Package ‘interprocess’

May 23, 2025
Type Package

Title Mutexes, Semaphores, and Message Queues
Version 1.3.0
Date 2025-05-23

Description Provides access to low-level operating system mechanisms for
performing atomic operations on shared data structures. Mutexes provide
shared and exclusive locks. Semaphores act as counters. Message queues
move text strings from one process to another. All these interprocess
communication (IPC) tools can optionally block with or without a timeout.
Implemented using the cross-platform 'boost' 'C++' library
<https://www.boost.org/doc/libs/release/libs/interprocess/>.

URL https://cmmr.github.io/interprocess/,

https://github.com/cmmr/interprocess

BugReports https://github.com/cmmr/interprocess/issues
License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

Config/testthat/edition 3

Config/Needs/website rmarkdown

LinkingTo cppll, BH

Suggests callr, testthat

NeedsCompilation yes

Author Daniel P. Smith [aut, cre] (ORCID:
<https://orcid.org/0000-0002-2479-2044>),
Alkek Center for Metagenomics and Microbiome Research [cph, fnd]

Maintainer Daniel P. Smith <dansmith@1@gmail.com>
Repository CRAN
Date/Publication 2025-05-23 17:52:05 UTC

https://www.boost.org/doc/libs/release/libs/interprocess/
https://cmmr.github.io/interprocess/
https://github.com/cmmr/interprocess
https://github.com/cmmr/interprocess/issues
https://orcid.org/0000-0002-2479-2044

2 msg_queue
Contents
MSE_QUEUE .« v o v v et e 2
00117 QA 4
semaphore 6
uid . .o e 8
Index 10
msg_queue Send Text Messages Between Processes
Description

An interprocess message queue that ensures each message is delivered to only one reader, at which
time the message is removed from the queue. Ideal for producer/consumer situations where the
message defines work waiting to be processed. The message itself can be any scalar character, for
example, a JSON string or path to an RDS file.

Usage

msg_queue (

name = uid(),

assert = NULL,

max_count = 100,
max_nchar = 128,
cleanup = FALSE,

file = NULL
)
S3 method for class 'msg_queue'
with(data, expr, alt_expr = NULL, timeout_ms = Inf, ...)
Arguments
name Unique ID. Alphanumeric, starting with a letter.
assert Apply an additional constraint.

e 'create' - Error if the message queue already exists.
e 'exists' - Error if the message queue doesn’t exist.
* NULL - No constraint; create the message queue if it doesn’t exist.

max_count The maximum number of messages that can be stored in the queue at the same

time. Attempting to send additional messages will cause send() to block or
return FALSE. Ignored if the message queue already exists.

max_nchar The maximum number of characters in each message. Attempting to send larger

messages will throw an error. Ignored if the message queue already exists.

cleanup Remove the message queue when the R session exits. If FALSE, the message

queue will persist until $remove() is called or the operating system is restarted.

msg_queue 3

file Use a hash of this file/directory path as the message queue name. The file itself
will not be read or modified, and does not need to exist.

data A msg_queue object.

expr Expression to evaluate if a message is received. The message can be accessed
by . in this context. See examples.

alt_expr Expression to evaluate if timeout_ms is reached.
timeout_ms Maximum time (in milliseconds) to block the process while waiting for the op-
eration to succeed. Use @ or Inf to return immediately or only when successful,
respectively.
Not used.
Value

msg_queue () returns a msg_queue object with the following methods:

e $name

— Returns the message queue’s name (scalar character).

e $send(msg, timeout_ms = Inf, priority = @)

— Returns TRUE on success, or FALSE if the timeout is reached.
— msg: The message (scalar character) to add to the message queue.

— priority: Higher priority messages will be retrieved from the message queue first. @ =
lowest priority; integers only.

e $receive(timeout_ms = Inf)

— Returns the next message from the message queue, or NULL if the timeout is reached.
e $count()

— Returns the number of messages currently in the message queue.

e $max_count()

— Returns the maximum number of messages the queue can hold.

* $max_nchar ()

— Returns the maximum number of characters per message.

e $remove()

— Returns TRUE if the message queue was successfully deleted from the operating system,

or FALSE on error.

with() returns eval (expr) on success; eval (alt_expr) otherwise.

See Also

Other shared objects: mutex(), semaphore()

4 mutex

Examples

mg <- interprocess::msg_queue()
print(mq)

mg$send(paste('my favorite number is', floor(runif(1) * 100)))
mg$count ()

mg$receive()
mg$receive(timeout_ms = 0)

mg$send('The Matrix has you...')

with(mqg, paste('got message:', .), 'no messages', timeout_ms = @)
with(mg, paste('got message:', .), 'no messages', timeout_ms = @)
mg$remove ()
mutex Shared and Exclusive Locks
Description

Mutually exclusive (mutex) locks are used to control access to shared resources.

An exclusive lock grants permission to one process at a time, for example to update the contents of
a database file. While an exclusive lock is active, no other exclusive or shared locks will be granted.

Multiple shared locks can be held by different processes at the same time, for example to read
a database file. While a shared lock is active, no exclusive locks will be granted.

Usage

mutex(name = uid(), assert = NULL, cleanup = FALSE, file = NULL)

S3 method for class 'mutex'

with(data, expr, alt_expr = NULL, shared = FALSE, timeout_ms = Inf, ...)
Arguments

name Unique ID. Alphanumeric, starting with a letter.

assert Apply an additional constraint.

* 'create' - Error if the mutex already exists.
e 'exists' - Error if the mutex doesn’t exist.
¢ NULL - No constraint; create the mutex if it doesn’t exist.

cleanup Remove the mutex when the R session exits. If FALSE, the mutex will persist
until $remove() is called or the operating system is restarted.

file Use a hash of this file/directory path as the mutex name. The file itself will not
be read or modified, and does not need to exist.

mutex 5

data A mutex object.

expr Expression to evaluate if the mutex is acquired.

alt_expr Expression to evaluate if timeout_ms is reached.

shared If FALSE (the default) an exclusive lock is returned. If TRUE, a shared lock is
returned instead. See description.

timeout_ms Maximum time (in milliseconds) to block the process while waiting for the op-
eration to succeed. Use @ or Inf to return immediately or only when successful,
respectively.
Not used.

Details

The operating system ensures that mutex locks are released when a process exits.

Value
mutex () returns a mutex object with the following methods:

e $name

— Returns the mutex’s name (scalar character).
e $lock(shared = FALSE, timeout_ms = Inf)

— Returns TRUE if the lock is acquired, or FALSE if the timeout is reached.
¢ $unlock(warn = TRUE)

— Returns TRUE if successful, or FALSE (with optional warning) if the mutex wasn’t locked
by this process.

e $remove()

— Returns TRUE if the mutex was successfully deleted from the operating system, or FALSE
on error.

with() returns eval (expr) if the lock was acquired, or eval (alt_expr) if the timeout is reached.

Error Handling
The with() wrapper automatically unlocks the mutex if an error stops evaluation of expr. If you
are directly calling lock(), be sure that unlock() is registered with error handlers or added to
on.exit(). Otherwise, the lock will persist until the process terminates.

Duplicate Mutexes
Mutex locks are per-process. If a process already has a lock, it can not attempt to acquire a second
lock on the same mutex.

See Also

Other shared objects: msg_queue(), semaphore()

6 semaphore

Examples

tmp <- tempfile()
mut <- interprocess::mutex(file = tmp)

print(mut)

Exclusive lock to write the file
with(mut, writeLines('some data', tmp))

Use a shared lock to read the file

with(mut,
shared = TRUE,
timeout_ms = 0,
expr = readLines(tmp),
alt_expr = warning('Mutex was locked. Giving up.'))

Directly lock/unlock with safeguards
if (mut$lock(timeout_ms = @)) {
local({
on.exit(mut$unlock())
writeLines('more data', tmp)
b))
} else {
warning('Mutex was locked. Giving up.')

}

mut$remove ()
unlink(tmp)

semaphore Increment and Decrement an Integer

Description

A semaphore is an integer that the operating system keeps track of. Any process that knows the
semaphore’s identifier can increment or decrement its value, though it cannot be decremented be-
low zero.

When the semaphore is zero, calling $wait(timeout_ms = @) will return FALSE whereas $wait(timeout_ms = Inf)
will block until the semaphore is incremented by another process. If multiple processes are blocked,
a single call to $post () will only unblock one of the blocked processes.

It is possible to wait for a specific amount of time, for example, $wait(timeout_ms = 10000)
will wait for 10 seconds. If the semaphore is incremented within those 10 seconds, the function will
immediately return TRUE. Otherwise it will return FALSE at the 10 second mark.

Usage
semaphore(name = uid(), assert = NULL, value = @, cleanup = FALSE, file = NULL)

semaphore 7

S3 method for class 'semaphore'

with(data, expr, alt_expr = NULL, timeout_ms = Inf, ...)
Arguments

name Unique ID. Alphanumeric, starting with a letter.

assert Apply an additional constraint.

e 'create' - Error if the semaphore already exists.
* 'exists' - Error if the semaphore doesn’t exist.
* NULL - No constraint; create the semaphore if it doesn’t exist.

value The initial value of the semaphore.

cleanup Remove the semaphore when the R session exits. If FALSE, the semaphore will
persist until $remove () is called or the operating system is restarted.

file Use a hash of this file/directory path as the semaphore name. The file itself will
not be read or modified, and does not need to exist.

data A semaphore object.

expr Expression to evaluate if a semaphore is posted.

alt_expr Expression to evaluate if timeout_ms is reached.

timeout_ms Maximum time (in milliseconds) to block the process while waiting for the op-
eration to succeed. Use @ or Inf to return immediately or only when successful,
respectively.
Not used.

Value

semaphore () returns a semaphore object with the following methods:

* $name
— Returns the semaphore’s name (scalar character).
e $post()
— Returns TRUE if the increment was successful, or FALSE on error.
* $wait(timeout_ms = Inf)
— Returns TRUE if the decrement was successful, or FALSE if the timeout is reached.
* $remove()

— Returns TRUE if the semaphore was successfully deleted from the operating system, or
FALSE on error.

with() returns eval (expr) on success, or eval (alt_expr) if the timeout is reached.

See Also

Other shared objects: msg_queue(), mutex()

8 uid

Examples

sem <- interprocess::semaphore()

print(sem)

sem$post()

sem$wait(timeout_ms = @)

sem$wait(timeout_ms = @)

sem$post()

with(sem, 'success', 'timed out', timeout_ms = @)

with(sem, 'success', 'timed out', timeout_ms = @)

sem$remove ()

uid Generate Names

Description

To ensure broad compatibility across different operating systems, names of mutexes, semaphores,
and message queues should start with a letter followed by up to 249 alphanumeric characters. These
functions generate names meeting these requirements.

e uid(): 11-character encoding of PID and time since epoch.

* hash(): 11-character hash of any string (hash space = 2764).

Usage
uidQ)

hash(str)

Arguments

str A string (scalar character).

Details

uid()s encode sequential 1/100 second intervals, beginning at the current process’s start time. If
the number of requested UIDs exceeds the number of 1/100 seconds that the process has been alive,
then the process will momentarily sleep before returning.

A uid() begins with an uppercase letter (A - R); a hash() begins with a lowercase letter (a - v).

Value

A string (scalar character) that can be used as a mutex, semaphore, or message queue name.

uid

Examples
library(interprocess)
uid()

hash('192.168.1.123:8011")

Index

+ shared objects
msg_queue, 2
mutex, 4
semaphore, 6

hash (uid), 8

msg_queue, 2, 5, 7
mutex, 3,4, 7

semaphore, 3, 5, 6
uid, 8
with.msg_queue (msg_queue), 2

with.mutex (mutex), 4
with.semaphore (semaphore), 6

10

	msg_queue
	mutex
	semaphore
	uid
	Index

