

boundCI Construct confidence intervals for treatment effects under partial iden-
tification

Description

This function constructs the forward and backward confidence intervals for the treatment effect
under partial identification.

Usage

boundCI(bounds, bounds.resamples, n, m, levels, type)

Arguments

bounds vector, bounds of the treatment effects under partial identification.
bounds.resamples

matrix, stacked bounds of the treatment effects under partial identification. Each
row corresponds to a subset resampled from the original data set.

n integer, size of original data set.

m integer, size of resampled data sets.

levels vector, real numbers between 0 and 1. Values correspond to the level of the
confidence intervals constructed via bootstrap.

type character. Set to ’forward’ to construct the forward confidence interval for the
treatment effect bounds. Set to ’backward’ to construct the backward confidence
interval for the treatment effect bounds. Set to ’both’ to construct both types of
confidence intervals.

boundPvalue 17

Value

if type is ’forward’ or ’backward’, then the corresponding type of confidence interval for each level
is returned. The output is in the form of a matrix, with each row corresponding to a level. If type is
’both’, then a list is returned. One element of the list is the matrix of backward confidence intervals,
and the other element of the list is the matrix of forward confidence intervals.

boundPvalue Construct p-values for treatment effects under partial identification

Description

This function estimates the p-value for the treatment effect under partial identification. p-values
corresponding to forward and backward confidence intervals can be returned.

Usage

boundPvalue(bounds, bounds.resamples, n, m, type)

Arguments

bounds vector, bounds of the treatment effects under partial identification.

bounds.resamples

matrix, stacked bounds of the treatment effects under partial identification. Each
row corresponds to a subset resampled from the original data set.

n integer, size of original data set.

m integer, size of resampled data sets.

type character. Set to ’forward’ to construct the forward confidence interval for the
treatment effect bounds. Set to ’backward’ to construct the backward confidence
interval for the treatment effect bounds. Set to ’both’ to construct both types of
confidence intervals.

Value

If type is ’forward’ or ’backward’, a scalar p-value corresponding to the type of confidence interval
is returned. If type is ’both’, a vector of p-values corresponding to the forward and backward
confidence intervals is returned.

18 checkU

bX Spline basis function of order 1

Description

This function is the splines basis function of order 1. This function was coded in accordance to Carl
de Boor’s set of notes on splines, "B(asic)-Spline Basics".

Usage

bX(x, knots, i)

Arguments

x vector, the values at which to evaluate the basis function.

knots vector, the internal knots.

i integer, the basis component to be evaluated.

Value

scalar.

checkU Check polynomial form of the u-term

Description

This function ensures that the unobservable term enters into the MTR in the correct manner. That
is, it enters as a polynomial.

Usage

checkU(formula, uname)

Arguments

formula a formula.

uname name of the unobserved variable.

Value

If the unobservable term is entered correctly into the formula, then NULL is returned. Otherwise, the
vector of incorrect terms is returned.

classFormula 19

classFormula Auxiliary function: test if object is a formula

Description

Auxiliary function to test if an object is a formula. Warnings are suppressed.

Usage

classFormula(obj)

Arguments

obj the object to be checked.

Value

boolean expression.

classList Auxiliary function: test if object is a list

Description

Auxiliary function to test if an object is a list. Warnings are suppressed.

Usage

classList(obj)

Arguments

obj the object to be checked.

Value

boolean expression.

20 constructConstant

combinemonobound Combining the boundedness and monotonicity constraint objects

Description

This function simply combines the objects associated with the boundedness constraints and the
monotonicity constraints.

Usage

combinemonobound(bdA, monoA)

Arguments

bdA list containing the constraint matrix, vector of inequalities, and RHS vector as-
sociated with the boundedness constraints.

monoA list containing the constraint matrix, vector on inequalities, and RHS vector as-
sociated with the monotonicity constraints.

Value

a list containing a unified constraint matrix, unified vector of inequalities, and unified RHS vector
for the boundedness and monotonicity constraints of an LP/QCQP problem.

constructConstant Construct constant function

Description

This function constructs another function that returns a constant. It is used for constructing weight/knot
functions.

Usage

constructConstant(x)

Arguments

x scalar, the constant the function evaluates to.

Value

a function.

criterionMin 21

criterionMin Minimizing violation of observational equivalence

Description

Given a set of IV-like estimates and the set of matrices/vectors defining an LP problem, this function
minimizes the violation of observational equivalence under the L1 norm. The LP model must be
passed as an environment variable, under the entry $model. See lpSetup.

Usage

criterionMin(env, sset, solver, solver.options, rescale = FALSE, debug = FALSE)

Arguments

env environment containing the matrices defining the LP problem.

sset A list of IV-like estimates and the corresponding gamma terms.

solver string, name of the package used to solve the LP problem.

solver.options list, each item of the list should correspond to an option specific to the LP solver
selected.

rescale boolean, set to TRUE if the MTR components should be rescaled to improve
stability in the LP/QP/QCP optimization.

debug boolean, indicates whether or not the function should provide output when ob-
taining bounds. The option is only applied when solver = 'gurobi' or solver
= 'rmosek'. The output provided is the same as what the Gurobi API would
send to the console.

Value

A list including the minimum violation of observational equivalence, the solution to the LP problem,
and the status of the solution.

Examples

dtm <- ivmte:::gendistMosquito()

Declare empty list to be updated (in the event multiple IV like
specifications are provided
sSet <- list()

Declare MTR formulas
formula0 = ~ 1 + u
formula1 = ~ 1 + u

Construct object that separates out non-spline components of MTR
formulas from the spline components. The MTR functions are
obtained from this object by the function 'genSSet'.

22 criterionMin

splinesList = list(removeSplines(formula0), removeSplines(formula1))

Construct MTR polynomials
polynomials0 <- polyparse(formula = formula0,

data = dtm,
uname = u,
as.function = FALSE)

polynomials1 <- polyparse(formula = formula1,
data = dtm,
uname = u,
as.function = FALSE)

Generate propensity score model
propensityObj <- propensity(formula = d ~ z,

data = dtm,
link = "linear")

Generate IV estimates
ivEstimates <- ivEstimate(formula = ey ~ d | z,

data = dtm,
components = l(intercept, d),
treat = d,
list = FALSE)

Generate target gamma moments
targetGamma <- genTarget(treat = "d",

m0 = ~ 1 + u,
m1 = ~ 1 + u,
target = "atu",
data = dtm,
splinesobj = splinesList,
pmodobj = propensityObj,
pm0 = polynomials0,
pm1 = polynomials1)

Construct S-set. which contains the coefficients and weights
corresponding to various IV-like estimands
sSet <- genSSet(data = dtm,

sset = sSet,
sest = ivEstimates,
splinesobj = splinesList,
pmodobj = propensityObj$phat,
pm0 = polynomials0,
pm1 = polynomials1,
ncomponents = 2,
scount = 1,
yvar = "ey",
dvar = "d",
means = TRUE)

Only the entry $sset is required
sSet <- sSet$sset

Define additional upper- and lower-bound constraints for the LP

design 23

problem. The code below imposes a lower bound of 0.2 and upper
bound of 0.8 on the MTRs.
A <- matrix(0, nrow = 22, ncol = 4)
A <- cbind(A, rbind(cbind(1, seq(0, 1, 0.1)),

matrix(0, nrow = 11, ncol = 2)))
A <- cbind(A, rbind(matrix(0, nrow = 11, ncol = 2),

cbind(1, seq(0, 1, 0.1))))
sense <- c(rep(">", 11), rep("<", 11))
rhs <- c(rep(0.2, 11), rep(0.8, 11))

Construct LP object to be interpreted and solved by
lpSolveAPI. Note that an environment has to be created for the LP
object. The matrices defining the shape restrictions must be stored
as a list under the entry \code{$mbobj} in the environment.
modelEnv <- new.env()
modelEnv$mbobj <- list(mbA = A,

mbs = sense,
mbrhs = rhs)

Convert the matrices defining the shape constraints into a format
that is suitable for the LP solver.
lpSetup(env = modelEnv,

sset = sSet,
solver = "lpsolveapi")

Setup LP model so that it will minimize the criterion
lpSetupCriterion(env = modelEnv,

sset = sSet)
Declare any LP solver options as a list.
lpOptions <- optionsLpSolveAPI(list(epslevel = "tight"))
Minimize the criterion.
obseqMin <- criterionMin(env = modelEnv,

sset = sSet,
solver = "lpsolveapi",
solver.options = lpOptions)

obseqMin
cat("The minimum criterion is", obseqMin$obj, "\n")

design Generating design matrices

Description

This function generates the design matrix given an IV specification.

Usage

design(formula, data, subset, treat, orig.names)

24 extractcols

Arguments

formula Formula with which to generate the design matrix.

data data.frame with which to generate the design matrix.

subset Condition to select subset of data.

treat The name of the treatment variable. This should only be passed when construct-
ing OLS weights.

orig.names character vector of the terms in the final design matrix. This is required when the
user declares an IV-like formula where the treatment variable is passed into the
factor function. Since the treatment variable has to be fixed to 0 or 1, the design
matrix will be unable to construct the contrasts. The argument orig.names is
a vector of the terms in the IV-like specification prior to fixing the treatment
variable.

Value

Three matrices are returned: one for the outcome variable, Y; one for the second stage covariates,
X; and one for the first stage covariates, Z.

Examples

dtm <- ivmte:::gendistMosquito()
design(formula = ey ~ d | z,

data = dtm,
subset = z %in% c(1, 2))

extractcols Auxiliary function: extracting columns by component names

Description

Auxiliary function to extract columns from a matrix based on column names.

Usage

extractcols(M, components)

Arguments

M The matrix to extract from.

components The vector of variable names.

fmtResult 25

fmtResult Format result for display

Description

This function simply takes a number and formats it for being displayed. Numbers less than 1 in
absolute value are rounded to 6 significant figure. Numbers larger than

Usage

fmtResult(x)

Arguments

x The scalar to be formated

Value

A scalar.

funEval Evaluate a particular function

Description

This function evaluates a single function in a list of functions.

Usage

funEval(fun, values = NULL, argnames = NULL)

Arguments

fun the function to be evaluated.

values the values of the arguments to the function. Ordering is assumed to be the same
as in argnames.

argnames the argument names corresponding to values.

Value

the output of the function evaluated.

26 genboundA

genBasisSplines Generate basis matrix for splines

Description

The user can declare that the unobservable enters into the MTRs in the form of splines. This
function generates the basis matrix for the splines. The specifications for the spline must be passed
as the $splineslist object generated by removeSplines. Note that this function does not account
for any interactions between the splines and the covariates. Interactions can be added simply by
sweeping the basis matrix by a vector for the values of the covariates.

Usage

genBasisSplines(splines, x, d = NULL)

Arguments

splines a list. The name of each element should be the spline command, and each ele-
ment should be a vector. Each entry of the vector is a covariate that the spline
should be interacted with. Such an object can be generated by removeSplines,
and accessed using $splineslist.

x the values of the unobservable at which the splines basis should be evaluated.

d either 0 or 1, indicating the treatment status.

Value

a matrix. The number of rows is equal to the length of x, and the number of columns depends on
the specifications of the spline. The name of each column takes the following form: "u[d]S[j].[b]",
where "u" and "S" are fixed and stand for "unobservable" and "Splines" respectively. "[d]" will be
either 0 or 1, depending on the treatment status. "[j]" will be an integer indicating which element
of the list splines the column pertains to. "[b]" will be an integer reflect which component of the
basis the column pertains to.

genboundA Generating the constraint matrix

Description

This function generates the component of the constraint matrix in the LP/QCQP problem pertaining
to the lower and upper bounds on the MTRs and MTEs. These bounds are declared by the user.

genboundA 27

Usage

genboundA(
A0,
A1,
sset,
gridobj,
uname,
m0.lb,
m0.ub,
m1.lb,
m1.ub,
mte.lb,
mte.ub,
solution.m0.min = NULL,
solution.m1.min = NULL,
solution.m0.max = NULL,
solution.m1.max = NULL,
audit.tol,
direct = FALSE

)

Arguments

A0 the matrix of values from evaluating the MTR for control observations over the
grid generated to perform the audit. This matrix will be incorporated into the
final constraint matrix for the bounds.

A1 the matrix of values from evaluating the MTR for control observations over the
grid generated to perform the audit. This matrix will be incorporated into the
final constraint matrix for the bounds.

sset a list containing the point estimates and gamma components associated with
each element in the S-set.

gridobj a list containing the grid over which the monotonicity and boundedness condi-
tions are imposed on.

uname name declared by user to represent the unobservable term.
m0.lb scalar, lower bound on MTR for control group.
m0.ub scalar, upper bound on MTR for control group.
m1.lb scalar, lower bound on MTR for treated group.
m1.ub scalar, upper bound on MTR for treated group.
mte.lb scalar, lower bound on MTE.
mte.ub scalar, upper bound on MTE.
solution.m0.min

vector, the coefficients for the MTR for D = 0 corresponding to the lower bound
of the target parameter. If passed, this will initiate checks of shape constraints.

solution.m1.min

vector, the coefficients for the MTR for D = 1 corresponding to the lower bound
of the target parameter. If passed, this will initiate checks of shape constraints.

28 gendist1

solution.m0.max

vector, the coefficients for the MTR for D = 0 corresponding to the upper bound
of the target parameter. If passed, this will initiate checks of shape constraints.

solution.m1.max

vector, the coefficients for the MTR for D = 1 corresponding to the upper bound
of the target parameter. If passed, this will initiate checks of shape constraints.

audit.tol feasibility tolerance when performing the audit. By default to set to be equal
1e-06. This parameter should only be changed if the feasibility tolerance of
the solver is changed, or if numerical issues result in discrepancies between the
solver’s feasibility check and the audit.

direct boolean, set to TRUE if the direct MTR regression is used.

Value

a constraint matrix for the LP/QCQP problem, the associated vector of inequalities, and the RHS
vector in the inequality constraint. The objects pertain only to the boundedness constraints declared
by the user.

gendist1 Generate test distribution 1

Description

This function generates a data set for testing purposes. There is a single instrument that takes on
values of 1 or 2, and the distribution of the values for the binary instrument is uniform. The MTRs
are m0 ~ 0 + u and m1 ~ 1 + u. All unobservables u are integrated out.

Usage

gendist1(subN = 5, p1 = 0.4, p2 = 0.6)

Arguments

subN integer, default set to 5. This is the number of individuals possessing each value
of the instrument. So the total number of observations is subN * 2.

p1 the probability of treatment for those with the instrument Z = 1.

p2 the probability of treatment for those with the instrument Z = 2.

Value

a data.frame.

gendist1e 29

gendist1e Generate test distribution 1 with errors

Description

This function generates a data set for testing purposes. There is a single instrument that takes on
values of 1 or 2, and the distribution of the values for the binary instrument is uniform. The MTRs
are m0 ~ 0 + u and m1 ~ 1 + u.

Usage

gendist1e(N = 100, subN = 0.5, p1 = 0.4, p2 = 0.6, v0.sd = 0.5, v1.sd = 0.75)

Arguments

N integer, default set to 100. Total number of observations in the data.
subN , default set to 0.5. This is the probability the agent will have Z = 1.
p1 the probability of treatment for those with the instrument Z = 1.
p2 the probability of treatment for those with the instrument Z = 2.
v0.sd numeric, standard deviation of error term for counterfactual D = 0

v1.sd numeric, standard deviation of error term for counterfactual D = 1

Value

a data.frame.

gendist2 Generate test distribution 2

Description

This function generates a data set for testing purposes. There is a single instrument that takes on
values of 1, 2, or 3, and the distribution of the values for the binary instrument is uniform. The
MTRs are m0 ~ 1 + u and m1 ~ 1 + u. All unobservables u are integrated out.

Usage

gendist2(subN = 5, p1 = 0.4, p2 = 0.6, p3 = 0.8)

Arguments

subN integer, default set to 5. This is the number of individuals possessing each value
of the instrument. So the total number of observations is subN * 2.

p1 the probability of treatment for those with the instrument Z = 1.
p2 the probability of treatment for those with the instrument Z = 2.
p3 the probability of treatment for those with the instrument Z = 3.

30 gendist3e

Value

a data.frame.

gendist3 Generate test distribution 3

Description

This function generates a data set for testing purposes. There is a single instrument that takes on
values of 1 and 2, and the distribution of the values for the binary instrument is uniform. The MTRs
are m0 ~ 1 and m1 ~ 1. All unobservables u are integrated out.

Usage

gendist3(subN = 5, p1 = 0.4, p2 = 0.6)

Arguments

subN integer, default set to 5. This is the number of individuals possessing each value
of the instrument. So the total number of observations is subN * 2.

p1 the probability of treatment for those with the instrument Z = 1.

p2 the probability of treatment for those with the instrument Z = 2.

Value

a data.frame.

gendist3e Generate test distribution 3 with errors

Description

This function generates a data set for testing purposes. There is a single instrument that takes on
values of 1 or 2, and the distribution of the values for the binary instrument is uniform. The MTRs
are m0 ~ 0 + u and m1 ~ 1 + u.

Usage

gendist3e(N = 100, subN = 0.5, p1 = 0.4, p2 = 0.6, v0.sd = 0.5, v1.sd = 0.75)

gendist4 31

Arguments

N integer, default set to 100. Total number of observations in the data.

subN , default set to 0.5. This is the probability the agent will have Z = 1.

p1 the probability of treatment for those with the instrument Z = 1.

p2 the probability of treatment for those with the instrument Z = 2.

v0.sd numeric, standard deviation of error term for counterfactual D = 0

v1.sd numeric, standard deviation of error term for counterfactual D = 1

Value

a data.frame.

gendist4 Generate test distribution 4

Description

This function generates a data set for testing purposes. There is a single instrument that takes on
values of 1, 2, and 3, and the distribution of the values for the binary instrument is uniform. The
MTRs are m0 ~ 1 and m1 ~ 1. All unobservables u are integrated out.

Usage

gendist4(subN = 5, p1 = 0.4, p2 = 0.6, p3 = 0.8)

Arguments

subN integer, default set to 5. This is the number of individuals possessing each value
of the instrument. So the total number of observations is subN * 2.

p1 the probability of treatment for those with the instrument Z = 1.

p2 the probability of treatment for those with the instrument Z = 2.

p3 the probability of treatment for those with the instrument Z = 3.

Value

a data.frame.

32 gendist6e

gendist5e Generate test distribution 5 (has errors and a covariate)

Description

This function generates a data set for testing purposes. There is a single instrument that takes on
values of 1 or 2, and the distribution of the values for the binary instrument is uniform. The MTRs
are both of the form m ~ 1 + x + u.

Usage

gendist5e(N = 100, subN = 0.5, p1 = 0.4, p2 = 0.6, v0.sd = 1, v1.sd = 1.55)

Arguments

N integer, default set to 100. Total number of observations in the data.
subN , default set to 0.5. This is the probability the agent will have Z = 1.
p1 the probability of treatment for those with the instrument Z = 1.
p2 the probability of treatment for those with the instrument Z = 2.
v0.sd numeric, standard deviation of error term for counterfactual D = 0

v1.sd numeric, standard deviation of error term for counterfactual D = 1

Value

a data.frame.

gendist6e Generate test distribution 6 (has errors and a covariate)

Description

This function generates a data set for testing purposes. There is a single instrument that is uniformly
distributed over [0, 1]. The MTRs are both of the form m ~ 1 + x + x:u.

Usage

gendist6e(N = 100, v0.sd = 1, v1.sd = 1.55)

Arguments

N integer, default set to 100. Total number of observations in the data.
v0.sd numeric, standard deviation of error term for counterfactual D = 0

v1.sd numeric, standard deviation of error term for counterfactual D = 1

Value

a data.frame.

gendistBasic 33

gendistBasic Generate basic data set for testing

Description

This code generates population level data to test the estimation function. This is a simpler dataset,
one in which we can more easily estimate a correctly specified model. The data presented below
will have already integrated over the # unobservable terms U, where U | X, Z ~ Unif[0, 1].

Usage

gendistBasic()

Value

a list of two data.frame objects. One is the distribution of the simulated data, the other is the full
simulated data set.

gendistCovariates Generate test data set with covariates

Description

This code generates population level data to test the estimation function. This data includes covari-
ates. The data generated will have already integrated over the unobservable terms U, where U | X,
Z ~ Unif[0, 1].

Usage

gendistCovariates()

Value

a list of two data.frame objects. One is the distribution of the simulated data, the other is the full
simulated data set.

34 gendistSplines

gendistMosquito Generate mosquito data set

Description

This code generates the population level data in Mogstad, Santos, Torgovitsky (2018), i.e. the
mosquito data set used as the running example.

Usage

gendistMosquito()

Value

data.frame.

gendistSplines Generate test data set with splines

Description

This code generates population level data to test the estimation function. This data set incorporates
splines in the MTRs.

Usage

gendistSplines()

Details

The distribution of the data is as follows

| Z X/Z | 0 1 _______|___________ -1 | 0.1 0.1 | X 0 | 0.2 0.2 | 1 | 0.1 0.2

The data presented below will have already integrated over the unobservable terms U, and U | X, Z
~ Unif[0, 1].

The propensity scores are generated according to the model

p(x, z) = 0.5 - 0.1 * x + 0.2 * z

| Z p(X,Z) | 0 1 _______|___________ -1 | 0.6 0.8 | X 0 | 0.5 0.7 | 1 | 0.4 0.6

The lowest common multiple of the first table is 12. The lowest common multiple of the second
table is 84. It turns out that 840 * 5 = 4200 observations is enough to generate the population data
set, such that each group has a whole-number of observations.

The MTRs are defined as follows:

y1 ~ beta0 + beta1 * x + uSpline(degree = 2, knots = c(0.3, 0.6), intercept = FALSE)

The coefficients (beta1, beta2), and the coefficients on the splines, will be defined below.

genej 35

y0 = x : uSpline(degree = 0, knots = c(0.2, 0.5, 0.8), intercept = TRUE) + uSpline(degree = 1, knots
= c(0.4), intercept = TRUE) + beta3 * I(u ^ 2)

The coefficient beta3, and the coefficients on the splines, will be defined below.

Value

a list of two data.frame objects. One is the distribution of the simulated data, the other is the full
simulated data set.

genej Auxiliary function: generating basis vectors

Description

Auxiliary function to generate standard basis vectors.

Usage

genej(pos, length)

Arguments

pos The position of the non-zero entry/dimension the basis vector corresponds to
length Number of dimensions in total/length of vector.

Value

Vector containing 1 in a single position, and 0 elsewhere.

genGamma Estimating expectations of terms in the MTR (gamma objects)

Description

This function generates the gamma objects defined in the paper, i.e. each additive term in E[md],
where md is a MTR.

Usage

genGamma(
monomials,
lb,
ub,
multiplier = 1,
subset = NULL,
means = TRUE,
late.rows = NULL

)

36 genGamma

Arguments

monomials [UPDATE DESCRIPTION] object containing list of list of monomials. Each
element of the outer list represents an observation in the data set, each element
in the inner list is a monomial from the MTR. The variable is the unobservable
u, and the coefficient is the evaluation of any interactions with u.

lb vector of lower bounds for the interval of integration. Each element corresponds
to an observation.

ub vector of upper bounds for the interval of integration. Each element corresponds
to an observation.

multiplier a vector of the weights that enter into the integral. Each element corresponds to
an observation.

subset The row names/numbers of the subset of observations to use.
means logical, if TRUE then function returns the terms of E[md]. If FALSE, then

function instead returns each term of E[md | D, X, Z]. This is useful for testing
the code, i.e. obtaining population estimates.

late.rows Boolean vector indicating which observations to include when conditioning on
covariates X.

Value

If means = TRUE, then the function returns a vector of the additive terms in Gamma (i.e. the expec-
tation is over D, X, Z, and u). If means = FALSE, then the function returns a matrix, where each row
corresponds to an observation, and each column corresponds to an additive term in E[md | D, X, Z]
(i.e. only the integral with respect to u is performed).

Examples

dtm <- ivmte:::gendistMosquito()

Declare MTR formula
formula0 = ~ 1 + u

Construct MTR polynomials
polynomials0 <- polyparse(formula = formula0,

data = dtm,
uname = u,
as.function = FALSE)

Construct propensity score model
propensityObj <- propensity(formula = d ~ z,

data = dtm,
link = "linear")

Generate gamma moments, with S-weight equal to its default value
of 1
genGamma(monomials = polynomials0,

lb = 0,
ub = propensityObj$phat)

genGammaSplines 37

genGammaSplines Generate Gamma moments for splines

Description

The user can declare that the unobservable enters into the MTRs in the form of splines. This
function generates the gamma moments for the splines. The specifications for the spline must be
passed as an element generated by removeSplines. This function accounts for the interaction
between covariates and splines.

Usage

genGammaSplines(
splinesobj,
data,
lb,
ub,
multiplier = 1,
subset,
d = NULL,
means = TRUE,
late.rows = NULL

)

Arguments

splinesobj a list generated by removeSplines applied to either the m0 and m1 argument.

data a data.frame object containing all the variables that interact with the spline
components.

lb vector of lower bounds for the interval of integration. Each element corresponds
to an observation.

ub vector of upper bounds for the interval of integration. Each element corresponds
to an observation.

multiplier a vector of the weights that enter into the integral. Each element corresponds to
an observation.

subset Subset condition used to select observations with which to estimate gamma.

d either 0 or 1, indicating the treatment status.

means boolean, default set to TRUE. Set to TRUE if estimates of the gamma moments
should be returned. Set to FALSE if the gamma estimates for each observation
should be returned.

late.rows Boolean vector indicating which observations to include when conditioning on
covariates X.

38 genGammaSplinesTT

Value

a matrix, corresponding to the splines being integrated over the region specified by lb and ub,
accounting for the interaction terms. The number of rows is equal to the number of rows in data.
The number of columns depends on the specifications of the spline. The name of each column takes
the following form: "u[d]S[j].[b]", where "u" and "S" are fixed and stand for "unobservable" and
"Splines" respectively. "[d]" will be either 0 or 1, depending on the treatment status. "[j]" will be an
integer indicating which element of the list splines the column pertains to. "[b]" will be an integer
reflect which component of the basis the column pertains to.

genGammaSplinesTT Generating the Gamma moments for splines, for ’testthat’

Description

This function generates the Gamma moments for a given set of weights. This funciton is written
specifically for tests.

Usage

genGammaSplinesTT(distr, weight, zvars, u1s1, u0s1, u0s2, target = FALSE, ...)

Arguments

distr data.frame, the distribution of the data.

weight function, the S-function corresponding to a particular IV-like estimand.

zvars vector, string names of the covariates, other than the intercept and treatment
variable.

u1s1 matrix, the spline basis for the treated group ("u1") corresponding to the first
(and only) spline specification ("s1").

u0s1 matrix, the spline basis for the control group ("u0") corresponding to the first
spline specification ("s1").

u0s2 matrix, the spline basis for the control group ("u0") corresponding to the second
spline specification ("s2").

target boolean, set to TRUE if the gamma moment being generated corresponds to the
target parameter.

... all other arguments that enter into weight, excluding the argument d for treat-
ment indicator.

Value

vector, the Gamma moments associated with weight.

genGammaTT 39

genGammaTT Function to generate gamma moments for ’testthat’

Description

This function generates the gamma moments from a population level data set. This is specifically
constructed to carry out tests.

Usage

genGammaTT(data, s0, s1, lb, ub)

Arguments

data data.table.

s0 variable name (contained in the data) for the S-weight used to generate the
Gamma moments for the control group.

s1 variable name (contained in the data) for the S-weight used to generate the
Gamma moments for the treated group.

lb scalar, lower bound for integration.

ub scalar, upper bound for integration.

Value

list, contains the vectors of the Gamma moments for control and treated observations.

gengrid Generating the grid for the audit procedure

Description

This function takes in a matrix summarizing the support of the covariates, as well as set of points
summarizing the support of the unobservable variable. A Cartesian product of the subset of the
support of the covariates and the points in the support of the unobservable generates the grid that is
used for the audit procedure.

Usage

gengrid(index, xsupport, usupport, uname)

40 genmonoA

Arguments

index a vector whose elements indicate the rows in the matrix xsupport to include in
the grid.

xsupport a matrix containing all the unique combinations of the covariates included in the
MTRs.

usupport a vector of points in the interval [0, 1], including 0 and 1. The number of points
is decided by the user. The function generates these points using a Halton se-
quence.

uname name declared by user to represent the unobservable term.

Value

a list containing the grid used in the audit; a vector mapping the elements in the support of the
covariates to index.

genmonoA Generate components of the monotonicity constraints

Description

This function generates the matrix and vectors associated with the monotonicity constraints de-
clared by the user. It takes in a grid of the covariates on which the shape constraints are defined,
and then calculates the values of the MTR and MTE over the grid. The matrices characterizing
the monotonicity conditions can then be obtained by taking first differences over the grid of the
unobservable term, within each set of values in the grid of covariate values.

Usage

genmonoA(
A0,
A1,
sset,
uname,
gridobj,
gstar0,
gstar1,
m0.dec,
m0.inc,
m1.dec,
m1.inc,
mte.dec,
mte.inc,
solution.m0.min = NULL,
solution.m1.min = NULL,
solution.m0.max = NULL,
solution.m1.max = NULL,

genmonoA 41

audit.tol,
direct

)

Arguments

A0 the matrix of values from evaluating the MTR for control observations over the
grid generated to perform the audit. This matrix will be incorporated into the
final constraint matrix for the monotonicity conditions.

A1 the matrix of values from evaluating the MTR for control observations over the
grid generated to perform the audit. This matrix will be incorporated into the
final constraint matrix for the monotonicity conditions.

sset a list containing the point estimates and gamma components associated with
each element in the S-set.

uname Name of unobserved variable.
gridobj a list containing the grid over which the monotonicity and boundedness condi-

tions are imposed on.
gstar0 set of expectations for each terms of the MTR for the control group.
gstar1 set of expectations for each terms of the MTR for the control group.
m0.dec boolean, indicating whether the MTR for the control group is monotone decreas-

ing.
m0.inc boolean, indicating whether the MTR for the control group is monotone increas-

ing.
m1.dec boolean, indicating whether the MTR for the treated group is monotone decreas-

ing.
m1.inc boolean, indicating whether the MTR for the treated group is monotone increas-

ing.
mte.dec boolean, indicating whether the MTE is monotone decreasing.
mte.inc boolean, indicating whether the MTE is monotone increasing.
solution.m0.min

vector, the coefficients for the MTR for D = 0 corresponding to the lower bound
of the target parameter. If passed, this will initiate checks of shape constraints.

solution.m1.min

vector, the coefficients for the MTR for D = 1 corresponding to the lower bound
of the target parameter. If passed, this will initiate checks of shape constraints.

solution.m0.max

vector, the coefficients for the MTR for D = 0 corresponding to the upper bound
of the target parameter. If passed, this will initiate checks of shape constraints.

solution.m1.max

vector, the coefficients for the MTR for D = 1 corresponding to the upper bound
of the target parameter. If passed, this will initiate checks of shape constraints.

audit.tol feasibility tolerance when performing the audit. By default to set to be equal
1e-06. This parameter should only be changed if the feasibility tolerance of
the solver is changed, or if numerical issues result in discrepancies between the
solver’s feasibility check and the audit.

direct boolean, set to TRUE if the direct MTR regression is used.

42 genmonoboundA

Value

constraint matrix for the LP/QCQP problem. The matrix pertains only to the monotonicity condi-
tions on the MTR and MTE declared by the user.

genmonoboundA Generating monotonicity and boundedness constraints

Description

This is a wrapper function generating the matrices and vectors associated with the monotonicity
and boundedness constraints declared by the user. Since this function generates all the components
required for the shape constraints, it is also the function that performs the audit. That is, MTR
coefficients are passed, then this function will verify whether they satisfy the shape constraints.

Usage

genmonoboundA(
pm0,
pm1,
support,
grid_index,
uvec,
splinesobj,
monov,
uname,
m0,
m1,
sset,
gstar0,
gstar1,
m0.lb,
m0.ub,
m1.lb,
m1.ub,
mte.lb,
mte.ub,
m0.dec,
m0.inc,
m1.dec,
m1.inc,
mte.dec,
mte.inc,
solution.m0.min = NULL,
solution.m1.min = NULL,
solution.m0.max = NULL,
solution.m1.max = NULL,

genmonoboundA 43

audit.tol,
direct

)

Arguments

pm0 A list of the monomials in the MTR for d = 0.

pm1 A list of the monomials in the MTR for d = 1.

support a matrix for the support of all variables that enter into the MTRs.

grid_index a vector, the row numbers of support used to generate the grid preceding the
audit.

uvec a vector, the points in the interval [0, 1] that the unobservable takes on.

splinesobj a list of lists. Each of the inner lists contains details on the splines declared in
the MTRs.

monov name of variable for which the monotonicity conditions applies to.

uname name declared by user to represent the unobservable term in the MTRs.

m0 one-sided formula for marginal treatment response function for the control group.
The formula may differ from what the user originally input in ivmte, as the
spline components should have been removed. This formula is simply a linear
combination of all covariates that enter into the original m0 declared by the user
in ivmte.

m1 one-sided formula for marginal treatment response function for the treated group.
The formula may differ from what the user originally input in ivmte, as the
spline components should have been removed. This formula is simply a linear
combination of all covariates that enter into the original m1 declared by the user
in ivmte.

sset a list containing the point estimates and gamma components associated with
each element in the S-set.

gstar0 set of expectations for each terms of the MTR for the control group.

gstar1 set of expectations for each terms of the MTR for the control group.

m0.lb scalar, lower bound on MTR for control group.

m0.ub scalar, upper bound on MTR for control group.

m1.lb scalar, lower bound on MTR for treated group.

m1.ub scalar, upper bound on MTR for treated group.

mte.lb scalar, lower bound on MTE.

mte.ub scalar, upper bound on MTE.

m0.dec boolean, indicating whether the MTR for the control group is monotone decreas-
ing.

m0.inc boolean, indicating whether the MTR for the control group is monotone increas-
ing.

m1.dec boolean, indicating whether the MTR for the treated group is monotone decreas-
ing.

44 genSSet

m1.inc boolean, indicating whether the MTR for the treated group is monotone increas-
ing.

mte.dec boolean, indicating whether the MTE is monotone decreasing.

mte.inc boolean, indicating whether the MTE is monotone increasing.
solution.m0.min

vector, the coefficients for the MTR for D = 0 corresponding to the lower bound
of the target parameter. If passed, this will initiate checks of shape constraints.

solution.m1.min

vector, the coefficients for the MTR for D = 1 corresponding to the lower bound
of the target parameter. If passed, this will initiate checks of shape constraints.

solution.m0.max

vector, the coefficients for the MTR for D = 0 corresponding to the upper bound
of the target parameter. If passed, this will initiate checks of shape constraints.

solution.m1.max

vector, the coefficients for the MTR for D = 1 corresponding to the upper bound
of the target parameter. If passed, this will initiate checks of shape constraints.

audit.tol feasibility tolerance when performing the audit. By default to set to be equal
1e-06. This parameter should only be changed if the feasibility tolerance of
the solver is changed, or if numerical issues result in discrepancies between the
solver’s feasibility check and the audit.

direct boolean, set to TRUE if the direct MTR regression is used.

Value

a list containing a unified constraint matrix, unified vector of inequalities, and unified RHS vector
for the boundedness and monotonicity constraints of an LP/QCQP problem.

genSSet Generating moments/data for IV-like estimands

Description

This function takes in the IV estimate and its IV-like specification, and generates a list containing
the corresponding IV-like point estimate, and the corresponding moments (gammas) that will enter
into the constraint matrix of the LP problem. If the option means = FALSE, then the data are not
averaged to generate the gamma moments and may be used for GMM. The function requires the
user to provide a list (i.e. the list the point estimates and moments corresponding to other IV-like
specifications; or an empty list) to append these point estimates and moments to.

Usage

genSSet(
data,
sset,
sest,

genSSet 45

splinesobj,
pmodobj,
pm0,
pm1,
ncomponents,
scount,
subset_index,
means = TRUE,
yvar,
dvar,
noisy = TRUE,
ivn = NULL,
redundant = NULL

)

Arguments

data data.frame used to estimate the treatment effects.
sset list, which is modified and returned as the output. This object will contain all

the information from the IV-like specifications that can be used for estimating
the treatment effect.

sest list containing the point estimates and S-weights corresponding to a particular
IV-like estimand.

splinesobj list of spline components in the MTRs for treated and control groups. Spline
terms are extracted using removeSplines.

pmodobj vector of propensity scores.
pm0 list of the monomials in the MTR for the control group.
pm1 list of the monomials in the MTR for the treated group.
ncomponents The number of components from the IV regression to include in the S-set.
scount integer, an index for the elements in the S-set.
subset_index vector of integers, a row index for the subset of the data the IV regression is

restricted to.
means boolean, set to TRUE by default. If set to TRUE, then the gamma moments are

returned, i.e. sample averages are taken. If set to FALSE, then no sample averages
are taken, and a matrix is returned. The sample average of each column of the
matrix corresponds to a particular gamma moment.

yvar name of outcome variable. This is only used if means = FALSE, which occurs
when the user believes the treatment effect is point identified.

dvar name of treatment indicator. This is only used if means = FALSE, which occurs
when the user believes the treatment effect is point identified.

noisy boolean, default set to TRUE. If TRUE, then messages are provided throughout
the estimation procedure. Set to FALSE to suppress all messages, e.g. when
performing the bootstrap.

ivn integer, the number indicating which IV specification the component corre-
sponds to.

redundant vector of integers indicating which components in the S-set are redundant.

46 genSSet

Value

A list containing the point estimate for the IV regression, and the expectation of each monomial
term in the MTR.

Examples

dtm <- ivmte:::gendistMosquito()

Declare empty list to be updated (in the event multiple IV like
specifications are provided)
sSet <- list()

Declare MTR formulas
formula1 = ~ 1 + u
formula0 = ~ 1 + u

Construct object that separates out non-spline components of MTR
formulas from the spline components. The MTR functions are
obtained from this object by the function 'genSSet'.
splinesList = list(removeSplines(formula0), removeSplines(formula1))

Construct MTR polynomials
polynomials0 <- polyparse(formula = formula0,

data = dtm,
uname = u,
as.function = FALSE)

polynomials1 <- polyparse(formula = formula0,
data = dtm,
uname = u,
as.function = FALSE)

Generate propensity score model
propensityObj <- propensity(formula = d ~ z,

data = dtm,
link = "linear")

Generate IV estimates
ivEstimates <- ivEstimate(formula = ey ~ d | z,

data = dtm,
components = l(d),
treat = d,
list = FALSE)

Construct S-set, which contains the coefficients and weights
corresponding to various IV-like estimands
genSSet(data = dtm,

sset = sSet,
sest = ivEstimates,
splinesobj = splinesList,
pmodobj = propensityObj$phat,
pm0 = polynomials0,

genTarget 47

pm1 = polynomials1,
ncomponents = 1,
scount = 1)

genTarget Generating target MTR moments

Description

This function estimates the moment of each MTR term under the target weight.

Usage

genTarget(
treat,
m0,
m1,
target,
target.weight0,
target.weight1,
target.knots0,
target.knots1,
late.Z,
late.from,
late.to,
late.X,
eval.X,
genlate.lb,
genlate.ub,
data,
splinesobj,
pmodobj,
pm0,
pm1,
noisy = TRUE

)

Arguments

treat variable name for treatment indicator. The name can be provided with or without
quotation marks.

m0 one-sided formula for the marginal treatment response function for the control
group. Splines may also be incorporated using the expression uSpline, e.g.
uSpline(degree = 2, knots = c(0.4, 0.8), intercept = TRUE). The intercept
argument may be omitted, and is set to TRUE by default.

48 genTarget

m1 one-sided formula for the marginal treatment response function for the treated
group. See m0 for details.

target character, target parameter to be estimated. The function allows for ATE ('ate'),
ATT ('att'), ATU ('atu'), LATE ('late'), and generalized LATE ('genlate').

target.weight0 user-defined weight function for the control group defining the target parameter.
A list of functions can be submitted if the weighting function is in fact a spline.
The arguments of the function should be variable names in data. If the weight
is constant across all observations, then the user can instead submit the value of
the weight instead of a function.

target.weight1 user-defined weight function for the treated group defining the target parameter.
See target.weight0 for details.

target.knots0 user-defined set of functions defining the knots associated with spline weights
for the control group. The arguments of the function should consist only of
variable names in data. If the knots are constant across all observations, then
the user can instead submit the vector of knots instead of a function.

target.knots1 user-defined set of functions defining the knots associated with spline weights
for the treated group. See target.knots0 for details.

late.Z vector of variable names used to define the LATE.

late.from baseline set of values of Z used to define the LATE.

late.to comparison set of values of Z used to define the LATE.

late.X vector of variable names of covariates to condition on when defining the LATE.

eval.X numeric vector of the values to condition variables in late.X on when estimat-
ing the LATE.

genlate.lb lower bound value of unobservable u for estimating the generalized LATE.

genlate.ub upper bound value of unobservable u for estimating the generalized LATE.

data data.frame or data.table used to estimate the treatment effects.

splinesobj list of spline components in the MTRs for treated and control groups. Spline
terms are extracted using removeSplines. This object is supposed to be a dic-
tionary of splines, containing the original calls of each spline in the MTRs, their
specifications, and the index used for naming each basis spline.

pmodobj A vector of propensity scores.

pm0 A list of the monomials in the MTR for d = 0.

pm1 A list of the monomials in the MTR for d = 1.

noisy boolean, default set to TRUE. If TRUE, then messages are provided throughout
the estimation procedure. Set to FALSE to suppress all messages, e.g. when
performing the bootstrap.

Value

A list containing either the vectors of gamma moments for D = 0 and D = 1, or a matrix of individual
gamma values for D = 0 and D = 1. Additoinally, two vectors are returned. xindex0 and xindex1
list the variables that interact with the unobservable u in m0 and m1. uexporder0 and uexporder1
lists the exponents of the unobservable u in each term it appears in.

genWeight 49

Examples

dtm <- ivmte:::gendistMosquito()

Declare MTR functions
formula1 = ~ 1 + u
formula0 = ~ 1 + u
splinesList = list(removeSplines(formula0), removeSplines(formula1))

Declare propensity score model
propensityObj <- propensity(formula = d ~ z,

data = dtm,
link = "linear")

Construct MTR polynomials
polynomials0 <- polyparse(formula = formula0,

data = dtm,
uname = u,
as.function = FALSE)

polynomials1 <- polyparse(formula = formula0,
data = dtm,
uname = u,
as.function = FALSE)

Generate target gamma moments
genTarget(treat = "d",

m0 = ~ 1 + u,
m1 = ~ 1 + u,
target = "atu",
data = dtm,
splinesobj = splinesList,
pmodobj = propensityObj,
pm0 = polynomials0,
pm1 = polynomials1)

genWeight Generating list of target weight functions

Description

This function takes in the user-defined target weight functions and the data set, and generates the
weight functions for each observation.

Usage

genWeight(fun, fun.name, uname, data)

50 getXZ

Arguments

fun custom weight function defined by the user. Arguments of the weight function
must only be names of variables entering into the function, and can include the
unobserved variable.

fun.name string, name of function.

uname the name assigned to the unobserved variable entering into the MTR.

data a named vector containing the values of the variables defining the ’fun’, ex-
cluding the value of the unobservable (generated from applying split() to a
data.frame).

Value

The weight function ’fun’, where all arguments other than that of the unobserved variable are fixed
according to the vector ’data’.

getXZ Auxiliary function: extract X and Z covariates from a formula

Description

Auxiliary function that takes in a two-sided formula, and extracts the variable names of either the
covariates or instruments. The function returns an error if the formula includes a variable called
’intercept’.

Usage

getXZ(fm, inst = FALSE, terms = FALSE, components = FALSE)

Arguments

fm the formula.

inst boolean expression, set to TRUE if the instrument names are to be extracted.
Otherwise, the covariate names are extracted.

terms boolean expression, set to TRUE if the terms in the formula fm should be re-
turned instead of the variable names.

components boolean expression, set to FALSE by default. Indicates that the formula being
considered is constructed from a list of components, and thus the term ’intercept’
is permitted.

Value

vector of variable names.

gmmEstimate 51

gmmEstimate GMM estimate of TE under point identification

Description

If the user sets the argument point = TRUE in the function ivmte, then it is assumed that the treat-
ment effect parameter is point identified. The observational equivalence condition is then set up
as a two-step GMM problem. Solving this GMM problem recovers the coefficients on the MTR
functions m0 and m1. Combining these coefficients with the target gamma moments allows one to
estimate the target treatment effect.

Usage

gmmEstimate(
sset,
gstar0,
gstar1,
center = NULL,
subsetList = NULL,
n = NULL,
redundant = NULL,
identity = FALSE,
nMoments,
splines,
noisy = TRUE

)

Arguments

sset a list of lists constructed from the function genSSet. Each inner list should
include a coefficient corresponding to a term in an IV specification, a matrix
of the estimates of the gamma moments conditional on (X, Z) for the control
group, and a matrix of the estimates of the gamma moments conditional on (X,
Z) for the treated group. The column means of the last two matrices is what is
used to generate the gamma moments.

gstar0 vector, the target gamma moments for the control group.

gstar1 vector, the target gamma moments for the treated group.

center numeric, the GMM moment equations from the original sample. When boot-
strapping, the solution to the point identified case obtained from the original
sample can be passed through this argument to recenter the bootstrap distribu-
tion of the J-statistic.

subsetList list of subset indexes, one for each IV-like specification.

n number of observations in the data. This option is only used when subsetting is
involved.

redundant vector of integers indicating which components in the S-set are redundant.

52 gmmEstimate

identity boolean, default set to FALSE. Set to TRUE if GMM point estimate should use the
identity weighting matrix (i.e. one-step GMM).

nMoments number of linearly independent moments. This option is used to determine the
cause of underidentified cases.

splines boolean, set to TRUE if the MTRs involve splines. This option is used to deter-
mine the cause of underidentified cases.

noisy boolean, default set to TRUE. If TRUE, then messages are provided throughout
the estimation procedure. Set to FALSE to suppress all messages, e.g. when
performing the bootstrap.

Value

a list containing the point estimate of the treatment effects, and the MTR coefficient estimates.
The moment conditions evaluated at the solution are also returned, along with the J-test results.
However, if the option center is passed, then the moment conditions and J-test are centered (this is
to perform the J-test via bootstrap).

Examples

dtm <- ivmte:::gendistMosquito()

Declare empty list to be updated (in the event multiple IV like
specifications are provided
sSet <- list()

Declare MTR formulas
formula1 = ~ 0 + u
formula0 = ~ 0 + u

Construct object that separates out non-spline components of MTR
formulas from the spline components. The MTR functions are
obtained from this object by the function 'genSSet'.
splinesList = list(removeSplines(formula0), removeSplines(formula1))

Construct MTR polynomials
polynomials0 <- polyparse(formula = formula0,

data = dtm,
uname = u,
as.function = FALSE)

polynomials1 <- polyparse(formula = formula0,
data = dtm,
uname = u,
as.function = FALSE)

Generate propensity score model
propensityObj <- propensity(formula = d ~ z,

data = dtm,
link = "linear")

Generate IV estimates
ivEstimates <- ivEstimate(formula = ey ~ d | z,

interactSplines 53

data = dtm,
components = l(intercept, d),
treat = d,
list = FALSE)

Generate target gamma moments
targetGamma <- genTarget(treat = "d",

m0 = ~ 1 + u,
m1 = ~ 1 + u,
target = "atu",
data = dtm,
splinesobj = splinesList,
pmodobj = propensityObj,
pm0 = polynomials0,
pm1 = polynomials1)

Construct S-set. which contains the coefficients and weights
corresponding to various IV-like estimands
sSet <- genSSet(data = dtm,

sset = sSet,
sest = ivEstimates,
splinesobj = splinesList,
pmodobj = propensityObj$phat,
pm0 = polynomials0,
pm1 = polynomials1,
ncomponents = 2,
scount = 1,
yvar = "ey",
dvar = "d",
means = FALSE)

Obtain point estimates using GMM
gmmEstimate(sset = sSet$sset,

gstar0 = targetGamma$gstar0,
gstar1 = targetGamma$gstar1)

interactSplines Update splines object with list of interactions

Description

Certain interactions between factor variables and splines should be dropped to avoid collinearity.
Albeit collinearity in the MTR specification will not impact the bounds, it can substantially impact
how costly it is to carry out the estimation. What this function does is map each spline to a temporary
variable. A design matrix is then constructed using these temporary variables in place the splines.
If an interaction involving one of the temporary variables is dropped, then one knows to also drop
the corresponding interaction with the spline. Note that only interaction terms need to be omitted,
so one does not need to worry about the formula contained in removeSplines$formula.

54 isfunctionstring

Usage

interactSplines(splinesobj, m0, m1, data, uname)

Arguments

splinesobj list, consists of two elelments. The first is removeSplines(m0), the second is
removeSplines(m1).

m0 one-sided formula for the marginal treatment response function for the control
group. This should be the full MTR specificaiton (i.e. not the specification after
removing the splines).

m1 one-sided formula for the marginal treatment response function for the treated
group. This should be the full MTR specificaiton (i.e. not the specification after
removing the splines).

data data.frame, restricted to complete observations.

uname string, name of the unobserved variable.

Value

An updated version of splinesobj.

isfunctionstring Auxiliary function: check if string is command

Description

Auxiliary function to check if a string is in fact a command, but in string form.

Usage

isfunctionstring(string)

Arguments

string the string object to be checked.

Value

boolean expression.

ivEstimate 55

ivEstimate Obtaining IV-like specifications

Description

This function estimates the IV-like estimands, as well as generates the weights associated with the
IV-like specifications.

Usage

ivEstimate(
formula,
data,
subset,
components,
treat,
list = FALSE,
order = NULL

)

Arguments

formula formula to be estimated using OLS/IV.

data data.frame with which to perform the estimation.

subset subset condition with which to perform the estimate.

components vector of variable names whose coefficients we want to include in the set of
IV-like estimands.

treat name of treatment indicator variable.

list logical, set to TRUE if this function is being used to loop over a list of formulas.

order integer, default set to NULL. This is simply an index of which IV-like specification
the estimate corresponds to.

Value

Returns a list containing the matrices of IV-like specifications for D = 0 and D = 1; and the estimates
of the IV-like estimands.

Examples

dtm <- ivmte:::gendistMosquito()
ivEstimate(formula = ey ~ d | z,

data = dtm,
components = l(d),
treat = d,
list = FALSE)

56 ivmte

ivmte Instrumental Variables: Extrapolation by Marginal Treatment Effects

Description

This function provides a general framework for using the marginal treatment effect (MTE) to extrap-
olate. The model is the same binary treatment instrumental variable (IV) model considered by Im-
bens and Angrist (1994) (doi: 10.2307/2951620) and Heckman and Vytlacil (2005) (doi: 10.1111/
j.14680262.2005.00594.x). The framework on which this function is based was developed by
Mogstad, Santos and Torgovitsky (2018) (doi: 10.3982/ECTA15463). See also the recent survey
paper on extrapolation in IV models by Mogstad and Torgovitsky (2018) (doi: 10.1146/annurev-
economics101617041813). A detailed description of the module and its features can be found in
Shea and Torgovitsky (2021).

Usage

ivmte(
data,
target,
late.from,
late.to,
late.X,
genlate.lb,
genlate.ub,
target.weight0 = NULL,
target.weight1 = NULL,
target.knots0 = NULL,
target.knots1 = NULL,
m0,
m1,
uname = u,
m1.ub,
m0.ub,
m1.lb,
m0.lb,
mte.ub,
mte.lb,
m0.dec,
m0.inc,
m1.dec,
m1.inc,
mte.dec,
mte.inc,
equal.coef,
ivlike,
components,
subset,

https://doi.org/10.2307/2951620
https://doi.org/10.1111/j.1468-0262.2005.00594.x
https://doi.org/10.1111/j.1468-0262.2005.00594.x
https://doi.org/10.3982/ECTA15463
https://doi.org/10.1146/annurev-economics-101617-041813
https://doi.org/10.1146/annurev-economics-101617-041813
https://a-torgovitsky.github.io/shea-torgovitsky.pdf

ivmte 57

propensity,
link = "logit",
treat,
outcome,
solver,
solver.options,
solver.presolve,
solver.options.criterion,
solver.options.bounds,
lpsolver,
lpsolver.options,
lpsolver.presolve,
lpsolver.options.criterion,
lpsolver.options.bounds,
criterion.tol = 1e-04,
initgrid.nx = 20,
initgrid.nu = 20,
audit.nx = 2500,
audit.nu = 25,
audit.add = 100,
audit.max = 25,
audit.tol,
rescale,
point,
point.eyeweight = FALSE,
bootstraps = 0,
bootstraps.m,
bootstraps.replace = TRUE,
levels = c(0.99, 0.95, 0.9),
ci.type = "backward",
specification.test = TRUE,
noisy = FALSE,
smallreturnlist = FALSE,
debug = FALSE

)

Arguments

data data.frame or data.table used to estimate the treatment effects.

target character, target parameter to be estimated. The function allows for ATE ('ate'),
ATT ('att'), ATU ('atu'), LATE ('late'), and generalized LATE ('genlate').

late.from a named vector or a list declaring the baseline values of Z used to define the
LATE. The name associated with each value should be the name of the corre-
sponding variable.

late.to a named vector or a list declaring the comparison set of values of Z used to
define the LATE. The name associated with each value should be the name of
the corresponding variable.

58 ivmte

late.X a named vector or a list declaring the values to condition on. The name associ-
ated with each value should be the name of the corresponding variable.

genlate.lb lower bound value of unobservable u for estimating the generalized LATE.

genlate.ub upper bound value of unobservable u for estimating the generalized LATE.

target.weight0 user-defined weight function for the control group defining the target parameter.
A list of functions can be submitted if the weighting function is in fact a spline.
The arguments of the function should be variable names in data. If the weight
is constant across all observations, then the user can instead submit the value of
the weight instead of a function.

target.weight1 user-defined weight function for the treated group defining the target parameter.
See target.weight0 for details.

target.knots0 user-defined set of functions defining the knots associated with spline weights
for the control group. The arguments of the function should consist only of
variable names in data. If the knots are constant across all observations, then
the user can instead submit the vector of knots instead of a function.

target.knots1 user-defined set of functions defining the knots associated with spline weights
for the treated group. See target.knots0 for details.

m0 one-sided formula for the marginal treatment response function for the control
group. Splines may also be incorporated using the expression uSpline, e.g.
uSpline(degree = 2, knots = c(0.4, 0.8), intercept = TRUE). The intercept
argument may be omitted, and is set to TRUE by default.

m1 one-sided formula for the marginal treatment response function for the treated
group. See m0 for details.

uname variable name for the unobservable used in declaring the MTRs. The name can
be provided with or without quotation marks.

m1.ub numeric value for upper bound on MTR for the treated group. By default, this
will be set to the largest value of the observed outcome in the estimation sample.

m0.ub numeric value for upper bound on MTR for the control group. By default, this
will be set to the largest value of the observed outcome in the estimation sample.

m1.lb numeric value for lower bound on MTR for the treated group. By default, this
will be set to the smallest value of the observed outcome in the estimation sam-
ple.

m0.lb numeric value for lower bound on MTR for the control group. By default, this
will be set to the smallest value of the observed outcome in the estimation sam-
ple.

mte.ub numeric value for upper bound on treatment effect parameter of interest.

mte.lb numeric value for lower bound on treatment effect parameter of interest.

m0.dec logical, set to FALSE by default. Set equal to TRUE if the MTR for the control
group should be weakly monotone decreasing.

m0.inc logical, set to FALSE by default. Set equal to TRUE if the MTR for the control
group should be weakly monotone increasing.

m1.dec logical, set to FALSE by default. Set equal to TRUE if the MTR for the treated
group should be weakly monotone decreasing.

ivmte 59

m1.inc logical, set to FALSE by default. Set equal to TRUE if the MTR for the treated
group should be weakly monotone increasing.

mte.dec logical, set to FALSE by default. Set equal to TRUE if the MTE should be weakly
monotone decreasing.

mte.inc logical, set to FALSE by default. Set equal to TRUE if the MTE should be weakly
monotone increasing.

equal.coef one-sided formula to indicate which terms in m0 and m1 should be constrained
to have the same coefficients. These terms therefore have no effect on the MTE.

ivlike formula or vector of formulas specifying the regressions for the IV-like esti-
mands. Which coefficients to use to define the constraints determining the treat-
ment effect bounds (alternatively, the moments determining the treatment effect
point estimate) can be selected in the argument components. If no argument is
passed, then a linear regression will be performed to estimate the MTR coeffi-
cients.

components a list of vectors of the terms in the regression specifications to include in the
set of IV-like estimands. No terms should be in quotes. To select the intercept
term, include the name intercept. If the factorized counterpart of a variable
is included in the IV-like specifications, e.g. factor(x) where x = 1, 2, 3, the
user can select the coefficients for specific factors by declaring the components
factor(x)-1, factor(x)-2,factor(x)-3. See l on how to input the argu-
ment. If no components for a IV specification are given, then all coefficients
from that IV specification will be used to define constraints in the partially iden-
tified case, or to define moments in the point identified case.

subset a single subset condition or list of subset conditions corresponding to each re-
gression specified in ivlike. The input must be logical. See l on how to input
the argument. If the user wishes to select specific rows, construct a binary vari-
able in the data set, and set the condition to use only those observations for
which the binary variable is 1, e.g. the binary variable is use, and the subset
condition is use == 1.

propensity formula or variable name corresponding to propensity to take up treatment. If a
formula is declared, then the function estimates the propensity score according
to the formula and link specified in link. If a variable name is declared, then the
corresponding column in the data is taken as the vector of propensity scores. A
variable name can be passed either as a string (e.g propensity = 'p'), a variable
(e.g. propensity = p), or a one-sided formula (e.g. propensity = ~p).

link character, name of link function to estimate propensity score. Can be chosen
from 'linear', 'probit', or 'logit'. Default is set to 'logit'. The link
should be provided with quoation marks.

treat variable name for treatment indicator. The name can be provided with or without
quotation marks.

outcome variable name for outcome variable. The name can be provided with or without
quotation marks.

solver character, name of the programming package in R used to obtain the bounds on
the treatment effect. The function supports 'gurobi', 'cplexapi', rmosek,
'lpsolveapi'. The name of the solver should be provided with quotation
marks.

60 ivmte

solver.options list, each item of the list should correspond to an option specific to the solver
selected.

solver.presolve

boolean, default set to TRUE. Set this parameter to FALSE if presolve should be
turned off for the LP/QCQP problems.

solver.options.criterion

list, each item of the list should correspond to an option specific to the solver
selected. These options are specific for finding the minimum criterion.

solver.options.bounds

list, each item of the list should correspond to an option specific to the solver
selected. These options are specific for finding the bounds.

lpsolver character, deprecated argument for lpsolver.
lpsolver.options

list, deprecated argument for solver.options.
lpsolver.presolve

boolean, deprecated argument for solver.presolve.
lpsolver.options.criterion

list, deprecated argument for solver.options.criterion.
lpsolver.options.bounds

list, deprecated argument for solver.options.bounds.

criterion.tol tolerance for the criterion function, and is set to 1e-4 by default. The criterion
measures how well the IV-like moments/conditional means are matched using
the l1-norm. Statistical noise may prohibit the theoretical LP/QCQP problem
from being feasible. That is, there may not exist a set of MTR coefficients that
are able to match all the specified moments. The function thus first estimates
the minimum criterion, which is reported in the output under the name ’mini-
mum criterion’, with a criterion of 0 meaning that all moments were able to be
matched. The function then relaxes the constraints by tolerating a criterion up
to minimum criterion * (1 + criterion.tol). Set criterion.tol to a value
greater than 0 to allow for more conservative bounds.

initgrid.nx integer determining the number of points of the covariates used to form the
initial constraint grid for imposing shape restrictions on the MTRs.

initgrid.nu integer determining the number of points in the open interval (0, 1) drawn from a
Halton sequence. The end points 0 and 1 are additionally included. These points
are always a subset of the points defining the audit grid (see audit.nu). These
points are used to form the initial constraint grid for imposing shape restrictions
on the u components of the MTRs.

audit.nx integer determining the number of points on the covariates space to audit in each
iteration of the audit procedure.

audit.nu integer determining the number of points in the open interval (0, 1) drawn from
a Halton sequence. The end points 0 and 1 are additionally included. These
points are used to audit whether the shape restrictions on the u components of
the MTRs are satisfied. The initial grid used to impose the shape constraints in
the LP/QCQP problem are constructed from a subset of these points.

ivmte 61

audit.add maximum number of points to add to the initial constraint grid for imposing
each kind of shape constraint. For example, if there are 5 different kinds of
shape constraints, there can be at most audit.add * 5 additional points added
to the constraint grid.

audit.max maximum number of iterations in the audit procedure.

audit.tol feasibility tolerance when performing the audit. By default to set to be 1e-
06, which is equal to the default feasibility tolerances of Gurobi (solver =
"gurobi"), CPLEX (solver = "cplexapi"), and Rmosek (solver = "rmosek").
This parameter should only be changed if the feasibility tolerance of the solver
is changed, or if numerical issues result in discrepancies between the solver’s
feasibility check and the audit.

rescale boolean, set to TRUE by default. This rescalels the MTR components to improve
stability in the LP/QCQP optimization.

point boolean. Set to TRUE if it is believed that the treatment effects are point iden-
tified. If set to TRUE and IV-like formulas are passed, then a two-step GMM
procedure is implemented to estimate the treatment effects. Shape constraints
on the MTRs will be ignored under point identification. If set to TRUE and the
regression-based criteria is used instead, then OLS will be used to estimate the
MTR coefficients used to estimate the treatment effect. If not declared, then the
function will determine whether or not the target parameter is point identified.

point.eyeweight

boolean, default set to FALSE. Set to TRUE if the GMM point estimate should use
the identity weighting matrix (i.e. one-step GMM).

bootstraps integer, default set to 0. This determines the number of bootstraps used to per-
form statistical inference.

bootstraps.m integer, default set to size of data set. Determines the size of the subsample
drawn from the original data set when performing inference via the bootstrap.
This option applies only to the case of constructing confidence intervals for treat-
ment effect bounds, i.e. it does not apply when point = TRUE.

bootstraps.replace

boolean, default set to TRUE. This determines whether the resampling procedure
used for inference will sample with replacement.

levels vector of real numbers between 0 and 1. Values correspond to the level of the
confidence intervals constructed via bootstrap.

ci.type character, default set to 'both'. Set to 'forward' to construct the forward con-
fidence interval for the treatment effect bound. Set to 'backward' to construct
the backward confidence interval for the treatment effect bound. Set to 'both'
to construct both types of confidence intervals.

specification.test

boolean, default set to TRUE. Function performs a specification test for the par-
tially identified case when bootstraps > 0.

noisy boolean, default set to TRUE. If TRUE, then messages are provided throughout
the estimation procedure. Set to FALSE to suppress all messages, e.g. when
performing the bootstrap.

62 ivmte

smallreturnlist

boolean, default set to FALSE. Set to TRUE to exclude large intermediary compo-
nents (i.e. propensity score model, LP/QCQP model, bootstrap iterations) from
being included in the return list.

debug boolean, indicates whether or not the function should provide output when ob-
taining bounds. The option is only applied when solver = 'gurobi' or solver
= 'rmosek'. The output provided is the same as what the Gurobi API would
send to the console.

Details

When the function is used to estimate bounds, and statistical inference is not performed, the function
returns the following objects.

audit.count the number of audits required until there were no more violations; or the number of
audits performed before the audit procedure was terminated.

audit.criterion the minimum criterion.

audit.grid a list containing the points used to define the audit grid, as well as a table of points
where the shape constraints were violated.

bounds a vector with the estimated lower and upper bounds of the target treatment effect.

call.options a list containing all the model specifications and call options generating the results.

gstar a list containing the estimate of the weighted means for each component in the MTRs. The
weights are determined by the target parameter declared in target, or the weights defined by
target.weight1, target.knots1, target.weight0, target.knots0.

gstar.coef a list containing the coefficients on the treated and control group MTRs.

gstar.weights a list containing the target weights used to estimate gstar.

result a list containing the LP/QCQP model, and the full output from solving the problem.

solver the solver used in estimation.

moments the number of elements in the S-set used to generate achieve (partial) identification.

propensity the propensity score model. If a variable is fed to the propensity argument when
calling ivmte, then the returned object is a list containing the name of variable given by the
user, and the values of that variable used in estimation.

s.set a list of all the coefficient estimates and weights corresponding to each element in the S-set.

splines.dict a list including the specifications of each spline declared in each MTR.

messages a vector of character strings logging the output of the estimation procedure.

If bootstraps is greater than 0, then statistical inference will be performed and the output will
additionally contain the following objects.

bootstraps the number of bootstraps.

bootstraps.failed the number of bootstraps that failed (e.g. due to collinearity) and had to be
repeated.

bounds.bootstraps the estimates of the bounds from every bootstrap draw.

bounds.ci forward and/or backward confidence intervals for the bound estimates at the levels spec-
ified in levels.

ivmte 63

bounds.se bootstrap standard errors on the lower and upper bound estimates.
p.value p-value for the estimated bounds. p-values are constructed by finding the level at which

the confidence interval no longer contains 0.
propensity.ci confidence interval for coefficient estimates of the propensity score model.
propensity.se standard errors for the coefficient estimates of the propensity score model.
specification.p.value p-value from a specification test. The specification test is only performed if

the minimum criterion is not 0.

If point = TRUE and bootstraps = 0, then point estimation is performed using two-step GMM. The
output will contain the following objects.

j.test test statistic and results from the asymptotic J-test.
moments a vector. Each element is the GMM criterion for each moment condition used in estima-

tion.
mtr.coef coefficient estimates for the MTRs.
point.estimate point estimate of the treatment effect.
redundant indexes for the moment conditions (i.e. elements in the S set) that were linearly inde-

pendent and could be dropped.

If point = TRUE and bootstraps is not 0, then point estimation is performed using two-step GMM,
and additional statistical inference is performed using the bootstrap samples. The output will con-
tain the following additional objects.

bootstraps the number of bootstraps.
bootstraps.failed the number of bootstraps that failed (e.g. due to collinearity) and had to be

repeated.
j.test test statistic and result from the J-test performed using the bootstrap samples.
j.test.bootstraps J-test statistic from each bootstrap.
mtr.bootstraps coefficient estimates for the MTRs from each bootstrap sample. These are used to

construct the confidence intervals and standard errors for the MTR coefficients.
mtr.ci confidence intervals for each MTR coefficient.
mtr.se standard errors for each MTR coefficient estimate.
p.value p-value for the treatment effect point estimate estimated using the bootstrap.
point.estimate.bootstraps treatment effect point estimate from each bootstrap sample. These are

used to construct the confidence interval, standard error, and p-value for the treatment effect.
point.estimate.ci confidence interval for the treatment effect.
point.estimate.se standard error for the treatment effect estimate.
propensity.ci confidence interval for the coefficients in the propensity score model, constructed

using the bootstrap.
propensity.se standard errors for the coefficient estimates of the propensity score model.

Value

Returns a list of results from throughout the estimation procedure. This includes all IV-like esti-
mands; the propensity score model; bounds on the treatment effect; the estimated expectations of
each term in the MTRs; the components and results of the LP/QCQP problem.

64 ivmteEstimate

Examples

dtm <- ivmte:::gendistMosquito()

ivlikespecs <- c(ey ~ d | z,
ey ~ d | factor(z),
ey ~ d,
ey ~ d | factor(z))

jvec <- l(d, d, d, d)
svec <- l(, , , z %in% c(2, 4))

ivmte(ivlike = ivlikespecs,
data = dtm,
components = jvec,
propensity = d ~ z,
subset = svec,
m0 = ~ u + I(u ^ 2),
m1 = ~ u + I(u ^ 2),
uname = u,
target = "att",
m0.dec = TRUE,
m1.dec = TRUE,
bootstraps = 0,
solver = "lpSolveAPI")

ivmteEstimate Single iteration of estimation procedure from Mogstad, Torgovitsky,
Santos (2018)

Description

This function estimates the treatment effect parameters, following the procedure described in Mogstad,
Santos and Torgovitsky (2018) (doi: 10.3982/ECTA15463). A detailed description of the module
and its features can be found in Shea and Torgovitsky (2021). However, this is not the main function
of the module. See ivmte for the main function. For examples of how to use the package, see the
vignette, which is available on the module’s GitHub page.

Usage

ivmteEstimate(
data,
target,
late.Z,
late.from,
late.to,
late.X,
eval.X,
genlate.lb,

https://doi.org/10.3982/ECTA15463
https://a-torgovitsky.github.io/shea-torgovitsky.pdf
https://github.com/jkcshea/ivmte

ivmteEstimate 65

genlate.ub,
target.weight0,
target.weight1,
target.knots0 = NULL,
target.knots1 = NULL,
m0,
m1,
uname = u,
m1.ub,
m0.ub,
m1.lb,
m0.lb,
mte.ub,
mte.lb,
m0.dec,
m0.inc,
m1.dec,
m1.inc,
mte.dec,
mte.inc,
equal.coef,
ivlike,
components,
subset,
propensity,
link = "logit",
treat,
solver,
solver.options,
solver.presolve,
solver.options.criterion,
solver.options.bounds,
criterion.tol = 0.01,
initgrid.nx = 20,
initgrid.nu = 20,
audit.nx = 2500,
audit.nu = 25,
audit.add = 100,
audit.max = 25,
audit.tol,
audit.grid = NULL,
rescale = TRUE,
point = FALSE,
point.eyeweight = FALSE,
point.center = NULL,
point.redundant = NULL,
bootstrap = FALSE,
count.moments = TRUE,

66 ivmteEstimate

orig.sset = NULL,
orig.criterion = NULL,
vars_y,
vars_mtr,
terms_mtr0,
terms_mtr1,
vars_data,
splinesobj,
splinesobj.equal,
noisy = TRUE,
smallreturnlist = FALSE,
debug = FALSE,
environments

)

Arguments

data data.frame or data.table used to estimate the treatment effects.

target character, target parameter to be estimated. The function allows for ATE ('ate'),
ATT ('att'), ATU ('atu'), LATE ('late'), and generalized LATE ('genlate').

late.Z vector of variable names used to define the LATE.

late.from baseline set of values of Z used to define the LATE.

late.to comparison set of values of Z used to define the LATE.

late.X vector of variable names of covariates to condition on when defining the LATE.

eval.X numeric vector of the values to condition variables in late.X on when estimat-
ing the LATE.

genlate.lb lower bound value of unobservable u for estimating the generalized LATE.

genlate.ub upper bound value of unobservable u for estimating the generalized LATE.

target.weight0 user-defined weight function for the control group defining the target parameter.
A list of functions can be submitted if the weighting function is in fact a spline.
The arguments of the function should be variable names in data. If the weight
is constant across all observations, then the user can instead submit the value of
the weight instead of a function.

target.weight1 user-defined weight function for the treated group defining the target parameter.
See target.weight0 for details.

target.knots0 user-defined set of functions defining the knots associated with spline weights
for the control group. The arguments of the function should consist only of
variable names in data. If the knots are constant across all observations, then
the user can instead submit the vector of knots instead of a function.

target.knots1 user-defined set of functions defining the knots associated with spline weights
for the treated group. See target.knots0 for details.

m0 one-sided formula for the marginal treatment response function for the control
group. Splines may also be incorporated using the expression uSpline, e.g.
uSpline(degree = 2, knots = c(0.4, 0.8), intercept = TRUE). The intercept
argument may be omitted, and is set to TRUE by default.

ivmteEstimate 67

m1 one-sided formula for the marginal treatment response function for the treated
group. See m0 for details.

uname variable name for the unobservable used in declaring the MTRs. The name can
be provided with or without quotation marks.

m1.ub numeric value for upper bound on MTR for the treated group. By default, this
will be set to the largest value of the observed outcome in the estimation sample.

m0.ub numeric value for upper bound on MTR for the control group. By default, this
will be set to the largest value of the observed outcome in the estimation sample.

m1.lb numeric value for lower bound on MTR for the treated group. By default, this
will be set to the smallest value of the observed outcome in the estimation sam-
ple.

m0.lb numeric value for lower bound on MTR for the control group. By default, this
will be set to the smallest value of the observed outcome in the estimation sam-
ple.

mte.ub numeric value for upper bound on treatment effect parameter of interest.
mte.lb numeric value for lower bound on treatment effect parameter of interest.
m0.dec logical, set to FALSE by default. Set equal to TRUE if the MTR for the control

group should be weakly monotone decreasing.
m0.inc logical, set to FALSE by default. Set equal to TRUE if the MTR for the control

group should be weakly monotone increasing.
m1.dec logical, set to FALSE by default. Set equal to TRUE if the MTR for the treated

group should be weakly monotone decreasing.
m1.inc logical, set to FALSE by default. Set equal to TRUE if the MTR for the treated

group should be weakly monotone increasing.
mte.dec logical, set to FALSE by default. Set equal to TRUE if the MTE should be weakly

monotone decreasing.
mte.inc logical, set to FALSE by default. Set equal to TRUE if the MTE should be weakly

monotone increasing.
equal.coef one-sided formula to indicate which terms in m0 and m1 should be constrained

to have the same coefficients. These terms therefore have no effect on the MTE.
ivlike formula or vector of formulas specifying the regressions for the IV-like esti-

mands. Which coefficients to use to define the constraints determining the treat-
ment effect bounds (alternatively, the moments determining the treatment effect
point estimate) can be selected in the argument components. If no argument is
passed, then a linear regression will be performed to estimate the MTR coeffi-
cients.

components a list of vectors of the terms in the regression specifications to include in the
set of IV-like estimands. No terms should be in quotes. To select the intercept
term, include the name intercept. If the factorized counterpart of a variable
is included in the IV-like specifications, e.g. factor(x) where x = 1, 2, 3, the
user can select the coefficients for specific factors by declaring the components
factor(x)-1, factor(x)-2,factor(x)-3. See l on how to input the argu-
ment. If no components for a IV specification are given, then all coefficients
from that IV specification will be used to define constraints in the partially iden-
tified case, or to define moments in the point identified case.

68 ivmteEstimate

subset a single subset condition or list of subset conditions corresponding to each re-
gression specified in ivlike. The input must be logical. See l on how to input
the argument. If the user wishes to select specific rows, construct a binary vari-
able in the data set, and set the condition to use only those observations for
which the binary variable is 1, e.g. the binary variable is use, and the subset
condition is use == 1.

propensity formula or variable name corresponding to propensity to take up treatment. If a
formula is declared, then the function estimates the propensity score according
to the formula and link specified in link. If a variable name is declared, then the
corresponding column in the data is taken as the vector of propensity scores. A
variable name can be passed either as a string (e.g propensity = 'p'), a variable
(e.g. propensity = p), or a one-sided formula (e.g. propensity = ~p).

link character, name of link function to estimate propensity score. Can be chosen
from 'linear', 'probit', or 'logit'. Default is set to 'logit'. The link
should be provided with quoation marks.

treat variable name for treatment indicator. The name can be provided with or without
quotation marks.

solver character, name of the programming package in R used to obtain the bounds on
the treatment effect. The function supports 'gurobi', 'cplexapi', rmosek,
'lpsolveapi'. The name of the solver should be provided with quotation
marks.

solver.options list, each item of the list should correspond to an option specific to the solver
selected.

solver.presolve

boolean, default set to TRUE. Set this parameter to FALSE if presolve should be
turned off for the LP/QCQP problems.

solver.options.criterion

list, each item of the list should correspond to an option specific to the solver
selected. These options are specific for finding the minimum criterion.

solver.options.bounds

list, each item of the list should correspond to an option specific to the solver
selected. These options are specific for finding the bounds.

criterion.tol tolerance for the criterion function, and is set to 1e-4 by default. The criterion
measures how well the IV-like moments/conditional means are matched using
the l1-norm. Statistical noise may prohibit the theoretical LP/QCQP problem
from being feasible. That is, there may not exist a set of MTR coefficients that
are able to match all the specified moments. The function thus first estimates
the minimum criterion, which is reported in the output under the name ’mini-
mum criterion’, with a criterion of 0 meaning that all moments were able to be
matched. The function then relaxes the constraints by tolerating a criterion up
to minimum criterion * (1 + criterion.tol). Set criterion.tol to a value
greater than 0 to allow for more conservative bounds.

initgrid.nx integer determining the number of points of the covariates used to form the
initial constraint grid for imposing shape restrictions on the MTRs.

initgrid.nu integer determining the number of points in the open interval (0, 1) drawn from a
Halton sequence. The end points 0 and 1 are additionally included. These points

ivmteEstimate 69

are always a subset of the points defining the audit grid (see audit.nu). These
points are used to form the initial constraint grid for imposing shape restrictions
on the u components of the MTRs.

audit.nx integer determining the number of points on the covariates space to audit in each
iteration of the audit procedure.

audit.nu integer determining the number of points in the open interval (0, 1) drawn from
a Halton sequence. The end points 0 and 1 are additionally included. These
points are used to audit whether the shape restrictions on the u components of
the MTRs are satisfied. The initial grid used to impose the shape constraints in
the LP/QCQP problem are constructed from a subset of these points.

audit.add maximum number of points to add to the initial constraint grid for imposing
each kind of shape constraint. For example, if there are 5 different kinds of
shape constraints, there can be at most audit.add * 5 additional points added
to the constraint grid.

audit.max maximum number of iterations in the audit procedure.

audit.tol feasibility tolerance when performing the audit. By default to set to be 1e-
06, which is equal to the default feasibility tolerances of Gurobi (solver =
"gurobi"), CPLEX (solver = "cplexapi"), and Rmosek (solver = "rmosek").
This parameter should only be changed if the feasibility tolerance of the solver
is changed, or if numerical issues result in discrepancies between the solver’s
feasibility check and the audit.

audit.grid list, contains the A matrix used in the audit for the original sample, as well as the
RHS vector used in the audit from the original sample.

rescale boolean, set to TRUE by default. This rescalels the MTR components to improve
stability in the LP/QCQP optimization.

point boolean. Set to TRUE if it is believed that the treatment effects are point iden-
tified. If set to TRUE and IV-like formulas are passed, then a two-step GMM
procedure is implemented to estimate the treatment effects. Shape constraints
on the MTRs will be ignored under point identification. If set to TRUE and the
regression-based criteria is used instead, then OLS will be used to estimate the
MTR coefficients used to estimate the treatment effect. If not declared, then the
function will determine whether or not the target parameter is point identified.

point.eyeweight

boolean, default set to FALSE. Set to TRUE if the GMM point estimate should use
the identity weighting matrix (i.e. one-step GMM).

point.center numeric, a vector of GMM moment conditions evaluated at a solution. When
bootstrapping, the moment conditions from the original sample can be passed
through this argument to recenter the bootstrap distribution of the J-statistic.

point.redundant

vector of integers indicating which components in the S-set are redundant.

bootstrap boolean, indicates whether the estimate is for the bootstrap.

count.moments boolean, indicate if number of linearly independent moments should be counted.

orig.sset list, only used for bootstraps. The list contains the gamma moments for each
element in the S-set, as well as the IV-like coefficients.

70 ivmteEstimate

orig.criterion numeric, only used for bootstraps. The scalar corresponds to the minimum ob-
servational equivalence criterion from the original sample.

vars_y character, variable name of observed outcome variable.

vars_mtr character, vector of variables entering into m0 and m1.

terms_mtr0 character, vector of terms entering into m0.

terms_mtr1 character, vector of terms entering into m1.

vars_data character, vector of variables that can be found in the data.

splinesobj list of spline components in the MTRs for treated and control groups. Spline
terms are extracted using removeSplines. This object is supposed to be a dic-
tionary of splines, containing the original calls of each spline in the MTRs, their
specifications, and the index used for naming each basis spline.

splinesobj.equal

list of spline components in the MTRs for treated and control groups. The struc-
ture of splinesobj.equal is the same as splinesobj, except the splines are
restricted to those whose MTR cofficients should be constrained to be equal
across treatment groups.

noisy boolean, default set to TRUE. If TRUE, then messages are provided throughout
the estimation procedure. Set to FALSE to suppress all messages, e.g. when
performing the bootstrap.

smallreturnlist

boolean, default set to FALSE. Set to TRUE to exclude large intermediary compo-
nents (i.e. propensity score model, LP/QCQP model, bootstrap iterations) from
being included in the return list.

debug boolean, indicates whether or not the function should provide output when ob-
taining bounds. The option is only applied when solver = 'gurobi' or solver
= 'rmosek'. The output provided is the same as what the Gurobi API would
send to the console.

environments a list containing the environments of the MTR formulas, the IV-like formulas,
and the propensity score formulas. If a formula is not provided, and thus no
environment can be found, then the parent.frame() is assigned by default.

Details

The treatment effects parameters the user can choose from are the ATE, ATT, ATU, LATE, and gen-
eralized LATE. The user is required to provide a polynomial expression for the marginal treatment
responses (MTR), as well as a set of regressions.

There are two approaches to estimating the treatment effect parameters. The first approach restricts
the set of MTR coefficients on each term of the MTRs to be consistent with the regression estimates
from the specifications passed through ivlike. The bounds on the treatment effect parameter cor-
respond to finding coefficients on the MTRs that maximize their average difference. If the model is
point identified, then GMM is used for estimation. Otherwise, the function solves an LP problem.
The second approach restricts the set of MTR coefficients to fit the conditional mean of the out-
come variable. If the model is point identified, then constrained least squares is used for estimation.
Otherwise, the function solves a QCQP.

ivmteSimData 71

The estimation procedure relies on the propensity to take up treatment. The propensity scores can
either be estimated as part of the estimation procedure, or the user can specify a variable in the data
set already containing the propensity scores.

Constraints on the shape of the MTRs and marginal treatment effects (MTE) can be imposed by the
user. Specifically, bounds and monotonicity restrictions are permitted. These constraints are first
enforced over a subset of points in the data. An iterative audit procedure is then performed to ensure
the constraints hold more generally.

Value

Returns a list of results from throughout the estimation procedure. This includes all IV-like esti-
mands; the propensity score model; bounds on the treatment effect; the estimated expectations of
each term in the MTRs; the components and results of the LP/QCQP problem.

ivmteSimData ivmte Simulated Data

Description

ivmte Simulated Data

Usage

ivmteSimData

Format

A data frame with 5,000 rows and 14 columns.

y binary outcome variable

d binary treatment variable

z instrument that takes the value 0, 1, 2, or 3

x covariate x that takes integer values from 1 to 10

Source

Simulated — see code in data/ivmteSimData.R.

72 lpSetup

l Listing subsets and components

Description

This function allows the user to declare a list of variable names in non-character form and subset-
ting conditions. This is used to ensure clean entry of arguments into the components and subset
arguments of the function. When selecting components to include in the S set, selecting the inter-
cept term and factor variables requires special treatment. To select the intercept term, include in the
vector of variable names, ‘intercept’. If the the factorized counterpart of a variable x = 1, 2, 3 is
included in the IV-like specifications via factor(x), the user can select the coefficients for specific
factors by declaring the components factor(x)-1, factor(x)-2, factor(x)-3.

Usage

l(...)

Arguments

... subset conditions or variable names

Value

list.

Examples

components <- l(d, x1, intercept, factor(x)-2)
subsets <- l(, z %in% c(2, 4))

lpSetup Constructing LP problem

Description

If the user passes IV-like moments to the function, then the function constructs the components of
the LP problem. If no IV-like moments are passed, then the function constructs the linear constraints
of the QCQP problem. Note that the LP/QCQP model will be saved inside an environment variable,
which is to be passed through the argument env. This is done for efficient use of memory. The
environment env is supposed to already contain a list under the entry $mbobj containing the matrices
defining the shape constraints. This list of shape constraints $mbobj should contain three entries
corresponding to a system of linear equations of the form Ax <=> b: mbA, the matrix defining the
constraints, A; mbs, a vector indicating whether a row in mbA is an equality or inequality constraint
(for Gurobi and MOSEK, use ’<=’, ’>=’, ’=’; for CPLEX, use ’L’, ’G’, and ’E’); mbrhs, a vector
of the right hand side values defining the constraint of the form i.e. the vector b. Depending on the
linear programming solver used, this function will return different output specific to the solver.

lpSetup 73

Usage

lpSetup(
env,
sset,
orig.sset = NULL,
equal.coef0 = NULL,
equal.coef1 = NULL,
shape = TRUE,
direct = FALSE,
rescale = TRUE,
solver

)

Arguments

env environment containing the matrices defining the LP/QCQP problem.

sset List of IV-like estimates and the corresponding gamma terms.

orig.sset list, only used for bootstraps. The list contains the gamma moments for each
element in the S-set, as well as the IV-like coefficients.

equal.coef0 character, name of terms in m0 that should have common coefficients with the
corresponding terms in m1.

equal.coef1 character, name of terms in m1 that should have common coefficients with the
corresponding terms in m0.

shape boolean, default set to TRUE. Switch to determine whether or not to include
shape restrictions in the LP/QCQP problem.

direct boolean, set to TRUE if the direct MTR regression is used.

rescale boolean, set to TRUE if the MTR components should be rescaled to improve
stability in the LP/QCQP optimization.

solver string, name of the package used to solve the LP/QCQP problem.

Value

A list of matrices and vectors necessary to define an LP/QCQP problem.

Examples

dtm <- ivmte:::gendistMosquito()

Declare empty list to be updated (in the event multiple IV like
specifications are provided
sSet <- list()

Declare MTR formulas
formula0 = ~ 1 + u
formula1 = ~ 1 + u

Construct object that separates out non-spline components of MTR

74 lpSetup

formulas from the spline components. The MTR functions are
obtained from this object by the function 'genSSet'.
splinesList = list(removeSplines(formula0), removeSplines(formula1))

Construct MTR polynomials
polynomials0 <- polyparse(formula = formula0,

data = dtm,
uname = u,
as.function = FALSE)

polynomials1 <- polyparse(formula = formula1,
data = dtm,
uname = u,
as.function = FALSE)

Generate propensity score model
propensityObj <- propensity(formula = d ~ z,

data = dtm,
link = "linear")

Generate IV estimates
ivEstimates <- ivEstimate(formula = ey ~ d | z,

data = dtm,
components = l(intercept, d),
treat = d,
list = FALSE)

Generate target gamma moments
targetGamma <- genTarget(treat = "d",

m0 = ~ 1 + u,
m1 = ~ 1 + u,
target = "atu",
data = dtm,
splinesobj = splinesList,
pmodobj = propensityObj,
pm0 = polynomials0,
pm1 = polynomials1)

Construct S-set. which contains the coefficients and weights
corresponding to various IV-like estimands
sSet <- genSSet(data = dtm,

sset = sSet,
sest = ivEstimates,
splinesobj = splinesList,
pmodobj = propensityObj$phat,
pm0 = polynomials0,
pm1 = polynomials1,
ncomponents = 2,
scount = 1,
yvar = "ey",
dvar = "d",
means = TRUE)

Only the entry $sset is required
sSet <- sSet$sset

lpSetupBound 75

Define additional upper- and lower-bound constraints for the LP
problem. The code below imposes a lower bound of 0.2 and upper
bound of 0.8 on the MTRs.
A <- matrix(0, nrow = 22, ncol = 4)
A <- cbind(A, rbind(cbind(1, seq(0, 1, 0.1)),

matrix(0, nrow = 11, ncol = 2)))
A <- cbind(A, rbind(matrix(0, nrow = 11, ncol = 2),

cbind(1, seq(0, 1, 0.1))))
sense <- c(rep(">", 11), rep("<", 11))
rhs <- c(rep(0.2, 11), rep(0.8, 11))

Construct LP object to be interpreted and solved by
lpSolveAPI. Note that an environment has to be created for the LP
object. The matrices defining the shape restrictions must be stored
as a list under the entry \code{$mbobj} in the environment.
modelEnv <- new.env()
modelEnv$mbobj <- list(mbA = A,

mbs = sense,
mbrhs = rhs)

Convert the matrices defining the shape constraints into a format
that is suitable for the LP solver.
lpSetup(env = modelEnv,

sset = sSet,
solver = "lpsolveapi")

Setup LP model so that it is solving for the bounds.
lpSetupBound(env = modelEnv,

g0 = targetGamma$gstar0,
g1 = targetGamma$gstar1,
sset = sSet,
criterion.tol = 0,
criterion.min = 0,
solver = "lpsolveapi")

Declare any LP solver options as a list.
lpOptions <- optionsLpSolveAPI(list(epslevel = "tight"))
Obtain the bounds.
bounds <- bound(env = modelEnv,

sset = sSet,
solver = "lpsolveapi",
solver.options = lpOptions)

cat("The bounds are [", bounds$min, ",", bounds$max, "].\n")

lpSetupBound Configure LP environment for obtaining the bounds

Description

This function sets up the LP model so that the bounds can be obtained. The LP model must be
passed as an environment variable, under the entry $model. See lpSetup.

76 lpSetupCriterion

Usage

lpSetupBound(
env,
g0,
g1,
sset,
criterion.tol,
criterion.min,
solver,
setup = TRUE

)

Arguments

env the environment containing the LP model.

g0 set of expectations for each terms of the MTR for the control group.

g1 set of expectations for each terms of the MTR for the control group.

sset a list containing the point estimates and gamma components associated with
each element in the S-set. This object is only used to determine the names of
terms. If it is no submitted, then no names are provided to the solution vector.

criterion.tol additional multiplicative factor for how much more the solution is permitted to
violate observational equivalence of the IV-like estimands, i.e. 1 + criterion.tol
will multiply criterion.min directly.

criterion.min minimum criterion, i.e. minimum deviation from observational equivalence
while satisfying shape constraints.

solver string, name of the package used to solve the LP problem.

setup boolean. If TRUE, the function will modify the LP environment so that the LP
solver can obtain the bounds. If FALSE, then it will undo the changes made by
the function if setup = TRUE.

Value

Nothing, as this modifies an environment variable to save memory.

lpSetupCriterion Configure LP environment for minimizing the criterion

Description

This function sets up the objective function for minimizing the criterion. The LP model must be
passed as an environment variable, under the entry $model. See lpSetup.

Usage

lpSetupCriterion(env, sset)

lpSetupCriterionBoot 77

Arguments

env The LP environment

sset List of IV-like estimates and the corresponding gamma terms.

Value

Nothing, as this modifies an environment variable to save memory.

lpSetupCriterionBoot Configure LP environment for specification testing

Description

This function re-centers various objects in the LP environment so that a specification test can be
performed via the bootstrap. The LP model must be passed as an environment variable, under the
entry $model. See lpSetup.

Usage

lpSetupCriterionBoot(
env,
sset,
orig.sset,
orig.criterion,
criterion.tol = 0,
setup = TRUE

)

Arguments

env the LP environment

sset list of IV-like estimates and the corresponding gamma terms.

orig.sset list, only used for bootstraps. The list caontains the gamma moments for each
element in the S-set, as well as the IV-like coefficients.

orig.criterion scalar, only used for bootstraps. This is the minimum criterion from the original
sample.

criterion.tol tolerance for violation of observational equivalence, set to 0 by default.

setup boolean. If TRUE, the function will modify the LP environment so that the LP
solver can obtain the test statistic for the specification test. If FALSE, then it will
undo the changes made by the function if setup = TRUE.

Value

Nothing, as this modifies an environment variable to save memory.

78 lpSetupInfeasible

lpSetupEqualCoef Generate equality constraints

Description

This function generates the linear constraints to ensure that certain MTR coefficients are constant
across the treatment and control group.

Usage

lpSetupEqualCoef(equal.coef0, equal.coef1, ANames)

Arguments

equal.coef0 character, name of terms in m0 that should have common coefficients with the
corresponding terms in m1.

equal.coef1 character, name of terms in m1 that should have common coefficients with the
corresponding terms in m0.

ANames character, name of all terms in m0 and m1. The names of the terms corresponding
to the treatment and control groups should be distinguishable. For example, all
terms for m0 may contain a prefix ’[m0]’, and all terms for m1 may contain
a prefix ’[m1]’. All the terms in equal.coef0 and equal.coef1 should be
contained in ANames.

Value

A list, containing the matrix of linear equality constraints, a vector of equal signs, and a vector of
0s.

lpSetupInfeasible Configure LP environment for diagnostics

Description

This function separates the shape constraints from the LP environment. That way, the model can
be solved without any shape constraints, which is the primary cause of infeasibility. This is done in
order to check which shape constraints are causing the model to be infeasible. The LP model must
be passed as an environment variable, under the entry $model. See lpSetup.

Usage

lpSetupInfeasible(env, sset)

lpSetupSolver 79

Arguments

env The LP environment
sset List of IV-like estimates and the corresponding gamma terms.

Value

Nothing, as this modifies an environment variable to save memory.

lpSetupSolver Configure LP environment to be compatible with solvers

Description

This alters the LP environment so the model will be compatible with specific solvers. The LP model
must be passed as an environment variable, under the entry $model. See lpSetup.

Usage

lpSetupSolver(env, solver)

Arguments

env The LP environment
solver Character, the LP solver.

Value

Nothing, as this modifies an environment variable to save memory.

magnitude Check magnitude of real number

Description

This function returns the order of magnitude of a a number.

Usage

magnitude(x)

Arguments

x The number to be checked.

Value

An integer indicating the order of magnitude.

80 mInt

matrixTriplets Convert matrix into triplet form

Description

This function converts matrices into triplet form for Mosek. This is required in order to declare
quadratic programming problems and second-order cone programming problems.

Usage

matrixTriplets(mat, lower = TRUE)

Arguments

mat A matrix.

lower Boolean, set to TRUE if matrix is symmetric, and only its lower triangle should
be returned.

Value

A list containing vectors of row and column indexes, and matrix values.

mInt Function to generate integral of m0 and m1

Description

Function carries out integral for a polynomial of degree 3.

Usage

mInt(ub, lb, coef)

Arguments

ub scalar, upper bound of the integral.

lb scalar, lower bound of the integral.

coef vector, polynomial coefficients.

Value

scalar.

modcall 81

modcall Auxiliary function: modifying calls

Description

This function can be used to modify calls in several ways.

Usage

modcall(call, newcall, newargs, keepargs, dropargs)

Arguments

call Call object to be modified.

newcall New function to be called.

newargs List, new arguments and their values.

keepargs List, arguments in original call to keep, with the rest being dropped.

dropargs List, arguments in original call to drop, with the rest being kept.

Value

New call object.

momentMatrix Construct pre-meaned moment matrix

Description

This function constructs the matrix to be fed into the GMM estimator to construct the moment
conditions.

Usage

momentMatrix(sset, gn0, gn1, subsetList = NULL, n = NULL)

Arguments

sset a list of lists constructed from the function genSSet. Each inner list should
include a coefficient corresponding to a term in an IV specification, a matrix
of the estimates of the gamma moments conditional on (X, Z) for d = 0, and a
matrix of the estimates of the gamma moments conditional on (X, Z) for d =
1. The column means of the last two matrices is what is used to generate the
gamma moments.

gn0 integer, number of terms in the MTR for control group.

82 negationCheck

gn1 integer, number of terms in the MTR for treated group.

subsetList list of subset indexes, one for each IV-like specification.

n number of observations in the data. This option is only used when subsets are
involved.

Value

matrix whose column means can be used to carry out the GMM estimation.

monoIntegral Integrating and evaluating monomials

Description

Analytically integrates monomials and evalates them at a given point. It is assumed that there is no
constant multiplying the monomial.

Usage

monoIntegral(u, exp)

Arguments

u scalar, the point at which to evaluate the integral. If a vector is passed, then the
integral is evaluated at all the elements of the vector.

exp The exponent of the monomial.

Value

scalar or vector, depending on what u is.

negationCheck Check if custom weights are negations of each other

Description

This function checks whether the user-declared weights for treated and control groups are in fact
negations of each other. This is problematic for the GMM procedure when accounting for estimation
error of the target weights.

negationCheck 83

Usage

negationCheck(
data,
target.knots0,
target.knots1,
target.weight0,
target.weight1,
N = 20

)

Arguments

data data set used for estimation. The comparisons are made only on values in the
support of the data set.

target.knots0 user-defined set of functions defining the knots associated with splines weights
for the control group. The arguments of the function should consist only of
variable names in data. If the knot is constant across all observations, then the
user can instead submit the value of the weight instead of a function.

target.knots1 user-defined set of functions defining the knots associated with splines weights
for the treated group. The arguments of the function should be variable names
in data. If the knot is constant across all observations, then the user can instead
submit the value of the weight instead of a function.

target.weight0 user-defined weight function for the control group defining the target parameter.
A list of functions can be submitted if the weighting function is in fact a spline.
The arguments of the function should be variable names in data. If the weight
is constant across all observations, then the user can instead submit the value of
the weight instead of a function.

target.weight1 user-defined weight function for the treated group defining the target parameter.
A list of functions can be submitted if the weighting function is in fact a spline.
The arguments of the function should be variable names in data. If the weight
is constant across all observations, then the user can instead submit the value of
the weight instead of a function.

N integer, default set to 20. This is the maxmimum number of points between
treated and control groups to compare and determine whether or not the weights
are indeed negations of one another. If the data set contains fewer than N unique
values for a given set of variables, then all those unique values are used for the
comparison.

Value

boolean. If the weights are negations of each other, TRUE is returned.

84 optionsCplexAPI

olsj OLS weights

Description

Function generating the S-weights for OLS estimand, with controls.

Usage

olsj(X, X0, X1, components, treat, order = NULL)

Arguments

X Matrix of covariates, including the treatment indicator.

X0 Matrix of covariates, once fixing treatment to be 0.

X1 Matrix of covariates, once fixing treatment to be 1.

components Vector of variable names of which user wants the S-weights for.

treat Variable name for the treatment indicator.

order integer, default set to NULL. This is simply an index of which IV-like specification
the estimate corresponds to.

Value

A list of two vectors: one is the weight for D = 0, the other is the weight for D = 1.

optionsCplexAPI Function to parse options for CPLEX

Description

This function constructs a list of options to be parsed when solver is set to cplexapi.

Usage

optionsCplexAPI(options)

optionsCplexAPISingle 85

Arguments

options list. The name of each item must be the name of the function to set the op-
tion, and is case sensitive. The value assigned to each item is the value to set
the option to. The env argument should always be omitted. If the option ac-
cepts a list of parameters, then these parameters should be passed as using a
named vector (e.g. list(setLogFileNameCPLEX = c(filename = "cpx.log",
mode = "w"))). If the function to set the option can be used multiple times, then
the value submitted should be a a list, with each entry being a named vector (e.g.
list(setDblParmCPLEX = list(c(parm = 1016, value = 1e-04), c(parm = 1084,
value = 2)))). If the option only requires the env parameter, then an NA should
be passed as the parameter value (e.g. list(setDefaultParm = NA)).

Value

list, each element being the command to evaluate to implement an option.

optionsCplexAPISingle Function to parse a single set of options for CPLEX

Description

This function constructs a string to be parsed when solver is set to cplexapi.

Usage

optionsCplexAPISingle(name, vector)

Arguments

name string, name of the cplexapi function to call to implement the option.

vector a named vector, contains the argument names and values of the options. The
env argument in the cplexapi documentation should always be omitted.

Value

string, the command to be evaluated to implement a single option.

86 optionsGurobi

optionsCplexAPITol Function to extract feasibility tolerance from CPLEX options

Description

This function parses through the user-submitted CPLEX options to determine what the feasibility
tolerance is. This tolerance can then be used for the audit. If the user does not set the CPLEX
feasibility tolerance, then a default value of 1e-06 is returned.

Usage

optionsCplexAPITol(options)

Arguments

options list, the set of options submitted by the user.

Value

scalar, the level to set the audit tolerance at.

optionsGurobi Function to parse options for Gurobi

Description

This function constructs a list of options to be parsed when solver is set to Gurobi. This function
really implements some default values, and accounts for the debug option.

Usage

optionsGurobi(options, debug)

Arguments

options list. The list should be structured the same way as if one were using the gurobi
library directly. That is, the name of each item must be the name of the option,
and is case sensitive. The value assigned to each item is the value to set the
option to.

debug boolean, indicates whether or not the function should provide output when ob-
taining bounds. The output provided is the same as what the Gurobi API would
send to the console.

Value

list, the set of options declared by the user, including some additional default values (if not assigned
by the user) and accounting for debug.

optionsLpSolveAPI 87

optionsLpSolveAPI Function to parse options for lp_solve

Description

This function constructs a list of options to be parsed when solver is set to lpsolveapi. The
options permitted are those that can be set via lpSolveAPI::lp.control, and should be passed as
a named list (e.g. list(epslevel = "tight")).

Usage

optionsLpSolveAPI(options)

Arguments

options list. The name of each item must be the name of the option, and is case sensitive.
The value assigned to each item is the value to set the option to. The lprec
argument should always be omitted.

Value

string, the command to be evaluated to implement the options.

optionsRmosek Function to parse options for Gurobi

Description

This function constructs a list of options to be parsed when solver is set to Rmosek. This function
really implements the default feasibility tolerances.

Usage

optionsRmosek(options, debug)

Arguments

options list. Each set of options should be passed as a list, with the name of each entry
being the name of the class of options. For example, options for double param-
eters should be contained in the entrydparam = list(BASIS_TOL_X = 1e-06).

debug boolean, indicates whether or not the function should provide output when ob-
taining bounds. The output provided is the same as what Mosek would send to
the console.

Value

list, the set of options declared by the user, including some additional default values.

88 permute

parenthBoolean Correct boolean expressions in terms lists

Description

This function takes a vector of terms and places parentheses around boolean expressions.

Usage

parenthBoolean(termsList)

Arguments

termsList character vector, the vector of terms.

Value

character vector.

permute Auxiliary function: generate all permutations of a vector

Description

This function generates every permutation of the elements in a vector.

Usage

permute(vector)

Arguments

vector The vector whose elements are to be permuted.

Value

a list of all the permutations of vector.

permuteN 89

permuteN Auxiliary function: generate all permutation orderings

Description

This function generates every permutation of the first n natural numbers.

Usage

permuteN(n)

Arguments

n integer, the first n natural numbers one wishes to permute.

Value

a list of all the permutations of the first n natural numbers.

piv Obtaining IV-like estimands

Description

This function performs TSLS to obtain the estimates for the IV-like estimands.

Usage

piv(
Y,
X,
Z,
lmcomponents = NULL,
weights = NULL,
order = NULL,
excluded = TRUE

)

Arguments

Y the vector of outcomes.

X the matrix of covariates (includes endogenous and exogenous covariates).

Z the matrix of instruments (includes exogenous covariates in the second stage).

90 polyparse

lmcomponents vector of variable names from the second stage that we want to include in the
S-set of IV-like estimands. If NULL is submitted, then all components will be
included.

weights vector of weights.

order integer, the counter for which IV-like specification and component the regression
is for.

excluded boolean, to indicate whether or not the regression involves excluded variables.

Value

vector of select coefficient estimates.

polyparse Parsing marginal treatment response formulas

Description

This function takes in an MTR formula, and then parses the formula such that it becomes a poly-
nomial in the unobservable u. It then breaks these polynomials into monomials, and then integrates
each of them with respect to u. Each integral corresponds to E[md | D, X, Z].

Usage

polyparse(
formula,
data,
uname = "u",
env = parent.frame(),
as.function = FALSE

)

Arguments

formula the MTR.

data data.frame for which we obtain E[md | D, X, Z] for each observation.

uname variable name for unobservable used in declaring the MTR.

env environment, the original environment in which the formula was declared.

as.function boolean, if FALSE then a list of the polynomial terms are returned; if TRUE then
a list of functions corresponding to the polynomials are returned.

Value

A list (of lists) of monomials corresponding to the original MTR (for each observation); a list (of
lists) of the integrated monomials; a vector for the degree of each of the original monomials in the
MTR; and a vector for the names of each variable entering into the MTR (note x^2 + x has only one
term, x).

polyProduct 91

Examples

dtm <- ivmte:::gendistMosquito()

Declare MTR functions
formula1 = ~ 1 + u
formula0 = ~ 1 + u

Construct MTR polynomials
polynomials0 <- polyparse(formula = formula0,

data = dtm,
uname = u,
as.function = FALSE)

polynomials1 <- polyparse(formula = formula0,
data = dtm,
uname = u,
as.function = FALSE)

polyProduct Function to multiply polynomials

Description

This function takes in two vectors characterizing polynomials. It then returns a vector characterizing
the product of the two polynomials.

Usage

polyProduct(poly1, poly2)

Arguments

poly1 vector, characerizing a polynomial.

poly2 vector, characerizing a polynomial.

Value

vector, characterizing the product of the two polynomials characterized poly1 and poly2.

92 print.ivmte

popmean Calulating population mean

Description

Given a distribution, this function calculates the population mean for each term in a formula.

Usage

popmean(formula, distribution, density = "f")

Arguments

formula formula, each term of which will have its mean calculated.

distribution data.table, characterizing the distribution of the variables entering into formula.

density string, name of the variable data characterizing the density.

Value

vector, the means for each term in formula.

print.ivmte Print results

Description

This function uses the print method on the ivmte return list.

Usage

S3 method for class 'ivmte'
print(x, ...)

Arguments

x an object returned from ’ivmte’.

... additional arguments.

Value

basic set of results.

propensity 93

propensity Estimating propensity scores

Description

This function estimates the propensity of taking up treatment. The user can choose from fitting
a linear probability model, a logit model, or a probit model. The function can also be used to
generate a table of propensity scores for a given set of covariates and excluded variables. This
was incorporated to account for the LATE being a target parameter. Specifically, if the argument
formula is the name of a variable in data, but the target parameter is not the LATE, then no
propensity model is returned. If the target parameter is the LATE, then then the propensity model is
simply the empirical distribution of propensity scores in the data conditioned on the set of covariates
declared in late.X and late.Z.

Usage

propensity(formula, data, link = "logit", late.Z, late.X, env = parent.frame())

Arguments

formula Formula characterizing probability model. If a variable in the data already con-
tains the propensity scores, input the variable as a one-sided formula. For exam-
ple, if the variable pz contains the propensity score, input formula = ~ pz.

data data.frame with which to estimate the model.

link Link function with which to estimate probability model. Can be chosen from
"linear", "logit", or "probit".

late.Z A vector of variable names of excluded variables. This is required when the
target parameter is the LATE.

late.X A vector of variable names of non-excluded variables. This is required when
the target parameter is the LATE, and the estimation procedure will condition
on these variables.

env environment, the environment for the original propensity score formula.

Value

A vector of propensity scores for each observation, as well as a ’model’. If the user inputs a formula
characterizing the model for taking up treatment, then the lm/glm object is returned. If the user
declares a variable in the data set to be used as the propensity score, then a data.frame containing
the propensity score for each value of the covariates in the probability model is returned.

Examples

dtm <- ivmte:::gendistMosquito()

Declaring a probability model.
propensity(formula = d ~ z,

94 qpSetupBound

data = dtm,
link = "linear")

Declaring a variable to be used instead
propensity(formula = ~ pz,

data = dtm,
link = "linear")

qpSetup Constructing QCQP problem

Description

This function is only used when the direct MTR regression procedure is used. This function simply
constructs the quadratic constraint, and adds it to the LP problem defined by the linear optimization
problem for the bounds and the linear shape constraints.

Usage

qpSetup(env, sset, rescale = TRUE)

Arguments

env environment containing the matrices defining the LP problem.

sset A list containing the covariats and outcome variable for the direct MTR regres-
sion.

rescale boolean, set to TRUE if the MTR components should be rescaled to improve
stability in the LP/QP/QCP optimization.

qpSetupBound Constructing QCQP problem for bounding

Description

This function is only used when the direct MTR regression procedure is used. This function simply
constructs the quadratic constraint, and adds it to the LP problem defined by the linear optimization
problem for the bounds and the linear shape constraints.

qpSetupCriterion 95

Usage

qpSetupBound(
env,
g0,
g1,
criterion.tol,
criterion.min,
rescale = FALSE,
setup = TRUE

)

Arguments

env environment containing the matrices defining the LP problem.

g0 set of expectations for each terms of the MTR for the control group.

g1 set of expectations for each terms of the MTR for the control group.

criterion.tol non-negative scalar, determines how much the quadratic constraint should be
relaxed by. If set to 0, the constraint is not relaxed at all.

criterion.min minimum of (SSR - SSY) of a linear regression with shape constraints.

rescale boolean, set to TRUE if the MTR components should be rescaled to improve
stability in the LP/QP/QCP optimization.

setup boolean, set to TRUE if the QP problem should be set up for solving the bounds,
which includes the quadratic constraint. Set to FALSE if the quadratic constraint
should be removed.

Value

A list of matrices and vectors necessary to define an LP problem for Gurobi or MOSEK.

qpSetupCriterion Configure QCQP problem to find minimum criterion

Description

This function sets up the objective function for minimizing the criterion. The QCQP model must
be passed as an environment variable, under the entry $model. See qpSetup.

Usage

qpSetupCriterion(env)

Arguments

env The LP environment

96 removeSplines

Value

Nothing, as this modifies an environment variable to save memory.

qpSetupInfeasible Configure QP environment for diagnostics

Description

This function separates the shape constraints from the QP environment. That way, the model can
be solved without any shape constraints, which is the primary cause of infeasibility. This is done in
order to check which shape constraints are causing the model to be infeasible. The QP model must
be passed as an environment variable, under the entry $model. See lpSetup.

Usage

qpSetupInfeasible(env, rescale)

Arguments

env The LP environment

rescale boolean, set to TRUE if the MTR components should be rescaled to improve
stability in the LP/QP/QCP optimization.

Value

Nothing, as this modifies an environment variable to save memory.

removeSplines Separating splines from MTR formulas

Description

This function separates out the function calls uSpline() and uSplines() potentially embedded in
the MTR formulas from the rest of the formula. The terms involving splines are treated separately
from the terms that do not involve splines when creating the gamma moments.

Usage

removeSplines(formula, env = parent.frame())

Arguments

formula the formula that is to be parsed.

env environment in which to formulas. This is necessary as splines may be declared
using objects, e.g. knots = x, where x = c(0.3, 0.64, 0.9).

rescaleX 97

Value

a list containing two objects. One object is formula but with the spline components removed. The
second object is a list. The name of each element is the uSpline()/uSplines() command, and the
elements are a vector of the names of covariates that were interacted with the uSpline()/uSplines()
command.

Examples

Declare and MTR with a sline component.
m0 = ~ x1 + x1 : uSpline(degree = 2,

knots = c(0.2, 0.4)) +
x2 : uSpline(degree = 2,

knots = c(0.2, 0.4)) +
x1 : x2 : uSpline(degree = 2,

knots = c(0.2, 0.4)) +
uSpline(degree = 3,

knots = c(0.2, 0.4),
intercept = FALSE)

Now separate the spline component from the non-spline component
removeSplines(m0)

rescaleX Function to implement rescaling procedure

Description

This function rescales the matrix of covariates used in the direct regression to improve the condi-
tioning number and the stability of the estimation procedure.

Usage

rescaleX(sset, dVec, drY, drN)

Arguments

sset a list of lists constructed from the function genSSet. In the case of a direct
regression, ’sset’ contains only one inner list. This list contains the gamma
moment at the individual level.

dVec Vector of treatment statuses from the data.

drY Vector of outcomes from the data.

drN Scalar, number of observations in the data.

Value

List of rescaled covariates.

98 rhalton

restring Auxiliary function that converts an expression of variable names into
a vector of strings.

Description

Auxiliary function that converts an expression of variable names into a vector of strings.

Usage

restring(vector, substitute = TRUE, command = "c")

Arguments

vector An expression of a list of variable names.

substitute Boolean option of whether or not we wish to use the substitute command
when implementing this function. Note that this substitutes the argument of
the function. If substitute = FALSE, then the function will instead treat the
arguments as variables, and substitute in their values.

command character, the name of the function defining the vector or list, e.g. "c", "list", "l".
This let’s the function determine how many characters in front to remove.

Value

A vector of variable names (strings).

Examples

a <- 4
b <- 5
ivmte:::restring(c(a, b), substitute = TRUE)
ivmte:::restring(c(a, b), substitute = FALSE)

rhalton Generate Halton sequence

Description

This function generates a one dimensional Halton sequence.

Usage

rhalton(n, base = 2)

runCplexAPI 99

Arguments

n Number of draws.

base Base used for the Halton sequence, set to 2 by default.

Value

A sequence of randomly drawn numbers.

runCplexAPI Running cplexAPI solver

Description

This function solves the LP problem using the cplexAPI package. The object generated by lpSetup
is not compatible with the cplexAPI functions. This function adapts the object to solve the LP
problem. See runGurobi for additional error code labels.

Usage

runCplexAPI(model, lpdir, solver.options)

Arguments

model list of matrices and vectors defining the linear programming problem.

lpdir input either CPX_MAX or CPX_MIN, which sets the LP problem as a maxi-
mization or minimization problem.

solver.options list, each item of the list should correspond to an option specific to the LP solver
selected.

Value

a list of the output from CPLEX. This includes the objective value, the solution vector, and the
optimization status (status of 1 indicates successful optimization).

100 runLpSolveAPI

runGurobi Running Gurobi solver

Description

This function solves the LP/QCQP problem using the Gurobi package. The object generated by
lpSetup is compatible with the gurobi function. See runCplexAPI for additional error code labels.

Usage

runGurobi(model, solver.options)

Arguments

model list of matrices and vectors defining the linear programming problem.

solver.options list, each item of the list should correspond to an option specific to the LP solver
selected.

Value

a list of the output from Gurobi. This includes the objective value, the solution vector, and the
optimization status (status of 1 indicates successful optimization) .

runLpSolveAPI Running lpSolveAPI

Description

This function solves the LP problem using the lpSolveAPI package. The object generated by
lpSetup is not compatible with the lpSolveAPI functions. This function adapts the object to solve
the LP problem. See runGurobi and runCplexAPI for additional error code labels.

Usage

runLpSolveAPI(model, modelsense, solver.options)

Arguments

model list of matrices and vectors defining the linear programming problem.

modelsense input either ’max’ or ’min’ which sets the LP problem as a maximization or
minimization problem.

solver.options list, each item of the list should correspond to an option specific to the LP solver
selected.

runMosek 101

Value

a list of the output from lpSolveAPI. This includes the objective value, the solution vector, and the
optimization status (status of 1 indicates successful optimization).

runMosek Running Rmosek

Description

This function solves the LP/QCQP problem using the Rmosek package. The object generated by
lpSetup is not compatible with the Rmosek functions. This function adapts the object to solve the
LP problem. See runGurobi and runCplexAPI for additional error code labels.

Usage

runMosek(model, modelsense, solver.options, debug = FALSE)

Arguments

model list of matrices and vectors defining the linear programming problem.

modelsense input either ’max’ or ’min’ which sets the LP problem as a maximization or
minimization problem.

solver.options list, each item of the list should correspond to an option specific to the LP solver
selected.

debug boolean, indicates whether or not the function should provide output when ob-
taining bounds. The output provided is the same as what the Mosek would send
to the console.

Value

a list of the output from Rmosek. This includes the objective value, the solution vector, and the
optimization status (status of 1 indicates successful optimization).

selectViolations Select points from audit grid to add to the constraint grid

Description

This function selects which points from the audit grid should be included into the original grid.
Both the constraint grid and audit grid are represented as constraints in an LP/QCQP problem. This
function selects which points in the audit grid (i.e. which rows in the audit constraint matrix) should
be added to the constraint grid (i.e. should be appended to the constraint matrix).

102 selectViolations

Usage

selectViolations(
diffVec,
audit.add,
lb0seq,
lb1seq,
lbteseq,
ub0seq,
ub1seq,
ubteseq,
mono0seq,
mono1seq,
monoteseq,
mbmap

)

Arguments

diffVec numeric vector, with a positive value indicating a violation of a shape constraint.
audit.add integer, the number of points from the audit grid to add to the initial for each

constraint type. For instance, if there are 5 different kinds of constraints im-
posed, and audit.add = 5, then up to 30 points may be added to the constraint
grid.

lb0seq integer vector, indicates which rows in the audit constraint matrix correspond to
the lower bound for m0.

lb1seq integer vector, indicates which rows in the audit constraint matrix correspond to
the lower bound for m1.

lbteseq integer vector, indicates which rows in the audit constriant matrix correspond to
the lower bound for the treatment effect.

ub0seq integer vector, indicates which rows in the audit constraint matrix correspond to
the upper bound for m0.

ub1seq integer vector, indicates which rows in the audit constraint matrix correspond to
the upper bound for m1.

ubteseq integer vector, indicates which rows in the audit constriant matrix correspond to
the upper bound for the treatment effect.

mono0seq integer matrix, indicates which rows in the audit constraint matrix correspond
to the monotonicity conditions for m0, and whether the constraint is increasing
(+1) or decreasing (-1).

mono1seq integer matrix, indicates which rows in the audit constraint matrix correspond
to the monotonicity conditions for m1, and whether the constraint is increasing
(+1) or decreasing (-1).

monoteseq integer matrix, indicates which rows in the audit constraint matrix correspond to
the monotonicity conditions for the treatment effect, and whether the constraint
is increasing (+1) or decreasing (-1).

mbmap integer vector, indexes the X-value associated with each row in the audit con-
straint matrix.

sOls1d 103

Value

The audit grid is represented using a set of constraint matrices. Each point in the audit grid corre-
sponds to a set of rows in the constraint matrices. The function simply returns the vector of row
numbers for the points from the audit grid whose corresponding constraints should be added to the
original LP/QCQP problem (i.e. the points to add to the original grid).

sOls1d IV-like weighting function, OLS specification 1

Description

IV-like weighting function for OLS specification 1.

Usage

sOls1d(d, exx)

Arguments

d 0 or 1, indicating treatment or control.
exx the matrix E[XX’]

Value

scalar.

sOls2d IV-like weighting function, OLS specification 2

Description

IV-like weighting function for OLS specification 2.

Usage

sOls2d(x, d, exx)

Arguments

x vector, the value of the covariates other than the intercept and the treatment
indicator.

d 0 or 1, indicating treatment or control.
exx the matrix E[XX’]

Value

scalar.

104 sOlsSplines

sOls3 IV-like weighting function, OLS specification 3

Description

IV-like weighting function for OLS specification 3.

Usage

sOls3(x, d, j, exx)

Arguments

x vector, the value of the covariates other than the intercept and the treatment
indicator.

d 0 or 1, indicating treatment or control.
j scalar, position of the component one is interested in constructing the IV-like

weight for.
exx the matrix E[XX’]

Value

scalar.

sOlsSplines IV-like weighting function, OLS specifications

Description

IV-like weighting function for OLS specifications.

Usage

sOlsSplines(x = NULL, d, j, exx)

Arguments

x vector, the value of the covariates other than the intercept and the treatment
indicator.

d 0 or 1, indicating treatment or control.
j scalar, position of the component one is interested in constructing the IV-like

weight for.
exx matrix corresponding to E[XX’].

Value

scalar.

splineInt 105

splineInt Integrating splines

Description

This function simply integrates the splines.

Usage

splineInt(ub, lb, knots, degree, intercept = FALSE)

Arguments

ub scalar, upperbound of integral.

lb scalar, lowerbound of integral.

knots vector, knots of the spline.

degree scalar, degre of spline.

intercept boolean, set to TRUE if spline basis should include a component so that the
basis sums to 1.

Value

vector, each component being the integral of a basis.

splinesBasis Evaluating splines basis functions

Description

This function evaluates the splines basis functions. Unlike the bSpline in the splines2 package,
this function returns the value of a single spline basis, rather than a vector of values for all the spline
basis functions.

Usage

splinesBasis(x, knots, degree, intercept = TRUE, i, boundary.knots = c(0, 1))

106 splineUpdate

Arguments

x vector, the values at which to evaluate the basis function.

knots vector, the internal knots.

degree integer, the degree of the splines.

intercept boolean, default set to TRUE. This includes an additional component to the basis
splines so that the splines are a partition of unity (i.e. the sum of all components
equal to 1).

i integer, the basis component to be evaluated.

boundary.knots vector, default is c(0, 1).

Value

scalar.

splineUpdate Constructing higher order splines

Description

This function recursively constructs the higher order splines basis. Note that the function does not
take into consideration the order of the final basis function. The dimensions of the inputs dicate
this, and are updated in each iteration of the recursion. The recursion ends once the row number of
argument bmat reaches 1. This function was coded in accordance to Carl de Boor’s set of notes on
splines, "B(asic)-Spline Basics".

Usage

splineUpdate(x, bmat, knots, i, current.order)

Arguments

x vector, the values at which to evaluate the basis function.

bmat matrix. Each column of bmat corresponds to an element of argument x. Each
row corresponds to the evaluation of basis component i, i + 1, The recursive
nature of splines requires that we initially evaluate the basis functions for com-
ponents i, ..., i + degree of spline. Each iteration of the recursion reduces the
row of bmat by 1. The recursion terminates once bmat has only a single row.

knots vector, the internal knots.

i integer, the basis component of interest.

current.order integer, the current order associated with the argument bmat.

Value

vector, the evaluation of the spline at each value in vector x.

statusString 107

statusString Convert status code to string

Description

This function returns the status code specific to a solver.

Usage

statusString(status, solver)

Arguments

status Status code.

solver Name of solver, either ’gurobi’, ’cplexapi’, or ’lpsolveapi’.

Value

Status specific to solver, e.g. ’OPTIMAL (2)’.

sTsls IV-like weighting function, TSLS specification

Description

IV-like weighting function for TSLS specification.

Usage

sTsls(z, j, exz, pi)

Arguments

z vector, the value of the instrument.

j scalar, position of the component one is interested in constructing the IV-like
weight for.

exz the matrix E[XZ’]

pi the matrix E[XZ’]E[ZZ’]^-1

Value

scalar.

108 subsetclean

sTslsSplines IV-like weighting function, TSLS specification

Description

IV-like weighting function for TSLS specification.

Usage

sTslsSplines(z, d, j, exz, pi)

Arguments

z vector, the value of the instrument.

d 0 or 1, indicating treatment or control (redundant in this function; included to
exploit apply()).

j scalar, position of the component one is interested in constructing the IV-like
weight for.

exz matrix, corresponds to E[XZ’].

pi matrix, corresponds to E[XZ’]E[ZZ’]^-1, the first stage regression.

Value

scalar.

subsetclean Auxiliary function: remove extraneous spaces

Description

Auxiliary function to remove extraneous spaces from strings.

Usage

subsetclean(string)

Arguments

string the string object to be cleaned.

Value

a string

summary.ivmte 109

summary.ivmte Summarize results

Description

This function uses the summary method on the ivmte return list.

Usage

S3 method for class 'ivmte'
summary(object, ...)

Arguments

object an object returned from ’ivmte’.

... additional arguments.

Value

summarized results.

sWald IV-like weighting function, Wald specification

Description

IV-like weighting function for OLS specification 2.

Usage

sWald(z, p.to, p.from, e.to, e.from)

Arguments

z vector, the value of the instrument.

p.to P[Z = z’], where z’ is value of the instrument the agent is switching to.

p.from P[Z = z], where z is the value of the instrument the agent is switching from.

e.to E[D | Z = z’], where z’ is the value of the instrument the agent is switching to.

e.from E[D | Z = z], where z is the value of the instrument the agent is switching from.

Value

scalar.

110 tsls

symat Generate symmetric matrix

Description

Function takes in a vector of values, and constructs a symmetric matrix from it. Diagonals must be
included. The length of the vector must also be consistent with the number of "unique" entries in
the symmetric matrix. Note that entries are filled in along the columns (i.e. equivalent to byrow =
FALSE).

Usage

symat(values)

Arguments

values vector, the values that enter into the symmetric matrix. Dimensions will be
determined automatically.

Value

matrix.

tsls TSLS weights, with controls

Description

Function generating the S-weights for TSLS estimand, with controls.

Usage

tsls(X, Z, Z0, Z1, components, treat, order = NULL)

Arguments

X Matrix of covariates, including the treatment indicator.

Z Matrix of instruments.

Z0 Matrix of instruments, fixing treatment to 0.

Z1 Matrix of instruments, fixing treatment to 1.

components Vector of variable names of which user wants the S-weights for.

treat Variable name for the treatment indicator.

order integer, default set to NULL. This is simply an index of which IV-like specification
the estimate corresponds to.

unstring 111

Value

A list of two vectors: one is the weight for D = 0, the other is the weight for D = 1.

unstring Auxiliary function that converts a vector of strings into an expression
containing variable names.

Description

Auxiliary function that converts a vector of strings into an expression containing variable names.

Usage

unstring(vector)

Arguments

vector Vector of variable names (strings).

Value

An expression for the list of variable names that are not strings.

Examples

ivmte:::unstring(c("a", "b"))

uSplineBasis Spline basis function

Description

This function evaluates the splines that the user specifies when declaring the MTRs. This is to be
used for auditing, namely when checking the boundedness and monotonicity conditions.

Usage

uSplineBasis(x, knots, degree = 0, intercept = TRUE)

Arguments

x the points to evaluate the integral of the the splines.

knots the knots of the spline.

degree the degree of the spline; default is set to 0 (constant splines).

intercept boolean, set to TRUE if intercept term is to be included (i.e. an additional basis
such that the sum of the splines at every point in x is equal to 1).

112 uSplineInt

Value

a matrix, the values of the integrated splines. Each row corresponds to a value of x; each column
corresponds to a basis defined by the degrees and knots.

Examples

Since the splines are declared as part of the MTR, you will need
to have parsed out the spline command. Thus, this command will be
called via eval(parse(text = .)). In the examples below, the
commands are parsed from the object \code{splineslist} generated
by \code{\link[MST]{removeSplines}}. The names of the elements in
the list are the spline commands, and the elements themselves are
the terms that interact with the splines.

Declare MTR function
m0 = ~ x1 + x1 : uSpline(degree = 2,

knots = c(0.2, 0.4)) +
x2 : uSpline(degree = 2,

knots = c(0.2, 0.4)) +
x1 : x2 : uSpline(degree = 2,

knots = c(0.2, 0.4)) +
uSpline(degree = 3,

knots = c(0.2, 0.4),
intercept = FALSE)

Extract spline functions from MTR function
splineslist <- removeSplines(m0)$splineslist

Declare points at which we wish to evaluate the spline functions
x <- seq(0, 1, 0.2)

Evaluate the splines
eval(parse(text = gsub("uSpline\\(",

"ivmte:::uSplineBasis(x = x, ",
names(splineslist)[1])))

eval(parse(text = gsub("uSpline\\(",
"ivmte:::uSplineBasis(x = x, ",
names(splineslist)[2])))

uSplineInt Integrated splines

Description

This function integrates out splines that the user specifies when declaring the MTRs. This is to be
used when generating the gamma moments.

uSplineInt 113

Usage

uSplineInt(x, knots, degree = 0, intercept = TRUE)

Arguments

x the points to evaluate the integral of the the splines.

knots the knots of the spline.

degree the degree of the spline; default is set to 0 (constant splines).

intercept boolean, set to TRUE if intercept term is to be included (i.e. an additional basis
such that the sum of the splines at every point in x is equal to 1).

Value

a matrix, the values of the integrated splines. Each row corresponds to a value of x; each column
corresponds to a basis defined by the degrees and knots.

Examples

Since the splines are declared as part of the MTR, you will need
to have parsed out the spline command. Thus, this command will be
called via eval(parse(text = .)). In the examples below, the
commands are parsed from the object \code{splineslist} generated
by \code{\link[MST]{removeSplines}}. The names of the elements in
the list are the spline commands, and the elements themselves are
the terms that interact with the splines.

Declare MTR function
m0 = ~ x1 + x1 : uSpline(degree = 2,

knots = c(0.2, 0.4)) +
x2 : uSpline(degree = 2,

knots = c(0.2, 0.4)) +
x1 : x2 : uSpline(degree = 2,

knots = c(0.2, 0.4)) +
uSpline(degree = 3,

knots = c(0.2, 0.4),
intercept = FALSE)

Separate the spline components from the MTR function
splineslist <- removeSplines(m0)$splineslist

Delcare the points at which we wish to evaluate the integrals
x <- seq(0, 1, 0.2)

Evaluate the splines integrals
eval(parse(text = gsub("uSpline\\(",

"ivmte:::uSplineInt(x = x, ",
names(splineslist)[1])))

eval(parse(text = gsub("uSpline\\(",

114 wate1

"ivmte:::uSplineInt(x = x, ",
names(splineslist)[2])))

vecextract Auxiliary function: extracting elements from strings

Description

This auxiliary function extracts the (string) element in the position argument of the vector argu-
ment.

Usage

vecextract(vector, position, truncation = 0)

Arguments

vector the vector from which we want to extract the elements.

position the position in vector to extract.

truncation the number of characters from the front of the element being extracted that
should be dropped.

Value

A chracter/string.

wate1 Target weight for ATE

Description

Function generates the target weight for the ATE.

Usage

wate1(data)

Arguments

data data.frame on which the estimation is performed.

Value

The bounds of integration over unobservable u, as well as the multiplier in the weight.

watt1 115

watt1 Target weight for ATT

Description

Function generates the target weight for the ATT.

Usage

watt1(data, expd1, propensity)

Arguments

data data.frame on which the estimation is performed.

expd1 Scalar, the probability that treatment is received.

propensity Vector of propensity to take up treatment.

Value

The bounds of integration over unobservable u, as well as the multiplier in the weight.

wAttSplines Target weighting function, for ATT

Description

Target weighting function, for the ATT.

Usage

wAttSplines(z, d, ed)

Arguments

z vector, the value of the instrument (redundant in this function; included to ex-
ploit apply()).

d 0 or 1, indicating treatment or control (redundant in this function; included to
exploit apply()).

ed scalar, unconditional probability of taking up treatment.

Value

scalar.

116 weights

watu1 Target weight for ATU

Description

Function generates the target weight for the ATT.

Usage

watu1(data, expd0, propensity)

Arguments

data data.frame on which the estimation is performed.

expd0 Scalar, the probability that treatment is not recieved.

propensity Vector of propensity to take up treatment.

Value

The bounds of integration over unobservable u, as well as the multiplier in the weight.

weights Generating splines weights

Description

This function generates the weights required to construct splines of higher order. This function was
coded in accordance to Carl de Boor’s set of notes on splines, "B(asic)-Spline Basics".

Usage

weights(x, knots, i, order)

Arguments

x vector, the values at which to evaluate the basis function.

knots vector, the internal knots.

i integer, the basis component to be evaluated.

order integer, the order of the basis. Do not confuse this with the degree of the splines,
i.e. order = degree + 1.

Value

scalar.

wgenlate1 117

wgenlate1 Target weight for generalized LATE

Description

Function generates the target weight for the generalized LATE, where the user can specify the
interval of propensity scores defining the compliers.

Usage

wgenlate1(data, ulb, uub)

Arguments

data data.frame on which the estimation is performed.

ulb Numeric, lower bound of interval.

uub Numeric, upper bound of interval.

Value

The bounds of integration over unobservable u, as well as the multiplier in the weight.

whichforlist Auxiliary function: which for lists

Description

Auxiliary function that makes it possible to use which with a list.

Usage

whichforlist(vector, obj)

Arguments

vector the vector for which we want to check the entries of

obj the value for which we want the vector to match on.

Value

a vector of positions where the elements in vector are equal to obj.

118 wlate1

wlate1 Target weight for LATE

Description

Function generates the target weight for the LATE, conditioned on a specific value of the covariates.

Usage

wlate1(data, from, to, Z, model, X, eval.X)

Arguments

data data.frame on which the estimation is performed.

from Vector of baseline values for the instruments.

to Vector of comparison values for the instruments.

Z Character vector of names of instruments.

model A lm or glm object, or a data.frame, which can be used to estimate the propen-
sity to take up treatment for the specified values of the instruments.

X Character vector of variable names for the non-excluded variables the user wishes
to condition the LATE on.

eval.X Vector of values the user wishes to condition the X variables on.

Value

The bounds of integration over unobservable u, as well as the multiplier in the weight.

Index

∗ datasets
AE, 5
ivmteSimData, 71

AE, 5
altDefSplinesBasis, 5
argstring, 6
audit, 6

bound, 13
boundCI, 16
boundPvalue, 17
bX, 18

checkU, 18
classFormula, 19
classList, 19
combinemonobound, 20
constructConstant, 20
criterionMin, 21

design, 23

extractcols, 24

fmtResult, 25
funEval, 25

genBasisSplines, 26
genboundA, 26
gendist1, 28
gendist1e, 29
gendist2, 29
gendist3, 30
gendist3e, 30
gendist4, 31
gendist5e, 32
gendist6e, 32
gendistBasic, 33
gendistCovariates, 33
gendistMosquito, 34

gendistSplines, 34
genej, 35
genGamma, 35
genGammaSplines, 37
genGammaSplinesTT, 38
genGammaTT, 39
gengrid, 39
genmonoA, 40
genmonoboundA, 42
genSSet, 44, 51, 81, 97
genTarget, 47
genWeight, 49
getXZ, 50
gmmEstimate, 51

interactSplines, 53
isfunctionstring, 54
ivEstimate, 55
ivmte, 43, 56, 64
ivmteEstimate, 64
ivmteSimData, 71

l, 59, 67, 68, 72
lpSetup, 13, 21, 72, 75–79, 96, 99–101
lpSetupBound, 75
lpSetupCriterion, 76
lpSetupCriterionBoot, 77
lpSetupEqualCoef, 78
lpSetupInfeasible, 78
lpSetupSolver, 79

magnitude, 79
matrixTriplets, 80
mInt, 80
modcall, 81
momentMatrix, 81
monoIntegral, 82

negationCheck, 82

olsj, 84

119

120 INDEX

optionsCplexAPI, 84
optionsCplexAPISingle, 85
optionsCplexAPITol, 86
optionsGurobi, 86
optionsLpSolveAPI, 87
optionsRmosek, 87

parenthBoolean, 88
permute, 88
permuteN, 89
piv, 89
polyparse, 90
polyProduct, 91
popmean, 92
print.ivmte, 92
propensity, 93

qpSetup, 94, 95
qpSetupBound, 94
qpSetupCriterion, 95
qpSetupInfeasible, 96

removeSplines, 6, 8, 26, 37, 45, 48, 70, 96
rescaleX, 97
restring, 98
rhalton, 98
runCplexAPI, 99, 100, 101
runGurobi, 99, 100, 100, 101
runLpSolveAPI, 100
runMosek, 101

selectViolations, 101
sOls1d, 103
sOls2d, 103
sOls3, 104
sOlsSplines, 104
splineInt, 105
splinesBasis, 105
splineUpdate, 106
statusString, 107
sTsls, 107
sTslsSplines, 108
subsetclean, 108
summary.ivmte, 109
sWald, 109
symat, 110

tsls, 110

unstring, 111

uSplineBasis, 111
uSplineInt, 112

vecextract, 114

wate1, 114
watt1, 115
wAttSplines, 115
watu1, 116
weights, 116
wgenlate1, 117
whichforlist, 117
wlate1, 118

	AE
	altDefSplinesBasis
	argstring
	audit
	bound
	boundCI
	boundPvalue
	bX
	checkU
	classFormula
	classList
	combinemonobound
	constructConstant
	criterionMin
	design
	extractcols
	fmtResult
	funEval
	genBasisSplines
	genboundA
	gendist1
	gendist1e
	gendist2
	gendist3
	gendist3e
	gendist4
	gendist5e
	gendist6e
	gendistBasic
	gendistCovariates
	gendistMosquito
	gendistSplines
	genej
	genGamma
	genGammaSplines
	genGammaSplinesTT
	genGammaTT
	gengrid
	genmonoA
	genmonoboundA
	genSSet
	genTarget
	genWeight
	getXZ
	gmmEstimate
	interactSplines
	isfunctionstring
	ivEstimate
	ivmte
	ivmteEstimate
	ivmteSimData
	l
	lpSetup
	lpSetupBound
	lpSetupCriterion
	lpSetupCriterionBoot
	lpSetupEqualCoef
	lpSetupInfeasible
	lpSetupSolver
	magnitude
	matrixTriplets
	mInt
	modcall
	momentMatrix
	monoIntegral
	negationCheck
	olsj
	optionsCplexAPI
	optionsCplexAPISingle
	optionsCplexAPITol
	optionsGurobi
	optionsLpSolveAPI
	optionsRmosek
	parenthBoolean
	permute
	permuteN
	piv
	polyparse
	polyProduct
	popmean
	print.ivmte
	propensity
	qpSetup
	qpSetupBound
	qpSetupCriterion
	qpSetupInfeasible
	removeSplines
	rescaleX
	restring
	rhalton
	runCplexAPI
	runGurobi
	runLpSolveAPI
	runMosek
	selectViolations
	sOls1d
	sOls2d
	sOls3
	sOlsSplines
	splineInt
	splinesBasis
	splineUpdate
	statusString
	sTsls
	sTslsSplines
	subsetclean
	summary.ivmte
	sWald
	symat
	tsls
	unstring
	uSplineBasis
	uSplineInt
	vecextract
	wate1
	watt1
	wAttSplines
	watu1
	weights
	wgenlate1
	whichforlist
	wlate1
	Index

