Package ‘iml’

February 24, 2025

Type Package

Title Interpretable Machine Learning

Version 0.11.4

Maintainer Giuseppe Casalicchio <giuseppe.casalicchio@lmu.de>

Description Interpretability methods to analyze the behavior and
predictions of any machine learning model. Implemented methods are:
Feature importance described by Fisher et al. (2018)
<doi:10.48550/arxiv.1801.01489>, accumulated local effects plots described by Apley
(2018) <doi:10.48550/arxiv.1612.08468>, partial dependence plots described by
Friedman (2001) <www.jstor.org/stable/2699986>, individual conditional
expectation ('ice') plots described by Goldstein et al. (2013)
<doi:10.1080/10618600.2014.907095>, local models (variant of 'lime")
described by Ribeiro et. al (2016) <doi:10.48550/arXiv.1602.04938>, the Shapley
Value described by Strumbelj et. al (2014)
<doi:10.1007/s10115-013-0679-x>, feature interactions described by
Friedman et. al <doi:10.1214/07-A0OAS148> and tree surrogate models.

License MIT + file LICENSE

URL https://giuseppec.github.io/iml/,
https://github.com/giuseppec/iml/

BugReports https://github.com/giuseppec/iml/issues

Imports checkmate, data.table, Formula, future, future.apply, ggplot2,
Metrics, R6

Suggests ALEPIot, bench, bit64, caret, covr, e1071, future.callr,
glmnet, gower, h20, keras (>=2.2.5.0), knitr, MASS, mlr, mlr3,
party, partykit, patchwork, randomForest, ranger, rmarkdown,
rpart, testthat, yalmpute

VignetteBuilder knitr
Config/testthat/edition 3
Config/testthat/parallel true
Encoding UTF-8
RoxygenNote 7.3.2

https://doi.org/10.48550/arxiv.1801.01489
https://doi.org/10.48550/arxiv.1612.08468
https://doi.org/10.1080/10618600.2014.907095
https://doi.org/10.48550/arXiv.1602.04938
https://doi.org/10.1007/s10115-013-0679-x
https://doi.org/10.1214/07-AOAS148
https://giuseppec.github.io/iml/
https://github.com/giuseppec/iml/
https://github.com/giuseppec/iml/issues

2 iml-package

NeedsCompilation no

Author Giuseppe Casalicchio [aut, cre],

Christoph Molnar [aut],
Patrick Schratz [aut] (<https://orcid.org/0000-0003-0748-6624>)

Repository CRAN

Date/Publication 2025-02-24 12:50:02 UTC

Contents
iml-package e e 2
extract.glmnet.effects L 3
FeatureEffect 3
FeatureEffects 8
FeatureImp e 11
has.predict L 15
Interaction e 15
InterpretationMethod 17
LocalModel e 19
order_levels e, 22
Partial e 23
plot.FeatureEffect L 25
plot.FeatureEffects 26
plotFeatureImp 27
plot.Interaction L. e e e e 28
plotLocalModel 29
plot.Shapley 30
plot.TreeSurrogate L 31
predict.LocalModel 32
predict.TreeSurrogate 33
Predictor e 34
probs.todabelso 36
Shapley e e e 37
TreeSurrogate L L. e e e e 39

Index 42

iml-package Make machine learning models and predictions interpretable
Description

The iml package provides tools to analyze machine learning models and predictions.

https://orcid.org/0000-0003-0748-6624

extract.glmnet.effects

Author(s)

Maintainer: Giuseppe Casalicchio <giuseppe.casalicchio@lmu.de>

Authors:

* Christoph Molnar <christoph.molnar@gmail.com>

* Patrick Schratz <patrick.schratz@gmail.com> (ORCID)

See Also

Book on Interpretable Machine Learning

extract.glmnet.effects
Extract glmnet effects

Description

Extract glmnet effects

Usage

extract.glmnet.effects(betas, best.index, x.recoded, x.original)

Arguments
betas glmnet$beta
best.index index k
x.recoded the recoded version of x
x.original the original X Assuming that the first row is the x.interest
FeatureEffect Effect of a feature on predictions
Description

FeatureEffect computes and plots (individual) feature effects of prediction models.

https://orcid.org/0000-0003-0748-6624
https://christophm.github.io/interpretable-ml-book/agnostic

4 FeatureEffect

Details

The FeatureEffect class compute the effect a feature has on the prediction. Different methods are
implemented:

* Accumulated Local Effect (ALE) plots

* Partial Dependence Plots (PDPs)

* Individual Conditional Expectation (ICE) curves
Accumulated local effects and partial dependence plots both show the average model prediction
over the feature. The difference is that ALE are computed as accumulated differences over the

conditional distribution and partial dependence plots over the marginal distribution. ALE plots
preferable to PDPs, because they are faster and unbiased when features are correlated.

ALE plots for categorical features are automatically ordered by the similarity of the categories based
on the distribution of the other features for instances in a category. When the feature is an ordered
factor, the ALE plot leaves the order as is.

Individual conditional expectation curves describe how, for a single observation, the prediction
changes when the feature changes and can be combined with partial dependence plots.

To learn more about accumulated local effects, read the Interpretable Machine Learning book.

For the partial dependence plots: https://christophm.github.io/interpretable-ml-book/
pdp.html

For individual conditional expectation: https://christophm.github.io/interpretable-ml-book/
ice.html

Super class

iml::InterpretationMethod -> FeatureEffect

Public fields
grid.size (numeric(1) | numeric(2))
The size of the grid.

feature.name (character(1) | character(2))
The names of the features for which the partial dependence was computed.

n.features (numeric(1))
The number of features (either 1 or 2).

feature.type (character(1) | character(2))
The detected types of the features, either "categorical" or "numerical".

method (character(1))

Active bindings

center.at numeric
Value at which the plot was centered. Ignored in the case of two features.

https://christophm.github.io/interpretable-ml-book/ale.html
https://christophm.github.io/interpretable-ml-book/pdp.html
https://christophm.github.io/interpretable-ml-book/pdp.html
https://christophm.github.io/interpretable-ml-book/ice.html
https://christophm.github.io/interpretable-ml-book/ice.html

FeatureEffect 5

Methods

Public methods:

e FeatureEffect$new()

e FeatureEffect$set.feature()
e FeatureEffect$center()

e FeatureEffect$predict()

e FeatureEffect$clone()

Method new(): Create a FeatureEffect object

Usage:

FeatureEffect$new(
predictor,
feature,
method = "ale",
center.at = NULL,
grid.size = 20,
grid.points = NULL

)

Arguments:

predictor Predictor
The object (created with Predictor$new()) holding the machine learning model and the
data.

feature (character(1) | character(2) | numeric(1) | numeric(2))
The feature name or index for which to compute the effects.

method (character(1))

» ’ale’ for accumulated local effects,

* ’pdp’ for partial dependence plot,

* ’ice’ for individual conditional expectation curves,

* ’pdp + ice’ for partial dependence plot and ice curves within the same plot.

center.at (numeric(1))
Value at which the plot should be centered. Ignored in the case of two features.

grid.size (numeric(1) | numeric(2))
The size of the grid for evaluating the predictions.

grid.points (numeric() | list(numeric(), numeric())
An optional grid along the feature. If grid.points are set, the grid.size argument is ignored.
Provide a list of two vectors with the same order as in the ’feature’ argument, if PDP/ALE
for two features is to be computed with a user-defined grid.

Method set.feature(): Get/set feature(s) (by index) for which to compute PDP.

Usage:
FeatureEffect$set.feature(feature)

Arguments:

6 FeatureEffect

feature (character(1))
Feature name.

Method center(): Set the value at which the ice computations are centered.
Usage:

FeatureEffect$center(center.at)

Arguments:

center.at (numeric(1))
Value at which the plot should be centered. Ignored in the case of two features.

Method predict(): Predict the marginal outcome given a feature.
Usage:
FeatureEffect$predict(data, extrapolate = FALSE)

Arguments:

data data.frame
Data.frame with the feature or a vector.

extrapolate (character(1))
If TRUE, predict returns NA for x values outside of observed range. If FALSE, predcit
returns the closest PDP value for x values outside the range. Ignored for categorical features

Returns: Values of the effect curves at the given values.

Method clone(): The objects of this class are cloneable with this method.

Usage:
FeatureEffect$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Apley, D. W. 2016. "Visualizing the Effects of Predictor Variables in Black Box Supervised Learn-
ing Models." ArXiv Preprint.

Friedman, J.H. 2001. "Greedy Function Approximation: A Gradient Boosting Machine." Annals of
Statistics 29: 1189-1232.

Goldstein, A., Kapelner, A., Bleich, J., and Pitkin, E. (2013). Peeking Inside the Black Box: Visual-
izing Statistical Learning with Plots of Individual Conditional Expectation, 1-22. https://doi.org/10.1080/10618600.2014.907

See Also

plot.FeatureEffect

FeatureEffect

Examples

We train a random forest on the Boston dataset:
data("Boston”, package = "MASS")

library("rpart"”)

rf <- rpart(medv ~ ., data = Boston)

mod <- Predictor$new(rf, data = Boston)

Compute the accumulated local effects for the first feature
eff <- FeatureEffect$new(mod, feature = "rm", grid.size = 30)
eff$plot()

Again, but this time with a partial dependence plot and ice curves
eff <- FeatureEffect$new(mod,

feature = "rm”, method = "pdp+ice”,
grid.size = 30

)

plot(eff)

Since the result is a ggplot object, you can extend it:
library("ggplot2")
plot(eff) +
Adds a title
ggtitle("Partial dependence”) +
Adds original predictions
geom_point(
data = Boston, aes(y = mod$predict(Boston)[[1]1], x = rm),
color = "pink"”, size = 0.5

)

If you want to do your own thing, just extract the data:
eff.dat <- eff$results
head(eff.dat)

You can also use the object to "predict” the marginal values.
eff$predict(Boston[1:3, 1)

Instead of the entire data.frame, you can also use feature values:
eff$predict(c(5, 6, 7))

You can reuse the pdp object for other features:
eff$set.feature(”lstat”)
plot(eff)

Only plotting the aggregated partial dependence:
eff <- FeatureEffect$new(mod, feature = "crim”, method = "pdp")
eff$plot()

Only plotting the individual conditional expectation:
eff <- FeatureEffect$new(mod, feature = "crim”, method = "ice”
eff$plot()

Accumulated local effects and partial dependence plots support up to two
features:

8 FeatureEffects

eff <- FeatureEffect$new(mod, feature = c(”"crim”, "lstat"))
plot(eff)

FeatureEffect plots also works with multiclass classification
rf <- rpart(Species ~ ., data = iris)
mod <- Predictor$new(rf, data = iris, type = "prob")

For some models we have to specify additional arguments for the predict
function
plot(FeatureEffect$new(mod, feature = "Petal.Width"))

FeatureEffect plots support up to two features:
eff <- FeatureEffect$new(mod, feature = c("Sepal.Length”, "Petal.Length"))
eff$plot()

show where the actual data lies
eff$plot(show.data = TRUE)

For multiclass classification models, you can choose to only show one class:
mod <- Predictor$new(rf, data = iris, type = "prob”, class = "setosa")
plot(FeatureEffect$new(mod, feature = "Sepal.Length"))

FeatureEffects Effect of a feature on predictions

Description

FeatureEffects computes and plots feature effects of multiple features at once.

Details

FeatureEffects computes the effects for all given features on the model prediction. FeatureEffects is
a convenience class that calls FeatureEffect multiple times. See ?FeatureEffect for details what’s
actually computed.

Only first-order effects can be computed with the FeatureEffects interface. If you are interested in
the visualization of interactions between two features, directly use FeatureEffect.

Parallelization

Parallelization is supported via package future. To initialize future-based parallelization, select
an appropriate backend and specify the amount of workers. For example, to use a PSOCK based
cluster backend do:

future::plan(multisession, workers = 2)
<iml function here>

Consult the resources of the future package for more parallel backend options.

https://CRAN.R-project.org/package=future
https://CRAN.R-project.org/package=future

FeatureEffects 9

Super class

iml::InterpretationMethod -> FeatureEffects

Public fields

grid.size (numeric(1) | numeric(2))
The size of the grid.

method (character(1))

¢ "ale" for accumulated local effects,

* "pdp" for partial dependence plot,

* "ice" for individual conditional expectation curves,

* "pdp+ ice" for partial dependence plot and ice curves within the same plot.

effects (list)
Named list of FeatureEffects.

features (character())
The names of the features for which the effects were computed.

center.at numeric
Value at which the plot was centered. Ignored in the case of two features.

Methods

Public methods:

e FeatureEffects$new()
e FeatureEffects$clone()

Method new(): Create a FeatureEffects object

Usage:

FeatureEffects$new(
predictor,
features = NULL,
method = "ale”,
center.at = NULL,
grid.size = 20

)

Arguments:

predictor Predictor
The object (created with Predictor$new()) holding the machine learning model and the
data.

features (character())
The names of the features for which to compute the feature effects.

method (character(1))

e ’ale’ for accumulated local effects,

10 FeatureEffects

* ’pdp’ for partial dependence plot,

* ’ice’ for individual conditional expectation curves,

* ’pdp+ice’ for partial dependence plot and ice curves within the same plot.
center.at (numeric(1))

Value at which the plot should be centered. Ignored in the case of two features.
grid.size (numeric(1) | numeric(2))

The size of the grid for evaluating the predictions.
feature (character(1) | character(2) | numeric(1) | numeric(2))

The feature name or index for which to compute the effects.

Method clone(): The objects of this class are cloneable with this method.

Usage:
FeatureEffects$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Apley, D. W. 2016. "Visualizing the Effects of Predictor Variables in Black Box Supervised Learn-
ing Models." ArXiv Preprint.

Friedman, J.H. 2001. "Greedy Function Approximation: A Gradient Boosting Machine." Annals of
Statistics 29: 1189-1232.

Goldstein, A., Kapelner, A., Bleich, J., and Pitkin, E. (2013). Peeking Inside the Black Box: Visual-
izing Statistical Learning with Plots of Individual Conditional Expectation, 1-22. https://doi.org/10.1080/10618600.2014.907

See Also

plot.FeatureEffects

Examples

We train a random forest on the Boston dataset:
library("rpart”)

data("Boston"”, package = "MASS")

rf <- rpart(medv ~ ., data = Boston)

mod <- Predictor$new(rf, data = Boston)

Compute the accumulated local effects for all features
eff <- FeatureEffects$new(mod)

eff$plot()

Not run:

Again, but this time with a partial dependence plot
eff <- FeatureEffects$new(mod, method = "pdp")
eff$plot()

Only a subset of features
eff <- FeatureEffects$new(mod, features = c("nox"”, "crim"))
eff$plot()

FeatureImp 11

You can access each FeatureEffect individually
eff.nox <- eff$effects[["nox"]]
eff.nox$plot()

FeatureEffects also works with multiclass classification
rf <- rpart(Species ~ ., data = iris)
mod <- Predictor$new(rf, data = iris, type = "prob")

FeatureEffects$new(mod)$plot(ncol = 2)

End(Not run)

FeatureImp Feature importance

Description

FeatureImp computes feature importance for prediction models. The importance is measured as
the factor by which the model’s prediction error increases when the feature is shuffled.

Details

To compute the feature importance for a single feature, the model prediction loss (error) is mea-
sured before and after shuffling the values of the feature. By shuffling the feature values, the as-
sociation between the outcome and the feature is destroyed. The larger the increase in prediction
error, the more important the feature was. The shuffling is repeated to get more accurate results,
since the permutation feature importance tends to be quite unstable. Read the Interpretable Ma-
chine Learning book to learn about feature importance in detail: https://christophm.github.
io/interpretable-ml-book/feature-importance.html

The loss function can be either specified via a string, or by handing a function to FeatureImp(). If
you want to use your own loss function it should have this signature:

function(actual, predicted)

Using the string is a shortcut to using loss functions from the Metrics package. Only use functions
that return a single performance value, not a vector. Allowed losses are: "ce"”, "f1", "loglLoss",
"mae"”, "mse", "rmse"”, "mape”, "mdae”, "msle”, "percent_bias”, "rae”, "rmse”, "rmsle",
"rse”, "rrse"” and "smape".

n o n n

See library(help = "Metrics") to get a list of functions.

https://christophm.github.io/interpretable-ml-book/feature-importance.html
https://christophm.github.io/interpretable-ml-book/feature-importance.html

12 Featurelmp

Parallelization

Parallelization is supported via package future. To initialize future-based parallelization, select
an appropriate backend and specify the amount of workers. For example, to use a PSOCK based
cluster backend do:

future::plan(multisession, workers = 2)
<iml function here>

Consult the resources of the future package for more parallel backend options.

Super class

iml::InterpretationMethod -> FeatureImp

Public fields

loss (character(1) | function)
The loss function. Either the name of a loss (e.g. "ce"” for classification or "mse") or a
function.

original.error (numeric(1))
The loss of the model before perturbing features.

n.repetitions integer
Number of repetitions.

compare (character(1))
Either "ratio” or "difference”, depending on whether the importance was calculated as
difference between original model error and model error after permutation or as ratio.

features (list)
Features for which importance scores are to be calculated. The names are the feature/group
names, while the contents specify which feature(s) are to be permuted.

Methods
Public methods:

e FeatureImp$new()
e FeatureImp$clone()

Method new(): Create a FeatureImp object

Usage:
FeatureImp$new(
predictor,
loss,
compare = "ratio”,

n.repetitions = 5,
features = NULL
)

Arguments:

https://CRAN.R-project.org/package=future
https://CRAN.R-project.org/package=future

FeatureImp 13

predictor Predictor
The object (created with Predictor$new()) holding the machine learning model and the
data.

loss (character(1) | function)
The loss function. Either the name of a loss (e.g. "ce"” for classification or "mse") or a
function. See Details for allowed losses.

compare (character(1))
Either "ratio” or "difference"”. Should importance be measured as the difference or as
the ratio of original model error and model error after permutation?
* Ratio: error.permutation/error.orig
* Difference: error.permutation - error.orig

n.repetitions (numeric(1))
How often should the shuffling of the feature be repeated? The higher the number of repe-
titions the more stable and accurate the results become.

features (character or list)
For which features do you want importance scores calculated. The default value of NULL
implies all features. Use a named list of character vectors to define groups of features for
which joint importance will be calculated. See examples.

Returns: (data.frame)
data.frame with the results of the feature importance computation. One row per feature with the
following columns:

 importance.05 (5% quantile of importance values from the repetitions)
* importance (median importance)
 importance.95 (95% quantile) and the permutation.error (median error over all repetitions).

The distribution of the importance is also visualized as a bar in the plots, the median importance
over the repetitions as a point.

Method clone(): The objects of this class are cloneable with this method.

Usage:
FeatureImp$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Fisher, A., Rudin, C., and Dominici, F. (2018). Model Class Reliance: Variable Importance Mea-
sures for any Machine Learning Model Class, from the "Rashomon" Perspective. Retrieved from
http://arxiv.org/abs/1801.01489

Examples

library("rpart")

We train a tree on the Boston dataset:
data(”"Boston"”, package = "MASS")

tree <- rpart(medv ~ ., data = Boston)

y <- Boston$medv

X <- Boston[-which(names(Boston) == "medv")]

14

mod <- Predictor$new(tree, data = X, y = y)

Compute feature importances as the performance drop in mean absolute error
imp <- FeaturelImp$new(mod, loss = "mae")

Plot the results directly
plot(imp)

Since the result is a ggplot object, you can extend it:
library("ggplot2")
plot(imp) + theme_bw()
If you want to do your own thing, just extract the data:
imp.dat <- imp$results
head(imp.dat)
ggplot(imp.dat, aes(x = feature, y = importance)) +
geom_point() +
theme_bw()

We can also look at the difference in model error instead of the ratio
imp <- FeatureImp$new(mod, loss = "mae", compare = "difference")

Plot the results directly
plot(imp)

We can calculate feature importance for a subset of features
imp <- FeaturelImp$new(mod, loss = "mae"”, features = c("crim”,
plot(imp)

"

zn", "indus"))

We can calculate joint importance of groups of features
groups = list(

grpl = c("crim”, "zn", "indus”, "chas"),

grpz = c:(Ilnoxll’ Ilrmﬁ’ Hagell’ Ildisll)’

grp3 = c("rad”, "tax", "ptratio”, "black”, "lstat")

)

imp <- FeatureImp$new(mod, loss = "mae", features = groups)
plot(imp)

FeatureImp also works with multiclass classification.

In this case, the importance measurement regards all classes
tree <- rpart(Species ~ ., data = iris)

X <- iris[-which(names(iris) == "Species")]

y <- iris$Species

mod <- Predictor$new(tree, data = X, y =y, type = "prob")

Featurelmp

For some models we have to specify additional arguments for the predict function

imp <- FeaturelImp$new(mod, loss = "ce")
plot(imp)

For multiclass classification models, you can choose to only compute
performance for one class.
Make sure to adapt y

has.predict 15

mod <- Predictor$new(tree,

data = X, y =y == "virginica”,
type = "prob”, class = "virginica”
)
imp <- FeaturelImp$new(mod, loss = "ce")
plot(imp)
has.predict returns TRUE if object has predict function
Description

returns TRUE if object has predict function

Usage

has.predict(object)

Arguments
object The object to check.
Interaction Feature interactions
Description

Feature interactions

Feature interactions

Details

Interaction estimates the feature interactions in a prediction model.

Interactions between features are measured via the decomposition of the prediction function: If a
feature j has no interaction with any other feature, the prediction function can be expressed as the
sum of the partial function that depends only on j and the partial function that only depends on
features other than j. If the variance of the full function is completely explained by the sum of the
partial functions, there is no interaction between feature j and the other features. Any variance that
is not explained can be attributed to the interaction and is used as a measure of interaction strength.

The interaction strength between two features is the proportion of the variance of the 2-dimensional
partial dependence function that is not explained by the sum of the two 1-dimensional partial de-
pendence functions.

The interaction is measured by Friedman’s H-statistic (square root of the H-squared test statistic)

and takes on values between O (no interaction) to 1 (100% of standard deviation of f(x) du to
interaction).

To learn more about interaction effects, read the Interpretable Machine Learning book: https:
//christophm.github.io/interpretable-ml-book/interaction.html

https://christophm.github.io/interpretable-ml-book/interaction.html
https://christophm.github.io/interpretable-ml-book/interaction.html

16 Interaction

Parallelization

Parallelization is supported via package future. To initialize future-based parallelization, select
an appropriate backend and specify the amount of workers. For example, to use a PSOCK based
cluster backend do:

future::plan(multisession, workers = 2)
<iml function here>

Consult the resources of the future package for more parallel backend options.

Super class

iml::InterpretationMethod -> Interaction

Public fields

grid.size (logical(1))
The number of values per feature that should be used to estimate the interaction strength.

Methods
Public methods:

e Interaction$new()
* Interaction$clone()

Method new(): Create an Interaction object

Usage:
Interaction$new(predictor, feature = NULL, grid.size = 30)

Arguments:

predictor Predictor
The object (created with Predictor$new()) holding the machine learning model and the
data.

feature (character(1) | character(2) | numeric(1) | numeric(2))
The feature name or index for which to compute the effects.

grid.size (numeric(1) | numeric(2))
The size of the grid for evaluating the predictions.

Returns: data.frame with the interaction strength (column . interation) per feature calculated
as Friedman’s H-statistic and - in the case of a multi-dimensional outcome - per class.
Method clone(): The objects of this class are cloneable with this method.
Usage:
Interaction$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

https://CRAN.R-project.org/package=future
https://CRAN.R-project.org/package=future

InterpretationMethod 17

References

Friedman, Jerome H., and Bogdan E. Popescu. "Predictive learning via rule ensembles." The Annals
of Applied Statistics 2.3 (2008): 916-954.

Examples

Not run:

library("rpart”)

set.seed(42)

Fit a CART on the Boston housing data set
data(”"Boston"”, package = "MASS")

rf <- rpart(medv ~ ., data = Boston)
Create a model object
mod <- Predictor$new(rf, data = Boston[-which(names(Boston) == "medv")])

Measure the interaction strength
ia <- Interaction$new(mod)

Plot the resulting leaf nodes
plot(ia)

Extract the results
dat <- ia$results
head(dat)

Interaction also works with multiclass classification
rf <- rpart(Species ~ ., data = iris)
mod <- Predictor$new(rf, data = iris, type = "prob")

For some models we have to specify additional arguments for the

predict function

ia <- Interaction$new(mod)

iasplot()

For multiclass classification models, you can choose to only show one class:
mod <- Predictor$new(rf, data = iris, type = "prob", class = "virginica")

plot(Interaction$new(mod))

End(Not run)

InterpretationMethod Interpretation Method

Description

Superclass container for Interpretation Method objects

18 InterpretationMethod

Public fields

results data.frame
The aggregated results of the experiment

predictor Predictor object.

Methods

Public methods:

e InterpretationMethod$new()

e InterpretationMethod$plot()
e InterpretationMethod$print()
e InterpretationMethod$clone()

Method new(): Create an InterpretationMethod object

Usage:
InterpretationMethod$new(predictor)

Arguments:

predictor Predictor
The object (created with Predictor$new()) holding the machine learning model and the
data.

Method plot(): Plot function. Calls private$generatePlot() of the respective subclass.

Usage:
InterpretationMethod$plot(...)

Arguments:

. Passed to private$generatePlot().

Method print(): Printer for InterpretationMethod objects

Usage:
InterpretationMethod$print()

Method clone(): The objects of this class are cloneable with this method.

Usage:
InterpretationMethod$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

LocalModel 19

LocalModel LocalModel

Description

LocalModel fits locally weighted linear regression models (logistic regression for classification) to
explain single predictions of a prediction model.

Details

A weighted glm is fitted with the machine learning model prediction as target. Data points are
weighted by their proximity to the instance to be explained, using the gower proximity measure.
L1-regularization is used to make the results sparse.

The resulting model can be seen as a surrogate for the machine learning model, which is only valid
for that one point. Categorical features are binarized, depending on the category of the instance to
be explained: 1 if the category is the same, 0 otherwise.

Please note that scaling continuous features in the machine learning method might be advisable
when using LIME as an interpretation technique. LIME uses a distance measure to compute prox-
imity weights for the weighted glm. Hence, the original scale of the features may influence the
distance measure and therewith LIME results.

To learn more about local models, read the Interpretable Machine Learning book: https://christophm.
github.io/interpretable-ml-book/lime.html

The approach is similar to LIME, but has the following differences:

 Distance measure: Uses as default the gower proximity (= 1 - gower distance) instead of a
kernel based on the Euclidean distance. Has the advantage to have a meaningful neighborhood
and no kernel width to tune. When the distance is not "gower"”, then the stats: :dist() func-
tion with the chosen method will be used, and turned into a similarity measure: sqrt(exp(—(distance?)/(kernel.widt}

e Sampling: Uses the original data instead of sampling from normal distributions. Has the
advantage to follow the original data distribution.

* Visualization: Plots effects instead of betas. Both are the same for binary features, but ared
different for numerical features. For numerical features, plotting the betas makes no sense,
because a negative beta might still increase the prediction when the feature value is also neg-
ative.

To learn more about local surrogate models, read the Interpretable Machine Learning book: https:
//christophm.github.io/interpretable-ml-book/lime.html

Super class

iml::InterpretationMethod -> LocalModel

https://christophm.github.io/interpretable-ml-book/lime.html
https://christophm.github.io/interpretable-ml-book/lime.html
https://christophm.github.io/interpretable-ml-book/lime.html
https://christophm.github.io/interpretable-ml-book/lime.html

20

LocalModel

Public fields

X.interest data.frame

Single row with the instance to be explained.

k numeric(1)

The number of features as set by the user.

model glmnet

The fitted local model.

best.fit.index numeric(1)

The index of the best glmnet fit.

Methods

Public methods:
¢ LocalModel$new()
* LocalModel$predict()
* LocalModel$explain()
¢ LocalModel$clone()

Method new(): Create a Local Model object.

Usage:

LocalModel$new(
predictor,
X.interest,
dist.fun = "gower"”,

gower.power = 1,
kernel.width = NULL,
k =3

)

Arguments:

predictor Predictor
The object (created with Predictor$new()) holding the machine learning model and the
data.
x.interest data.frame
Single row with the instance to be explained.
dist.fun character(1))
The name of the distance function for computing proximities (weights in the linear model).
Defaults to "gower”. Otherwise will be forwarded to stats::dist.
gower .power (numeric(1))
The calculated gower proximity will be raised to the power of this value. Can be used to
specify the size of the neighborhood for the LocalModel (similar to kernel.width for the
euclidean distance).
kernel.width (numeric(1))
The width of the kernel for the proximity computation. Only used if dist.fun is not "gower".
k numeric(1)
The number of features.

LocalModel 21

Returns: data.frame
Results with the feature names (feature) and contributions to the prediction.

Method predict(): Method to predict new data with the local model See also predict.LocalModel.
Usage:
LocalModel$predict(newdata = NULL, ...)

Arguments:

newdata data.frame
Data to predict on.

. Not used

Method explain(): Setanew data point to explain.
Usage:
LocalModel$explain(x.interest)
Arguments:

x.interest data.frame
Single row with the instance to be explained.

Method clone(): The objects of this class are cloneable with this method.
Usage:
LocalModel$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

References
Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). "Why Should I Trust You?": Explaining the
Predictions of Any Classifier. Retrieved from http://arxiv.org/abs/1602.04938

Gower, J. C. (1971), "A general coefficient of similarity and some of its properties". Biometrics,
27, 623-637.

See Also

plot.LocalModel and predict.LocalModel
Shapley can also be used to explain single predictions

The package 1ime with the original implementation

Examples

library("randomForest"”)

First we fit a machine learning model on the Boston housing data
data("Boston"”, package = "MASS")

X <- Boston[-which(names(Boston) == "medv")]

rf <- randomForest(medv ~ ., data = Boston, ntree = 50)

mod <- Predictor$new(rf, data = X)

22 order_levels

Explain the first instance of the dataset with the LocalModel method:
x.interest <- X[1,]

lemon <- LocalModel$new(mod, x.interest = x.interest, k = 2)

lemon

Look at the results in a table
lemon$results

Or as a plot

plot(lemon)

Reuse the object with a new instance to explain
lemon$x.interest

lemon$explain(X[2, 1)

lemon$x.interest

plot(lemon)

LocalModel also works with multiclass classification

rf <- randomForest(Species ~ ., data = iris, ntree = 50)
X <- iris[-which(names(iris) == "Species")]
mod <- Predictor$new(rf, data = X, type = "prob”, class = "setosa")

Then we explain the first instance of the dataset with the LocalModel method:
lemon <- LocalModel$new(mod, x.interest = X[1, 1, k = 2)

lemon$results

plot(lemon)

order_levels Order levels of a categorical features

Description
Orders the levels by their similarity in other features. Computes per feature the distance, sums up
all distances and does multi-dimensional scaling

Usage

order_levels(dat, feature.name)

Arguments

dat data.frame with the training data

feature.name the name of the categorical feature

Details

Goal: Compute the distances between two categories. Input: Instances from category 1 and 2

1. For all features, do (excluding the categorical feature for which we are computing the order):

Partial 23

* If the feature is numerical: Take instances from category 1, calculate the empirical cumulative
probability distribution function (ecdf) of the feature. The ecdf is a function that tells us for a
given feature value, how many values are smaller. Do the same for category 2. The distance
is the absolute maximum point-wise distance of the two ecdf. Practically, this value is high
when the distribution from one category is strongly shifted far away from the other. This
measure is also known as the Kolmogorov-Smirnov distance (https://en.wikipedia.org/
wiki/KolmogorovsE2%80%93Smirnov_test).

* If the feature is categorical: Take instances from category 1 and calculate a table with the
relative frequency of each category of the other feature. Do the same for instances from
category 2. The distance is the sum of the absolute difference of both relative frequency
tables.

1. Sum up the distances over all features

This algorithm we run for all pairs of categories. Then we have a k times k matrix, when k is the
number of categories, where each entry is the distance between two categories. Still not enough to
have a single order, because, a (dis)similarity tells you the pair-wise distances, but does not give
you a one-dimensional ordering of the classes. To kind of force this thing into a single dimension,
we have to use a dimension reduction trick called multi-dimensional scaling. This can be solved
using multi-dimensional scaling, which takes in a distance matrix and returns a distance matrix with
reduced dimension. In our case, we only want 1 dimension left, so that we have a single ordering of
the categories and can compute the accumulated local effects. After reducing it to a single ordering,
we are done and can use this ordering to compute ALE. This is not the Holy Grail how to order the
factors, but one possibility.

Value

the order of the levels (not levels itself)

Partial Effect of one or two feature(s) on the model predictions (deprecated)

Description

Effect of one or two feature(s) on the model predictions (deprecated)

Effect of one or two feature(s) on the model predictions (deprecated)

Details

Deprecated, please use FeatureEffect.

Super classes

iml::InterpretationMethod -> iml: :FeatureEffect ->Partial

https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test
https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test

24 Partial

Methods

Public methods:

e Partial$new()
e Partial$clone()

Method new(): Effect of one or two feature(s) on the model predictions

Usage:

Partial$new(
predictor,
feature,
aggregation = "pdp”,
ice = TRUE,
center.at = NULL,
grid.size = 20

)

Arguments:

predictor Predictor
The object (created with Predictor$new()) holding the machine learning model and the
data.

feature (character(1) | character(2) | numeric(1) | numeric(2))
The feature name or index for which to compute the effects.

aggregation (character(1))
The aggregation approach to use. Possible values are "pdp”, "ale” or "none”.

ice logical
Whether to compute ice plots.

center.at (numeric(1))
Value at which the plot should be centered. Ignored in the case of two features.

grid.size (numeric(1) | numeric(2))
The size of the grid for evaluating the predictions.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Partial$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

FeatureEffect

plot.FeatureEffect 25

plot.FeatureEffect Plot FeatureEffect

Description

plot.FeatureEffect() plots the results of a FeatureEffect object.

Usage

S3 method for class 'FeatureEffect'
plot(x, rug = TRUE, show.data = FALSE, ylim = NULL)

Arguments
X A FeatureEffect object.
rug logical
Should a rug be plotted to indicate the feature distribution? The rug will be
jittered a bit, so the location may not be exact, but it avoids overplotting.
show.data (logical(1))
Should the data points be shown? Only affects 2D plots, and ignored for 1D
plots, because rug has the same information.
ylim (numeric(2))
Vector with two coordinates for the y-axis. Only works when one feature is used
in FeatureEffect, ignored when two are used.
Value
ggplot2 plot object
See Also
FeatureEffect
Examples

We train a random forest on the Boston dataset:

if (require("randomForest”)) {
data("Boston"”, package = "MASS")
rf <- randomForest(medv ~ ., data = Boston, ntree = 50)
mod <- Predictor$new(rf, data = Boston)

Compute the ALE for the first feature
eff <- FeatureEffect$new(mod, feature = "crim")

Plot the results directly
plot(eff)

26 plot.FeatureEffects

plot.FeatureEffects Plot FeatureEffect

Description

plot.FeatureEffect() plots the results of a FeatureEffect object.

Usage

S3 method for class 'FeatureEffects'

plot(x, features = NULL, nrows = NULL, ncols = NULL, fixed_y = TRUE, ...)
Arguments

X A FeatureEffect object.

features character For which features should the effects be plotted? Default is all features.

You can also sort the order of the plots with this argument.

nrows The number of rows in the table of graphics

ncols The number of columns in the table of graphics

fixed_y Should the y-axis range be the same for all effects? Defaults to TRUE.

Further arguments for FeatureEffect$plot()

Details
In contrast to other plot methods, for FeatureEffects the returned plot is not a ggplot2 object, but a
grid object, a collection of multiple ggplot2 plots.

Value

grid object

See Also

FeatureEffects plot.FeatureEffect

Examples

We train a random forest on the Boston dataset:
library("”randomForest")

data("Boston"”, package = "MASS")

rf <- randomForest(medv ~ ., data = Boston, ntree = 50)
mod <- Predictor$new(rf, data = Boston)

Compute the partial dependence for the first feature
eff <- FeatureEffects$new(mod)

Plot the results directly

plot.FeatureImp 27

eff$plot()

For a subset of features
eff$plot(features = c("lstat”, "crim"))

With a different layout
eff$plot(nrows = 2)

plot.FeatureImp Plot Feature Importance

Description

plot.FeatureImp() plots the feature importance results of a FeatureImp object.

Usage
S3 method for class 'FeatureImp'
plot(x, sort = TRUE, ...)
Arguments
X A FeatureImp object
sort logical. Should the features be sorted in descending order? Defaults to TRUE.

Further arguments for the objects plot function

Details

The plot shows the importance per feature.

When n.repetitions in FeatureImp$new was larger than 1, then we get multiple importance
estimates per feature. The importance are aggregated and the plot shows the median importance
per feature (as dots) and also the 90%-quantile, which helps to understand how much variance the
computation has per feature.

Value

ggplot2 plot object

See Also

FeatureImp

28 plot.Interaction

Examples

library("rpart"”)
We train a tree on the Boston dataset:
data("Boston"”, package = "MASS")

tree <- rpart(medv ~ ., data = Boston)
y <- Boston$medv
X <- Boston[-which(names(Boston) == "medv")]

mod <- Predictor$new(tree, data = X, y = y)

Compute feature importances as the performance drop in mean absolute error
imp <- FeatureImp$new(mod, loss = "mae")

Plot the results directly
plot(imp)

plot.Interaction Plot Interaction

Description

plot.Interaction() plots the results of an Interaction object.

Usage
S3 method for class 'Interaction'
plot(x, sort = TRUE)

Arguments

X An Interaction R6 object

sort logical. Should the features be sorted in descending order? Defaults to TRUE.

Value

ggplot2 plot object

See Also

Interaction

Examples

We train a tree on the Boston dataset:
Not run:

library("rpart")

data(”"Boston"”, package = "MASS")

rf <- rpart(medv ~ ., data = Boston)
mod <- Predictor$new(rf, data = Boston)

plot.LocalModel

Compute the interactions
ia <- Interaction$new(mod)

Plot the results directly
plot(ia)

End(Not run)

29

plot.LocalModel Plot Local Model

Description

plot.LocalModel() plots the feature effects of a LocalModel object.

Usage

S3 method for class 'LocalModel'
plot(object)

Arguments

object A LocalModel R6 object

Value

ggplot2 plot object

See Also
LocalModel

Examples

library("randomForest"”)

First we fit a machine learning model on the Boston housing data
data("Boston"”, package = "MASS")

X <- Boston[-which(names(Boston) == "medv")]

rf <- randomForest(medv ~ ., data = Boston, ntree = 50)

mod <- Predictor$new(rf, data = X)

Explain the first instance of the dataset with the LocalModel method:

x.interest <- X[1,]
lemon <- LocalModel$new(mod, x.interest = x.interest, k = 2)
plot(lemon)

30 plot.Shapley

plot.Shapley Plot Shapley

Description

plot.Shapley() plots the Shapley values - the contributions of feature values to the prediction.

Usage

S3 method for class 'Shapley'
plot(object, sort = TRUE)

Arguments

object A Shapley R6 object

sort logical
Should the feature values be sorted by Shapley value? Ignored for multi.class
output.

Value

ggplot2 plot object

See Also

Shapley

Examples

Not run:

library("rpart”)

First we fit a machine learning model on the Boston housing data
data("Boston"”, package = "MASS")

rf <- rpart(medv ~ ., data = Boston)

X <- Boston[-which(names(Boston) == "medv")]

mod <- Predictor$new(rf, data = X)

Then we explain the first instance of the dataset with the Shapley method:
Xx.interest <- X[1,]

shapley <- Shapley$new(mod, x.interest = x.interest)

plot(shapley)

End(Not run)

plot. TreeSurrogate 31

plot.TreeSurrogate Plot Tree Surrogate

Description

Plot the response for newdata of a TreeSurrogate object. Each plot facet is one leaf node and
visualizes the distribution of the ¢ from the machine learning model.

Usage

S3 method for class 'TreeSurrogate'
plot(object)

Arguments

object A TreeSurrogate object.

Value

ggplot2 plot object

See Also

TreeSurrogate

Examples

library("randomForest”)
Fit a Random Forest on the Boston housing data set
data(”"Boston”, package = "MASS")

rf <- randomForest(medv ~ ., data = Boston, ntree = 50)
Create a model object
mod <- Predictor$new(rf, data = Boston[-which(names(Boston) == "medv")])

Fit a decision tree as a surrogate for the whole random forest
dt <- TreeSurrogate$new(mod)

Plot the resulting leaf nodes
plot(dt)

32 predict.LocalModel

predict.LocalModel Predict LocalModel

Description

Predict the response for newdata with the LocalModel model.

Usage
S3 method for class 'LocalModel'
predict(object, newdata = NULL, ...)
Arguments
object A LocalModel R6 object
newdata A data.frame for which to predict

Further arguments for the objects predict function

Value

A data.frame with the predicted outcome.

See Also

LocalModel

Examples

library("”randomForest")

First we fit a machine learning model on the Boston housing data
data(”"Boston”, package = "MASS")

X <- Boston[-which(names(Boston) == "medv")]

rf <- randomForest(medv ~ ., data = Boston, ntree = 50)

mod <- Predictor$new(rf, data = X)

Explain the first instance of the dataset with the LocalModel method:
X.interest <- X[1,]

lemon <- LocalModel$new(mod, x.interest = x.interest, k = 2)
predict(lemon, newdata = x.interest)

predict. TreeSurrogate 33

predict.TreeSurrogate Predict Tree Surrogate

Description

Predict the response for newdata of a TreeSurrogate object.

This function makes the TreeSurrogate object call its internal $predict () method.

Usage
S3 method for class 'TreeSurrogate'
predict(object, newdata, type = "prob”, ...)
Arguments
object The surrogate tree. A TreeSurrogate object.
newdata A data.frame for which to predict.
type Either "prob" or "class". Ignored if the surrogate tree does regression.

Further arguments for predict_party.

Value

A data.frame with the predicted outcome. In case of regression it is the predicted . In case of
classification it is either the class probabilities (for type "prob") or the class label (type "class")

See Also

TreeSurrogate

Examples

library("randomForest”)
Fit a Random Forest on the Boston housing data set
data(”"Boston"”, package = "MASS")

rf <- randomForest(medv ~ ., data = Boston, ntree = 50)
Create a model object
mod <- Predictor$new(rf, data = Boston[-which(names(Boston) == "medv")])

Fit a decision tree as a surrogate for the whole random forest
dt <- TreeSurrogate$new(mod)

Plot the resulting leaf nodes
predict(dt, newdata = Boston)

34 Predictor

Predictor Predictor object

Description

A Predictor object holds any machine learning model (mlr, caret, randomForest, ...) and the
data to be used for analyzing the model. The interpretation methods in the iml package need the
machine learning model to be wrapped in a Predictor object.

Details

A Predictor object is a container for the prediction model and the data. This ensures that the machine
learning model can be analyzed in a robust way.

Note: In case of classification, the model should return one column per class with the class proba-
bility.

Public fields

data data.frame
Data object with the data for the model interpretation.

model (any)
The machine learning model.

batch.size numeric(1)
The number of rows to be input the model for prediction at once.

class character(1)
The class column to be returned.

prediction.colnames character
The column names of the predictions.

prediction.function function
The function to predict newdata.

task character(1)
The inferred prediction task: "classification” or "regression”.

Methods
Public methods:

* Predictor$new()

* Predictor$predict()
* Predictor$print()

* Predictor$clone()

Method new(): Create a Predictor object

Usage:

Predictor 35

Predictor$new(
model = NULL,
data = NULL,
predict.function = NULL,
y = NULL,
class = NULL,
type = NULL,
batch.size = 1000
)

Arguments:

model any
The machine learning model. Recommended are models from mlr and caret. Other ma-
chine learning with a S3 predict functions work as well, but less robust (e.g. randomForest).

data data.frame
The data to be used for analyzing the prediction model. Allowed column classes are: nu-
meric, factor, integer, ordered and character For some models the data can be extracted
automatically. Predictor$new() throws an error when it can’t extract the data automati-
cally.

predict.function function
The function to predict newdata. Only needed if model is not a model from mlr or caret
package. The first argument of predict. fun has to be the model, the second the newdata:
function(model, newdata)

y character (1) | numeric | factor
The target vector or (preferably) the name of the target column in the data argument. Pre-
dictor tries to infer the target automatically from the model.

class character(1)
The class column to be returned. You should use the column name of the predicted class,
e.g. class="setosa".

type character(1))
This argument is passed to the prediction function of the model. For regression models you
usually don’t have to provide the type argument. The classic use case is to say type="prob”
for classification models. Consult the documentation of the machine learning package you
use to find which type options you have. If both predict. fun and type are used, then type
is passed as an argument to predict. fun.

batch.size numeric(1)
The maximum number of rows to be input the model for prediction at once. Currently only
respected for FeatureImp, Partial and Interaction.

Method predict(): Predict new data with the machine learning model.
Usage:
Predictor$predict(newdata)
Arguments:

newdata data.frame
Data to predict on.

Method print(): Print the Predictor object.

36 probs.to.labels

Usage:
Predictor$print()
Method clone(): The objects of this class are cloneable with this method.

Usage:
Predictor$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples
library("mlr")
task <- makeClassifTask(data = iris, target = "Species")
learner <- makelLearner(”classif.rpart”, minsplit = 7, predict.type = "prob”)

mod.mlr <- train(learner, task)
mod <- Predictor$new(mod.mlr, data = iris)
mod$predict(iris[1:5, 1)

mod <- Predictor$new(mod.mlr, data = iris, class = "setosa")
mod$predict(iris[1:5, 1)

library("randomForest"”)
rf <- randomForest(Species ~ ., data = iris, ntree = 20)
mod <- Predictor$new(rf, data = iris, type = "prob")

mod$predict(iris[50:55, 1)

Feature importance needs the target vector, which needs to be supplied:
mod <- Predictor$new(rf, data = iris, y = "Species”, type = "prob")

probs.to.labels Turn class probabilities into class labels

Description

Turn class probabilities into class labels

Usage

probs.to.labels(prediction)

Arguments

prediction Prediction object.

Shapley 37

Shapley Prediction explanations with game theory

Description

Shapley computes feature contributions for single predictions with the Shapley value, an approach
from cooperative game theory. The features values of an instance cooperate to achieve the predic-
tion. The Shapley value fairly distributes the difference of the instance’s prediction and the datasets
average prediction among the features.

Details

For more details on the algorithm see https://christophm.github.io/interpretable-ml-book/
shapley.html

Super class

iml::InterpretationMethod -> Shapley

Public fields
X.interest data.frame
Single row with the instance to be explained.

y.hat.interest numeric
Predicted value for instance of interest.

y.hat.average numeric(1)
Average predicted value for data X.

sample.size numeric(1)
The number of times coalitions/marginals are sampled from data X. The higher the more
accurate the explanations become.

Methods

Public methods:
e Shapley$new()
e Shapley$explain()
e Shapley$clone()

Method new(): Create a Shapley object

Usage:
Shapley$new(predictor, x.interest = NULL, sample.size = 100)

Arguments:

predictor Predictor
The object (created with Predictor$new()) holding the machine learning model and the
data.

https://christophm.github.io/interpretable-ml-book/shapley.html
https://christophm.github.io/interpretable-ml-book/shapley.html

38 Shapley

X.interest data.frame
Single row with the instance to be explained.
sample.size numeric(1)
The number of Monte Carlo samples for estimating the Shapley value.

Returns: data.frame
data.frame with the Shapley values (phi) per feature.

Method explain(): Set a new data point which to explain.
Usage:
Shapley$explain(x.interest)
Arguments:

x.interest data.frame
Single row with the instance to be explained.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Shapley$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

Strumbelj, E., Kononenko, I. (2014). Explaining prediction models and individual predictions with
feature contributions. Knowledge and Information Systems, 41(3), 647-665. https://doi.org/10.1007/s10115-
013-0679-x

See Also

Shapley
A different way to explain predictions: LocalModel

Examples

library("rpart”)

First we fit a machine learning model on the Boston housing data
data(”"Boston"”, package = "MASS")

rf <- rpart(medv ~ ., data = Boston)

X <- Boston[-which(names(Boston) == "medv")]

mod <- Predictor$new(rf, data = X)

Then we explain the first instance of the dataset with the Shapley method:
Xx.interest <- X[1,]

shapley <- Shapley$new(mod, x.interest = x.interest)

shapley

Look at the results in a table
shapley$results
Or as a plot

TreeSurrogate 39

plot(shapley)

Explain another instance
shapley$explain(X[2, 1)

plot(shapley)

Not run:

Shapley() also works with multiclass classification
rf <- rpart(Species ~ ., data = iris)

X <= iris[-which(names(iris) == "Species")]

mod <- Predictor$new(rf, data = X, type = "prob")

Then we explain the first instance of the dataset with the Shapley() method:
shapley <- Shapley$new(mod, x.interest = X[1, 1)

shapley$results

plot(shapley)

You can also focus on one class

mod <- Predictor$new(rf, data = X, type = "prob"”, class = "setosa")
shapley <- Shapley$new(mod, x.interest = X[1, 1)

shapley$results

plot(shapley)

End(Not run)

TreeSurrogate Decision tree surrogate model

Description

TreeSurrogate fits a decision tree on the predictions of a prediction model.

Details

A conditional inference tree is fitted on the predicted ¢ from the machine learning model and the
data. The partykit package and function are used to fit the tree. By default a tree of maximum
depth of 2 is fitted to improve interpretability.

To learn more about global surrogate models, read the Interpretable Machine Learning book: https:
//christophm.github.io/interpretable-ml-book/global.html
Super class

iml::InterpretationMethod -> TreeSurrogate

Public fields
tree party
The fitted tree. See also partykit::ctree.

maxdepth numeric(1)
The maximum tree depth.

https://christophm.github.io/interpretable-ml-book/global.html
https://christophm.github.io/interpretable-ml-book/global.html

40 TreeSurrogate

r.squared numeric(1|n.classes)
R squared measures how well the decision tree approximates the underlying model. It is
calculated as 1 - (variance of prediction differences / variance of black box model predictions).
For the multi-class case, r.squared contains one measure per class.

Methods

Public methods:
e TreeSurrogate$new()
* TreeSurrogate$predict()
* TreeSurrogate$clone()

Method new(): Create a TreeSurrogate object
Usage:
TreeSurrogate$new(predictor, maxdepth = 2, tree.args = NULL)
Arguments:

predictor Predictor
The object (created with Predictor$new()) holding the machine learning model and the
data.

maxdepth numeric(1)
The maximum depth of the tree. Default is 2.

tree.args (named list)
Further arguments for party: :ctree().

Method predict(): Predict new data with the tree. See also predict. TreeSurrogate
Usage:
TreeSurrogate$predict(newdata, type = "prob”, ...)
Arguments:

newdata data.frame
Data to predict on.

type Prediction type.
. Further arguments passed to predict().

Method clone(): The objects of this class are cloneable with this method.

Usage:
TreeSurrogate$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Craven, M., & Shavlik, J. W. (1996). Extracting tree-structured representations of trained networks.
In Advances in neural information processing systems (pp. 24-30).

TreeSurrogate 41

See Also

predict. TreeSurrogate plot. TreeSurrogate

For the tree implementation partykit::ctree()

Examples

library("randomForest"”)
Fit a Random Forest on the Boston housing data set
data("Boston"”, package = "MASS")

rf <- randomForest(medv ~ ., data = Boston, ntree = 50)
Create a model object
mod <- Predictor$new(rf, data = Boston[-which(names(Boston) == "medv")])

Fit a decision tree as a surrogate for the whole random forest
dt <- TreeSurrogate$new(mod)

Plot the resulting leaf nodes
plot(dt)

Use the tree to predict new data
predict(dt, Boston[1:10, 1)

Extract the results
dat <- dt$results
head(dat)

It also works for classification

rf <- randomForest(Species ~ ., data = iris, ntree = 50)
X <- iris[-which(names(iris) == "Species")]

mod <- Predictor$new(rf, data = X, type = "prob")

Fit a decision tree as a surrogate for the whole random forest
dt <- TreeSurrogate$new(mod, maxdepth = 2)

Plot the resulting leaf nodes
plot(dt)

If you want to visualize the tree directly:
plot(dt$tree)

Use the tree to predict new data
set.seed(42)

iris.sample <- X[sample(1:nrow(X), 10), 1]
predict(dt, iris.sample)

predict(dt, iris.sample, type = "class")

Extract the dataset
dat <- dt$results
head(dat)

Index

character, 26, 34, 35

data.frame, 6, 16, 18, 20, 21, 33-35, 37, 38,
40

extract.glmnet.effects, 3

factor, 35
FeatureEffect, 3, 4, 8, 23-26
FeatureEffects, 8, 8, 26
Featurelmp, 11, 27, 35
function, 12, 13, 34, 35

has.predict, 15

iml (iml-package), 2

iml-package, 2

iml::FeatureEffect, 23

iml::InterpretationMethod, 4, 9, 12, 16,
19, 23,37, 39

integer, 12, 35

Interaction, 15, 28, 35

InterpretationMethod, 17

list, 9
LocalModel, 19, 29, 32, 38
logical, 24, 25, 30

numeric, 4, 9, 35, 37

order_levels, 22
ordered, 35

Partial, 23, 35

party: :ctree(), 40
partykit::ctree, 39
partykit::ctree(), 41
plot.FeatureEffect, 6, 25, 26
plot.FeatureEffects, 10, 26
plot.Featurelmp, 27
plot.Interaction, 28

42

plot.LocalModel, 21, 29

plot.Shapley, 30
plot.TreeSurrogate, 31, 41
predict.LocalModel, 21, 32
predict.TreeSurrogate, 33, 40, 41
Predictor, 5,9, 13, 16, 18, 20, 24, 34, 37, 40
probs.to.labels, 36

Shapley, 21, 30, 37, 38
stats::dist, 20
stats::dist(), 19

TreeSurrogate, 31, 33, 39

	iml-package
	extract.glmnet.effects
	FeatureEffect
	FeatureEffects
	FeatureImp
	has.predict
	Interaction
	InterpretationMethod
	LocalModel
	order_levels
	Partial
	plot.FeatureEffect
	plot.FeatureEffects
	plot.FeatureImp
	plot.Interaction
	plot.LocalModel
	plot.Shapley
	plot.TreeSurrogate
	predict.LocalModel
	predict.TreeSurrogate
	Predictor
	probs.to.labels
	Shapley
	TreeSurrogate
	Index

