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Abstract

In many applications one may be interested in drawing inferences regarding the order
of a collection of points on a unit circle. Due to the underlying geometry of the circle
standard constrained inference procedures developed for Euclidean space data are not
applicable. Recently, statistical inference for parameters under such order constraints on
a unit circle was discussed in Rueda et al. (2009); Fernández et al. (2012). In this paper
we introduce an R package called isocir which provides a set of functions that can be used
for analyzing angular data subject to order constraints on a unit circle. Since this work
is motivated by applications in cell biology, we illustrate the proposed package using a
relevant cell cycle data.
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1. Introduction

Circular data arise in a wide range of contexts, such as in geography, cell biology, circadian
biology, endocrinology, ornithology, etc (cf Zar (1999) or Mardia et al. (2008)). This work
is motivated by applications in cell cycle biology where one may want to draw inferences
regarding angular parameters subject to order constraints on a unit circle. A cell cycle
among eukaryotes follows a well-coordinated process where cells go through cycle four phases
of distinct biological functions, namely, G1, S, G2 and M phase (see Figure 1).

cular order and extended the notion of isotonic regression estimator to circular parameter
space by defining the circular isotonic regression estimator (CIRE). Using CIRE, Fernández
et al. (2012) developed a formal statistical theory and methodology for testing whether the
circular order of peak expression of a subset of cell cycle genes is conserved across multiple
species.

These statistical methods may have numerous other applications apart from cell cycle. With
the increase in human survival rates, there is considerable interest in understanding neuro-
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Figure 1: Phases of a cell cycle

Genes participating in the cell division cycle are often
called cell cycle genes. A cell cycle gene has a periodic
expression with its peak expression occurring just
before its biological function (Jensen et al. (2006)).
Since the periodic expression of a cell cycle gene can be
mapped onto a unit circle, the angle corresponding to
its peak expression is known as the phase angle of the
gene (see Liu et al. (2004) and Figure 2).

Since cell cycle is fundamental to the growth and development
of an organism, cell biologists have been interested in under-
standing various aspects of cell cycle that are evolutionarily
conserved. For instance, they would like to identify genes
whose relative order of peak expressions is evolutionarily con-
served. In order to solve such problems Rueda et al. (2009)
introduced an order restriction on the unit circle, called cir- Figure 2: Phase angle (φ)

logical diseases related to aging such as the Alzheimer’s disease (AD) and the Parkinson’s
disease (PD). An important aspect of such neurological diseases is the disruption of circadian
clock and genes participating in it. Researchers are interested in testing differences in the
phases of expression of circadian genes in normal and AD patients (Cermakian et al. (2011)).
Methodology discussed in this paper can be used for analyzing such data. Other areas of
applications include; the study of migratory patterns and directions of birds (Cochran et al.

(2004)), the changes in the wind directions (Bowers et al. (2000)), directional fluctuations in
the atmosphere (van Doorn et al. (2000)), psychology (studies of mental maps or monitoring
data (Kibiak and Jonas (2007)), the orientation of ridges in fingerprints or magnetic maps
(Boles and Lohmann (2003)).

Motivated by the wide range of applications and the non-existence of a user friendly software,
in Section 3 we introduce the isocir package programmed in R environment, R Develop-
ment Core Team (2011), which can be downloaded from http://cran.r-project.org/web/

packages/isocir/. The package provides functions which can be used for drawing inferences
regarding the order of a collection of points on a unit circle. In Section 2 we describe the
statistical problem and the methodology of Rueda et al. (2009) and Fernández et al. (2012).
The isocir package is illustrated in Section 4 using the motivating cell cycle gene expression
data. Some concluding remarks are provided in Section 5.

http://cran.r-project.org/web/packages/isocir/
http://cran.r-project.org/web/packages/isocir/
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2. Angular Parameters under Order Constraints

2.1. Circular Order Restriction

Let θ = (θ1, θ2, . . . , θq) where each θi, i = 1, 2, . . . , q is the sample circular mean of a random
sample of size ni from a population with unknown circular mean φi. All angles are defined
in a counter clockwise direction relative to a given pole. The mean resultant lengths for
each population are denoted as r1, . . . , rq (see Mardia and Jupp (2000) for the definition of
circular mean and mean resultant length of a set of angles). Then the problem of interest is
to draw statistical inferences on φi, i = 1, 2, . . . , q, subject to the constraint that the angles
φ1, φ2, . . . , φq are in a counter clockwise order on a unit circle. Thus φ1 is “followed" by φ2

which is “followed" by φ3, . . . , φq is “followed" by φ1. More precisely, we shall denote this
simple circular order among angular parameters as follows:

Csco = {φ = (φ1, φ2, . . . , φq) ∈ [0, 2π]q : φ1 ⪯ φ2 ⪯ · · · ⪯ φq ⪯ φ1}. (1)

It is important to note that the order among the angular parameters is invariant under changes
in location of the pole (the initial point of the circle). Unlike the Euclidean space, points on
a unit circle wrap around. That is, starting at the pole, by traveling 2π radians around the
circumference of the circle one would return to pole. For this reason the circular order among
points on a unit circle is preserved even if the location of the pole is shifted. This is why
Rueda et al. (2009) and Fernández et al. (2012) refer to the circular order Csco as isotropic
order. As in this paper we will also consider more general circular order restrictions, from
now on we will refer to Csco as simple circular order.

As a consequence of the geometry, a circle can never be linearized and hence methods devel-
oped for Euclidean space data are not applicable to circular data. The problem is even more
challenging when the angular parameters are constrained by an order around the circle, such
as Csco. General methodology for circular data, when there are no constraints on the angular
parameters, can be found in the book Mardia and Jupp (2000), among others. Constrained
inference for circular data is rather recent (Rueda et al. (2009) and Fernández et al. (2012)).
As noted in Rueda et al. (2009), standard Euclidean space methods such as the pool adja-
cent violators algorithm (PAVA) used for computing isotonic regression (see Robertson et al.

(1988) for details) cannot be applied to circular data. For example, when a cell biologist is
investigating a large number of cell cycle genes, it may be difficult to ascertain the circular
order among all cell cycle genes under consideration. However, based on the underlying bi-
ology, the investigator may a priori know the circular order among groups of genes but not
the order among genes within each group. In such situations a partial circular order, Cpco as
defined below, can be used.

Cpco =





φ ∈ [0, 2π]q :





φ1

φ2
...

φl1





⪯





φl1+1

φl1+2
...

φl1+l2





⪯ · · · ⪯





φl1+...+lL−1+1

φl1+...+lL−1+2
...

φl1+...+lL





⪯





φ1

φ2
...

φl1









.

(2)
In this case we have L sets of parameters with lj angular parameters in set j and q =

∑L
j=1 lj .

Order among the parameters within a set is not known but every parameter in a given set is
“followed" by every parameter in the next set.
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2.2. Estimation and Testing under Circular Order Restrictions

Analogous to PAVA for Euclidean data, Rueda et al. (2009) derived a circular isotonic regres-
sion estimator (CIRE) for estimating angular parameters (φ1, φ2, . . . , φq) subject to a circular
order. The CIRE of φ = (φ1, φ2, . . . , φq), under the constraint (φ1, φ2, . . . , φq)′ ∈ Csco, is
given by:

φ̃ = arg min
φ∈Csco

SCE(φ, θ), (3)

where SCE(φ, θ), defined below, is the Sum of Circular Errors, a circle analog to the Sum of
Squared Errors (SSE) used for Euclidean data;

SCE(φ, θ) =
q∑

i=1

ri(1 − cos(φi − θi)), (4)

where ri are the mean resultant lengths. The CIRE is implemented in the function CIRE of
the package isocir.

Just as the normal distribution is commonly used for the Euclidean space data, the von-
Mises distribution is widely used for describing angular data on a unit circle. Accordingly,
for i = 1, 2, . . . , q, throughout this paper we assume that θi are independently distributed
according to von-Mises distribution, denoted as M(φi, κ) where φi is the modal direction and
κ is the concentration parameter (see Mardia and Jupp (2000)). Under such an assumption,
Fernández et al. (2012) developed a conditional test for testing the following hypotheses:

H0 : φ ∈ Csco

H1 : H0 is not true.

The conditional test statistic is given by T ∗ = 2κ̂SCE(φ̃,θ)
q

, where κ̂ is the estimator of κ, φ̃

is the CIRE computed under H0. The estimate φ̃ determines a partition of ℘ = {1, . . . , I}
into sets of coordinates on which φ̃ is constant. These sets are called level sets. The rejection
region for the conditional α-level test is given by:

Reject H0 if T ∗ ≥ c(m),

where m is the number of level sets for φ̃ and, for large values of κ, the approximate critical
value c(m) is chosen so that:

pr(Fq−m,q−1 ≥ c(m)) =
α

1 − 1/(q − 1)!
, (5)

where Fq−m,q−1 represents the central F random variable with (q − m, q − 1) degrees of
freedom. The above test statistic is proportional to a chi-square test when κ is known. For
details one may refer to Fernández et al. (2012). The above methodology can be modified to
test

H0 : φ ∈ Cpco

H1 : H0 is not true
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by replacing 1/(q − 1)! by (l1!l2! · · · lL!)/(q − 1)!.

The simulation study performed in Fernández et al. (2012) suggests that the power of this test
is quite reasonable. Notice that, for a given data set, the p-value obtained by using the above
methodology may serve as a useful goodness of fit criterion when comparing two or more
plausible circular orders among a set of angular parameters. Larger values may suggest that
the estimations are closer to the presumed circular order. Thus the statistical methodology
developed in Fernández et al. (2012) can be used not only for testing relative order among the
parameters. It can be also useful for selecting a “best fitting" circular order among several
circular order candidates.

These tests are implemented in the function cond.test in the R package isocir introduced in
the next Section.

3. Package isocir

We start this section by giving some background on R packages for isotonic regression and
analysis of circular data. We then describe the structure of our package isocir (Barragan
et al. (2013)) and illustrate it by some examples.

3.1. Related Packages

As isotonic regression is a well-known and widely used technique there are many packages in
R for performing isotonic regression, such as:

• isotone (de Leeuw et al. (2009)): Active set and generalized PAVA for isotone optimiza-
tion.

• Iso (Turner (2009)): Functions to perform isotonic regression.

• ordMonReg (Balabdaoui et al. (2009)): Compute least squares estimates of one bounded
or two ordered isotonic regression curves.

Similarly, there are several packages in R for analyzing circular data, such as:

• CircStats (Lund and Agostinelli (2009)): The implementations of the Circular Statistics
from “Topics in circular Statistics" Jammalamadaka and SenGupta (2001). It is an R
port from the S-plus library with the same name.

• circular (Agostinelli and Lund (2011)): This package expands in several ways the Circ-

Stats package.

Since none of the existing packages for circular data are applicable for analyzing circular data
under constraints, in this article we introduce the software package “isotonic inference for
circular data", with the acronym isocir, for analyzing circular data under constraints. Our
package depends on circular (see Agostinelli and Lund (2011)) and combinat (see Chasalow
(2010)). These packages should be installed in the computer before loading isocir.
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3.2. Package Structure

For the convenience of the reader, we summarize all the functions, arguments and descriptions
of our package isocir in Table 1.

Functions Arguments Description

sce (arg1, arg2, meanrl) Sum of Circular Errors

mrl (data) Mean Resultant Length

CIRE (data, groups, circular) Circular Isotonic Regression Estimator

cond.test (data, groups, kappa) Conditional Test

isocir (cirmeans, SCE, CIRE, pvalue, kappa) Creates an Object of class isocir

is.isocir (x) Checks an Object

print.isocir (x,decCIRE,decpvalue,deckappa,...) Prints an object of class isocir

plot.isocir (x, option, ...) Plots an object of class isocir

Table 1: Summary of the components of the package isocir

In the following we describe each function of the software in detail.

• Functions sce() and mrl()

The auxiliary function sce computes the sum of circular errors between a given q-dimensional
vector (denoted by arg1) and one or more q-dimensional vectors (denoted by arg2). The
function mrl computes the mean resultant length for the input data.

• Function CIRE()

Using the methodology developed in Rueda et al. (2009), this R function computes the CIRE
for a given circular order (1) or a partial order (2). The arguments of this function are
summarized in Table 2. The input variable data is a matrix where each column contains

Arguments Values

data vector or matrix with the data

groups the groups of the order

circular =TRUE(by default) / =FALSE

Table 2: Arguments of the CIRE function

the vector of unconstrained angular means corresponding to each replication. If there is
only one replication then data is a vector. The position i in the vector groups contains
the group number to which the parameter φi belongs to. The logical argument circular

sets whether the order is wrapped around the circle, i.e. circular order (circular=TRUE) or
not, i.e. simple order (circular=FALSE). For example, the simple order cone in the circle
Cso = {φ = (φ1, φ2, . . . , φq) ∈ [0, 2π]q : 0 ≤ φ1 ≤ φ2 ≤ · · · ≤ φq ≤ 2π} would be a non circular
order. The output of this function is an object of class isocir (explained later) containing
the circular isotonic regression estimator (φ̃), the unrestricted circular means (θ) and the
corresponding sum of circular error (SCE(φ̃, θ)).
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• Function cond.test()

This function performs the conditional test and computes the corresponding p-value for the
following hypotheses:

H0 : The angles φ1, . . . , φq follow a (simple or partial) circular order.

H1 : H0 is not true.

The arguments of this function appear in Table 3 and are explained below. Arguments data

Arguments κ known κ unknown

data numeric vector matrix (as many columns as replications)

groups numeric vector with the groups of the order to be tested

kappa positive numeric value (NULL)

biasCorrect (NULL) =TRUE(by default) / =FALSE

Table 3: Arguments of the cond.test function

and groups are same as those in function CIRE although in this function groups is the order
to be tested instead of the known order. The argument kappa is needed only when data is a
vector. If there are no replications in data, the value of κ must be set by the user. Even when
there are replicated data, if the user knows the value of κ, it may be introduced and it will
be taken into consideration to perfom the conditional test. When κ is unknown and there are
replicated data, the parameter is internally estimated by maximum likelihood and κ̂ is shown
in the output. The biasCorrect is related to the estimation of κ. If biasCorrect=TRUE the
bias correction appearing in Mardia and Jupp (2000) p. 87 is performed in the estimation
of κ. The output of this function is an object of class isocir (explained below) with all the
results from the conditional test: the CIRE (φ̃), the unrestricted circular means (θ), the SCE
(SCE(φ̃, θ)), the kappa value (estimated or introduced) and the p-value of the conditional
test.

• Class isocir

Finally we describe the isocir function. This function creates the S3 objects of class isocir

which is a list with the following elements:

$cirmeans is a list with the unrestricted circular means. Notice that when the argument
data is a vector, these values match exactly with the input. However, if there are repli-
cated data, the argument data is a matrix and $cirmeans contains the corresponding
unrestricted circular means (θ1, . . . , θq).

$SCE is the value of the Sum of Circular Errors (SCE(φ̃, θ)).

$CIRE is a list with the Circular Isotonic Regression Estimator (φ̃) obtained under the order
defined by the groups argument.

$kappa the value of kappa (either set by the user or estimated).

$pvalue the p-value of the conditional test obtained from the function cond.test.
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These objects of class isocir are the output of the functions CIRE and cond.test. The last
two elements of the list ($kappa and $pvalue) are NULL if the object comes from the function
CIRE. Otherwise, if the object comes from the function cond.test not only there are the
results of the conditional test ($kappa and $pvalue) but also an attribute called estkappa

will inform (or rather remind) the user if the value in $kappa has been internally estimated
or introduced as a known input.

Some S3 methods have also been defined for the class isocir:

• isocir(cirmeans = NULL, SCE = NULL, CIRE = NULL, pvalue = NULL, kappa = NULL):
This function creates an object of class isocir.

• is.isocir(x): This function checks whether the object x is of class isocir.

• print.isocir(x, decCIRE, decpvalue, deckappa, ...): This S3 method is used
to print an object x of class isocir. The number of decimal places can be chosen.

• plot.isocir(x, option = c("CIRE", "cirmeans"), ...): This S3 method is used
to plot an object x of class isocir. The argument option gives the user the option
to plot the points of the Circular Isotonic Regression Estimator (by default) or the
unrestricted circular means.

3.3. Examples

In this section we provide examples to illustrate isocir.

Example 1

Suppose the observed angular means of eight populations are given by:

θ1 = 0.025; θ2 = 1.475; θ3 = 3.274;
θ4 = 5.518; θ5 = 2.859;
θ6 = 5.387;
θ7 = 4.179; θ8 = 1.962.
We illustrate isocir for estimating the 8 population angular parameters under the fol-
lowing partial circular order constraint:





φ1

φ2

φ3





⪯

{
φ4

φ5

}
⪯ {φ6} ⪯

{
φ7

φ8

}
⪯





φ1

φ2

φ3





These data are a set of random circular data called cirdata in our package and they
can be used by calling as below:

> data(cirdata)

> cirdata

Since in this example, there are no replications, we provide data in a vector format.
The groups of the order are defined as follows:

> orderGroups <- c(1, 1, 1, 2, 2, 3, 4, 4)
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Thus we obtain CIRE using the function CIRE as follows:

> example1CIRE <- CIRE(cirdata, groups = orderGroups, circular = TRUE)

The output is saved in example1CIRE and the printed output is as follows:

> example1CIRE

Thus the constrained estimates satisfy the required order as follows:




φ̃1 = 0.993

φ̃2 = 1.475

φ̃3 = 3.066





⪯

{
φ̃4 = 5.056

φ̃5 = 3.066

}
⪯ {φ̃6 = 5.056} ⪯

{
φ̃7 = 5.056

φ̃8 = 0.993

}

where φ̃ is the Circular Isotonic Regression Estimator of φ. Results may be displayed
graphically by setting plot(example1CIRE). When done so, a plot with the points
of the CIRE is produced. To see the plot for the unrestricted estimates the argument
option="cirmeans" can be used (i.e. plot(example1CIRE, option = "cirmeans")).

Example 2 (κ unknown (replications needed))

Using the data in our package called datareplic we demonstrate the use of the function
cond.test when κ is unknown. As remarked earlier, when κ is unknown we need repli-
cate data to estimate κ. The file datareplic is a matrix where each column contains
the values of a replication and each row the angles observed at each population mean.
In this example we have 8 populations and hypotheses regarding the corresponding 8
parameters are as follows:

H0 : φ1 ⪯ φ2 ⪯ φ3 ⪯ φ4 ⪯ φ5 ⪯ φ6 ⪯ φ7 ⪯ φ8 ⪯ φ1

H1 : H0 is not true.

We take the data from the package and set the groups of the order in the argument
groups.

> data(datareplic)

> orderGroups2 <- c(1:8)

Since replicate data are available, we do not include the argument kappa as we want
the function to estimate it. Moreover, we correct the bias in the estimation of κ, so we
set biasCorrect=TRUE. Thus we have the following code:

> example2test <- cond.test(datareplic,groups=orderGroups2,biasCorrect=TRUE)

> example2test

The result is the p-value defined in (5). Since the p-value = 0.0034 we reject the null
hypothesis and conclude that the parameters do not satisfy the specified circular order.

If the user is interested in printing the unrestricted circular means θ then the following
command is used: example2test$cirmeans. The result is a list that is saved in the
same format as CIRE. Since each group in the circular order has a single element, it is
convenient to use the vector format. Hence we have:
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> round(unlist(example2test$cirmeans), digits = 3)

4. Application to Analysis of the Cell Cycle Gene Expression Data

As noted in the Introduction there has been considerable discussion in the literature
on the conservation of various aspects of cell cycle genes (Fernández et al. (2012)),
particularly between two yeast species, namely, S. Cerevisiae (budding yeast) and S.
Pombe (fission yeast). Using the 10 published budding yeast data sets (Rustici et al.
(2004), Oliva et al. (2005), Peng et al. (2005)), we illustrate the isocir package to test
the null hypothesis that 16 fission yeast genes, namely, ssb1, cdc22, msh6, psm3, rad21,
cig2, mik1, h3.3, hhf1, hht3, hta2, htb1, fkh2, chs2, sid2 and slp1 satisfy the same
circular order as their budding yeast orthologs (RFA1, RNR1, MSH6, SMC3, MCD1,
CLN2, SWE1, HHT2, HHF1, HHT1, HTA2, HTB2, FKH1, CHS2, DBF2 and CDC20)
whose circular order is obtained from cyclebase (http:://www.cyclebase.org) and
published literature. Thus we test the following hypothesis:

H0 : φssb1 ⪯ φcdc22 ⪯ φmsh6 ⪯ φpsm3 ⪯ φrad21 ⪯ φcig2 ⪯ φmik1 ⪯ φh3.3 ⪯
⪯ φhhf1 ⪯ φhht3 ⪯ φhta2 ⪯ φhtb1 ⪯ φfkh2 ⪯ φchs2 ⪯ φsid2 ⪯ φslp1 ⪯ φssb1

H1 : H0 is not true.

(6)

For each of the 10 experimental data sets, the unconstrained estimates of the phase
angles of the above 16 fission yeast genes appearing in Table 5 were obtained using
the Random Periods Model (Liu et al. (2004)). The R code for that software can
be obtained from http://www.niehs.nih.gov/research/atniehs/labs/bb/staff/

peddada/index.cfm.

Notice that there are no replicated data here, since the experiments were not performed
under the same experimental conditions. It appears that the 10 experiments were not
synchronized (i.e. cells were probably not arrested at the same point in the cell cycle).
For this reason, from Table 5 it appears that there is a large variability in the estimates
of phase angles of each of the 16 genes. Even though there may be large variability in
the estimated values, our interest is in the relative order of phase angles among the 16
genes which does not rely on the location of the pole and hence does not rely on the
synchronization. As there are no replicated data, we have a single observation for each
of the 16 fission yeast genes in each experiment and, therefore, the values in Table 5
play the role of the unrestricted circular mean in each experiment. Consequently we
suppose that,

θij ∼ind M(φij, κj), i = 1, 2, . . . , 16, j = 1, 2, . . . , 10,

where θij is the unrestricted circular mean of the gene i in the experiment j.

Since the 10 experiments may not considered as replications of each other, we performed
a separate test for each experiment. Moreover, as explained in Fernández et al. (2012)
we assume that the concentration parameter κj depends on the experiment but not on
the gene. The reason for this is that out of the two sources of uncertainty, one specific
to the gene and another one due to the experiment (and therefore common to all genes

http:://www.cyclebase.org
http://www.niehs.nih.gov/research/atniehs/labs/bb/staff/peddada/index.cfm
http://www.niehs.nih.gov/research/atniehs/labs/bb/staff/peddada/index.cfm
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within the experiment), the former source maybe considered negligible relative to the
latter as the number of time points used in each time course experiment is fairly large
for any specific gene.

The κj values considered for this example are obtained using Fernández et al. (2012).
The procedure used for the computation of these values comes from an analysis of
variance type methodology. Under the assumptions made before, the model for the
circular means is:

φij = µ + αi + βj,

where αi is the gene effect and βj is the experiment effect. The proposed model is
analogous to the standard two-way analysis of variance model and is fully detailed in
the supplementary material of Fernández et al. (2012).

For each of the 10 experiments, we test the hypothesis (6) using the function cond.test

that is in our software. The following code gives the p-values for each experiment.
Results are summarized in Table 5.

> data("cirgenes")

> kappas <- c(2.64773, 3.24742, 2.15936, 4.15314, 4.54357,

+ 29.07610, 6.51408, 14.19445, 5.66920, 11.12889)

> allresults <- list()

> resultIsoCIRE <- matrix(ncol = ncol(cirgenes), nrow = nrow(cirgenes))

> SCEs <- vector(mode = "numeric", length = nrow(cirgenes))

> pvalues <- vector(mode = "numeric", length = nrow(cirgenes))

> for (i in 1 : nrow(cirgenes)) {

+ k <- kappas[i]

+ genes <- as.numeric(cirgenes[i, !is.na(cirgenes[i, ]) ])

+ allresults[[i]] <- cond.test(genes, kappa = k)

+ resultIsoCIRE[ i, !is.na(cirgenes[i, ]) ] <- unlist(allresults[[i]]$CIRE)

+ SCEs[i] <- allresults[[i]]$SCE

+ pvalues[i] <- allresults[[i]]$pvalue

+ }

From the p-values in Table 5, we see that the null hypothesis cannot be rejected in any
of the 10 experiments even at a level of significance as high as 0.20. Therefore, it seems
plausible that the peak expressions of these 16 genes in S. Pombe (fission yeast) follow
the same order as their S. Cerevisiae (budding yeast) orthologs.

5. Conclusions

In this paper the R package isocir has been presented. This package provides useful
tools for drawing inferences from circular data under order restrictions. There are two
main functions (CIRE and cond.test). The first one computes the CIRE, the circular
version of the widely known isotonic regression in Rq. The second one is designed for
testing circular hypotheses using a conditional test. We have also created the class
isocir in order to properly save all the results. Although we illustrated the proposed
methodology using an example from cell biology, the proposed software can be applied
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to a wide range of contexts. For example, biologists working on circadian clocks may
be interested in the testing for the conservation of circular order among circadian genes
between two tissues (e.g., Liu et al. (2006)).

We would like to emphasize that the field of constrained inference on a unit circle is in its
infancy and is wide open for new developments both in methods as well as applications.
As observed in the introduction, such constrained inference problems arise naturally
in many applications. Therefore we expect the software described in this paper to be
widely used by researchers working in such areas.
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