
Package ‘imputeGeneric’
October 13, 2022

Title Ease the Implementation of Imputation Methods

Version 0.1.0

Description The general workflow of most imputation methods is quite
similar. The aim of this package is to provide parts of this general
workflow to make the implementation of imputation methods easier. The
heart of an imputation method is normally the used model. These models
can be defined using the 'parsnip' package or customized
specifications. The rest of an imputation method are more technical
specification e.g. which columns and rows should be used for
imputation and in which order. These technical specifications can be
set inside the imputation functions.

License GPL (>= 3)

URL https://github.com/torockel/imputeGeneric

BugReports https://github.com/torockel/imputeGeneric/issues

Imports gower, parsnip, stats

Suggests missMethods, rpart, testthat (>= 3.0.0)

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.1.2

NeedsCompilation no

Author Tobias Rockel [aut, cre]

Maintainer Tobias Rockel <Rockel.To@gmail.com>

Repository CRAN

Date/Publication 2022-03-03 09:20:05 UTC

R topics documented:
impute_iterative . 2
impute_supervised . 5
impute_unsupervised . 6

1

https://github.com/torockel/imputeGeneric
https://github.com/torockel/imputeGeneric/issues

2 impute_iterative

model_donor . 8
order_cols . 9
order_rows . 10
predict_donor . 11
stop_ds_difference . 12

Index 14

impute_iterative Iterative imputation

Description

Iterative imputation of a data set

Usage

impute_iterative(
ds,
model_spec_parsnip = linear_reg(),
model_fun_unsupervised = NULL,
predict_fun_unsupervised = NULL,
max_iter = 10,
stop_fun = NULL,
initial_imputation_fun = NULL,
cols_used_for_imputation = "only_complete",
cols_order = seq_len(ncol(ds)),
rows_used_for_imputation = "only_complete",
rows_order = seq_len(nrow(ds)),
update_model = "every_iteration",
update_ds_model = "every_iteration",
stop_fun_args = NULL,
M = is.na(ds),
model_arg = NULL,
warn_incomplete_imputation = TRUE,
...

)

Arguments

ds The data set to be imputed. Must be a data frame with column names.
model_spec_parsnip

The model type used for supervised imputation (see (impute_supervised()
for details).

model_fun_unsupervised

An unsupervised model function (see impute_unsupervised() for details).

impute_iterative 3

predict_fun_unsupervised

A predict function for unsupervised imputation (see impute_unsupervised()
for details).

max_iter Maximum number of iterations

stop_fun A stopping function (see details below) or NULL. If NULL, iterations are only
stopped after max_iter is reached.

initial_imputation_fun

This function will do the initial imputation of the missing values. If NULL, no
initial imputation is done. Some common choices like mean imputation are
implemented in the package missMethods.

cols_used_for_imputation

Which columns should be used to impute other columns? Possible choices:
"only_complete", "already_imputed", "all"

cols_order Ordering of the columns for imputation. This can be a vector with indices or an
order_option from order_cols().

rows_used_for_imputation

Which rows should be used to impute other rows? Possible choices: "only_complete",
"partly_complete", "complete_in_k", "already_imputed", "all_except_i", "all"

rows_order Ordering of the rows for imputation. This can be a vector with indices or an
order_option from order_rows().

update_model How often should the model for imputation be updated?
update_ds_model

How often should the data set for the inner model be updated?

stop_fun_args Further arguments passed on to stop_fun.

M Missing data indicator matrix

model_arg Further arguments for model_fun_unsupervised (see impute_unsupervised()
for details).

warn_incomplete_imputation

Should a warning be given, if the returned data set still contains NA?

... Further arguments passed on to stats::predict() or predict_fun_unsupervised.

Details

This function impute a data set in an iterative way. Internally, either impute_supervised() or
impute_unsupervised() is used, depending on the values of model_spec_parsnip, model_fun_unsupervised
and predict_fun_unsupervised. If you want to use a supervised inner method, model_spec_parsnip
must be specified and model_fun_unsupervised and predict_fun_unsupervised must both be
NULL. For an unsupervised inner method, model_fun_unsupervised and predict_fun_unsupervised
must be specified and model_spec_parsnip must be NULL. Some arguments of this function are
only meaningful for impute_supervised() or impute_unsupervised().

Value

an imputed data set (or a return value of stop_fun)

4 impute_iterative

stop_fun

The stop_fun should take the arguments

• ds (the data set imputed in the current iteration)

• ds_old (the data set imputed in the last iteration)

• a list (with named elements M, nr_iterations, max_iter)

• stop_fun_args

• res_stop_fun (the return value of stop_fun from the last iteration. Initial value for the first
iteration: list(stop_iter = FALSE)) in this order.

To allow for a next iteration, the stop_fun must return a list which contains the named element
stop_iter = FALSE. The simple return list(stop_iter = FALSE) will allow the iteration to con-
tinue. However, the list can include more information which are handed over to stop_fun in the
next iteration. For example, the return value list(stop_iter = FALSE, last_eps = 0.3) would
also lead to another iteration. If stop_fun does not return a list or the list does not contain
stop_iter = FALSE the iteration is stopped and the return value of stop_fun is returned as re-
sult of impute_iterative(). Therefore, this return value should normally include the imputed
data set ds or ds_old.

An example for a stop_fun is stop_ds_difference().

See Also

• impute_supervised() and impute_unsupervised() as the workhorses for the imputation.

• stop_ds_difference() as an example of a stop function.

Examples

set.seed(123)
simple example
ds_mis <- missMethods::delete_MCAR(

data.frame(X = rnorm(20), Y = rnorm(20)), 0.2, 1
)
impute_iterative(ds_mis, max_iter = 2)
using pre-imputation
ds_mis <- missMethods::delete_MCAR(

data.frame(X = rnorm(20), Y = rnorm(20)), 0.2
)
impute_iterative(

ds_mis,
max_iter = 2, initial_imputation_fun = missMethods::impute_mean

)
example using stop_ds_difference() as stop_fun
ds_mis <- missMethods::delete_MCAR(

data.frame(X = rnorm(20), Y = rnorm(20)), 0.2
)
ds_imp <- impute_iterative(

ds_mis,
initial_imputation_fun = missMethods::impute_mean,
stop_fun = stop_ds_difference, stop_fun_args = list(eps = 0.5)

impute_supervised 5

)
attr(ds_imp, "nr_iterations")

impute_supervised Supervised imputation

Description

Impute a data set with a supervised inner method. This function is one main function which can
be used inside of impute_iterative(). If you need pre-imputation or iterations, directly use
impute_iterative().

Usage

impute_supervised(
ds,
model_spec_parsnip = linear_reg(),
cols_used_for_imputation = "only_complete",
cols_order = seq_len(ncol(ds)),
rows_used_for_imputation = "only_complete",
rows_order = seq_len(nrow(ds)),
update_model = "each_column",
update_ds_model = "each_column",
M = is.na(ds),
warn_incomplete_imputation = TRUE,
...

)

Arguments

ds The data set to be imputed. Must be a data frame with column names.
model_spec_parsnip

The model type used for imputation. It is defined via the parsnip package.
cols_used_for_imputation

Which columns should be used to impute other columns? Possible choices:
"only_complete", "already_imputed", "all"

cols_order Ordering of the columns for imputation. This can be a vector with indices or an
order_option from order_cols().

rows_used_for_imputation

Which rows should be used to impute other rows? Possible choices: "only_complete",
"partly_complete", "complete_in_k", "already_imputed", "all_except_i", "all"

rows_order Ordering of the rows for imputation. This can be a vector with indices or an
order_option from order_rows().

update_model How often should the model for imputation be updated? Possible choices are:
"everytime" (after every imputed value), "each_column" (only one update per
column) and "every_iteration" (an alias for "each_column").

6 impute_unsupervised

update_ds_model

How often should the data set for the inner model be updated? Possible choices
are: "everytime" (after every imputed value), "each_column" (only one update
per column) and "every_iteration".

M Missing data indicator matrix
warn_incomplete_imputation

Should a warning be given, if the returned data set still contains NA?

... Arguments passed on to stats::predict().

Details

This function imputes the columns of the data set ds column by column. The imputation order of
the columns can be specified by cols_order. Furthermore, cols_used_for_imputation controls
which columns are used for the imputation. The same options are available for the rows of ds via
rows_order and rows_used_for_imputation. If ds is pre-imputed, the missing data indicator
matrix can be supplied via M.

The inner method can be specified via model_spec_parsnip which should be a parsnip model
type like parsnip::linear_reg(), parsnip::rand_forest() (for a complete list see https:
//www.tidymodels.org/find/parsnip, you can also build a new parsnip model and use it in-
side of impute_supervised(), see https://www.tidymodels.org/learn/develop/models for
more information on building a parsnip model).

The options "all" for cols_used_for_imputation and "all_except_i", "all" for rows_used_for_imputation
should only be used, if ds is complete or the model (model_spec_parsnip) can handle missing
data.

The choice update_model = "each_column" can be much faster than update_model = "everytime",
especially, if the data set has many missing values in some columns.

Value

The imputed data set.

Examples

ds_mis <- missMethods::delete_MCAR(
data.frame(X = rnorm(20), Y = rnorm(20)), 0.2, 1

)
impute_supervised(ds_mis)

impute_unsupervised Unsupervised imputation

Description

Impute a data set with an unsupervised inner method. This function is one main function which
can be used inside of impute_iterative(). If you need pre-imputation or iterations, directly use
impute_iterative().

https://www.tidymodels.org/find/parsnip
https://www.tidymodels.org/find/parsnip
https://www.tidymodels.org/learn/develop/models

impute_unsupervised 7

Usage

impute_unsupervised(
ds,
model_fun,
predict_fun,
rows_used_for_imputation = "only_complete",
rows_order = seq_len(nrow(ds)),
update_model = "every_iteration",
update_ds_model = "every_iteration",
model_arg = NULL,
M = is.na(ds),
...

)

Arguments

ds The data set to be imputed. Must be a data frame with column names.

model_fun An unsupervised model function which take as arguments ds_used (the data set
used to build the model, specified via rows_used_for_imputation), M and i
(the index of the row currently under imputation).

predict_fun A predict function which uses the via model_fun generated model (model_imp)
to predict the missing values of a row. It should take the arguments model_imp,
ds_used, M and i.

rows_used_for_imputation

Which rows should be used to impute other rows? Possible choices: "only_complete",
"already_imputed", "all_except_i", "all"

rows_order Ordering of the rows for imputation. This can be a vector with indices or an
order_option from order_rows().

update_model How often should the model for imputation be updated? Possible choices are:
"everytime" (after every imputed value) and "every_iteration" (only one model
is created and used for all missing values).

update_ds_model

How often should the data set for the inner model be updated? Possible choices
are: "everytime" (after every imputed value), and "every_iteration".

model_arg Further arguments for model_fun. This can be a list, if it is more than one
argument.

M Missing data indicator matrix

... Further arguments given to predict_fun.

Details

This function imputes the rows of the data set ds row by row. The imputation order of the rows can
be specified by rows_order. Furthermore, rows_used_for_imputation controls which rows are
used for the imputation. If ds is pre-imputed, the missing data indicator matrix can be supplied via
M.

8 model_donor

The inner method used to impute the data set can be defined with model_fun. This model_fun
must take a data set, the missing data indicator matrix M, the index i of the row which should be
imputed right now (which is NULL, if the model is updated only once per iteration or only uses
complete rows) and model_arg in this order. It must return a model model_imp which is given to
predict_fun to generate imputation values for the missing values in a row i. The model_fun and
predict_fun can be self-written or a predefined one (see below) can be used.

If update_model = "every_iteration" only one model is fitted and the argument update_ds_model
is ignored. This option can be considerably faster than update_model = "everytime", especially,
for data sets with many rows with missing values. However, some methods (like nearest neighbors)
need update_model = "everytime".

Value

The imputed data set.

See Also

model_donor() and predict_donor() for a pair of predefined functions for model_fun and predict_fun.

Examples

ds_mis <- missMethods::delete_MCAR(
data.frame(X = rnorm(20), Y = rnorm(20)), 0.2, 1

)
impute_unsupervised(ds_mis, model_donor, predict_donor)
knn imputation with k = 2
impute_unsupervised(ds_mis, model_donor, predict_donor,

update_model = "everytime", model_arg = list(k = 2)
)

model_donor Model for donor-based imputation

Description

This function is intended to be used inside of impute_unsupervised() as model_fun.

Usage

model_donor(ds, M = is.na(ds), i = NULL, model_arg = NULL)

Arguments

ds The data set to be imputed. Must be a data frame with column names.

M Missing data indicator matrix

i Index for row of ds or NULL

model_arg A list with two named elements (missing elements will be replaced by default
values):

order_cols 9

• selection How to select the donors? Possible choices are: complete_rows
(default), partly_complete_rows, knn_complete_rows, knn_partly_complete_rows

• k number of selected closest donor (default: 10), only used for knn selections

Value

A "model" for predict_donor() which is merely a data frame.

See Also

predict_donor()

Examples

set.seed(123)
ds_mis <- data.frame(X = rnorm(10), Y = rnorm(10))
ds_mis[2:4, 1] <- NA
ds_mis[4:6, 2] <- NA
default returns only complete rows
model_donor(ds_mis)
with partly_complete and knn returned objects depends on i
model_donor(ds_mis,

i = 2,
model_arg = list(selection = "partly_complete_rows")

)
model_donor(ds_mis,

i = 4,
model_arg = list(selection = "partly_complete_rows")

)
model_donor(ds_mis,

i = 5,
model_arg = list(selection = "partly_complete_rows")

)
model_donor(ds_mis,

i = 5,
model_arg = list(selection = "knn_partly_complete_rows", k = 2)

)

order_cols Order column indices

Description

Order the indices of the columns of ds for imputation.

Usage

order_cols(ds, order_option, M = is.na(ds))

10 order_rows

Arguments

ds A data frame

order_option This option defines the ordering of the indices. Possible choices are "low-
est_md_first", "highest_md_first", "increasing_index", "decreasing_index".

M Missing data indicator matrix

Value

The ordered column indices of ds as a vector.

Examples

ds <- data.frame(X = c(NA, NA, NA, 4), Y = rep(2, 4), Z = c(1, NA, NA, 4))
order_cols(ds, "highest_md_first")

order_rows Order row indices

Description

Order the indices of the rows of ds for imputation.

Usage

order_rows(ds, order_option, M = is.na(ds))

Arguments

ds A data frame

order_option This option defines the ordering of the indices. Possible choices are "low-
est_md_first", "highest_md_first", "increasing_index", "decreasing_index".

M Missing data indicator matrix

Value

The ordered row indices of ds as a vector.

Examples

ds <- data.frame(X = c(NA, NA, 3, 4), Y = c(1, NA, NA, 4))
order_rows(ds, "lowest_md_first")

predict_donor 11

predict_donor Prediction for donor-based imputation

Description

This function is intended to be used inside of impute_unsupervised() as predict_fun.

Usage

predict_donor(
ds_donors,
ds,
M = is.na(ds),
i,
donor_aggregation = "choose_random"

)

Arguments

ds_donors Data set with donors, normally generated by model_donor()

ds The data set to be imputed. Must be a data frame with column names.

M Missing data indicator matrix

i Index of row of ds which should be imputed
donor_aggregation

Type of donor aggregation. Can be one of ’choose_random’ and ’average’.

Value

The imputation values for row i.

See Also

model_donor()

Examples

set.seed(123)
ds_mis <- data.frame(X = rnorm(10), Y = rnorm(10))
ds_mis[2:4, 1] <- NA
ds_mis[4:6, 2] <- NA
default for ds_donors and predict_donors
ds_donors <- model_donor(ds_mis)
predict_donor(ds_donors, ds_mis, i = 2)
predict_donor(ds_donors, ds_mis, i = 4)
with partly_complete, knn and average of neighbors
ds_donors <- model_donor(

ds_mis,

12 stop_ds_difference

i = 5, model_arg = list(selection = "knn_partly_complete_rows", k = 2)
)
ds_donors
predict_donor(ds_donors, ds_mis, i = 5, donor_aggregation = "average")

stop_ds_difference Compare differences between two data sets

Description

This function is intended to be used as stop_fun inside of impute_iterative(). It compares
the difference of two (numeric) data sets and return ds, if difference is small enough (less than
stop_args$eps).

Usage

stop_ds_difference(
ds,
ds_old,
info_list,
stop_args = list(eps = 1e-06, p = 1, sum_diffs = TRUE, na_rm = TRUE),
res_stop_fun = NULL

)

Arguments

ds A numeric data set

ds_old A numeric data set

info_list info_list used inside of impute_iterative(). Only the list element nr_iterations
is used/needed.

stop_args A list with following named components (missing elements will be replaced by
default ones):

• eps Threshold value for the difference (default = 1e-6).
• p Exponent used for the calculation of differences similar to Minkowski

distance. For p = 1 (default) the absolute differences are used. For p = 2
The quadratic differences are summed and the square root of this sum is
compared with stop_eps.

• sum_diffs Should differences be summed (default) or averaged (sum_diffs
= FALSE)?

• na_rm Should NA-values be removed (default) when calculating the sum/average?
If na_rm = FALSE and there are NAs, the function returns FALSE.

res_stop_fun Only needed to be a valid stop function. Internally, this argument is ignored at
the moment.

stop_ds_difference 13

Value

list(stop_iter = FALSE), if the difference is too big. Otherwise ds with number of iterations
(nr_iterations) as attribute.

Examples

set.seed(123)
ds1 <- data.frame(X = rnorm(10), Y = rnorm(10))
ds2 <- data.frame(X = rnorm(10), Y = rnorm(10))
all.equal(

stop_ds_difference(ds1, ds1, list(nr_iterations = 3)),
structure(ds1, nr_iterations = 3)

)
stop_ds_difference(ds1, ds2, list(nr_iterations = 42))

Index

impute_iterative, 2
impute_iterative(), 5, 6, 12
impute_supervised, 5
impute_supervised(), 2–4
impute_unsupervised, 6
impute_unsupervised(), 2–4, 8, 11

model_donor, 8
model_donor(), 8, 11

order_cols, 9
order_cols(), 3, 5
order_rows, 10
order_rows(), 3, 5, 7

parsnip::linear_reg(), 6
parsnip::rand_forest(), 6
predict_donor, 11
predict_donor(), 8, 9

stats::predict(), 3, 6
stop_ds_difference, 12
stop_ds_difference(), 4

14

	impute_iterative
	impute_supervised
	impute_unsupervised
	model_donor
	order_cols
	order_rows
	predict_donor
	stop_ds_difference
	Index

