Package 'iimi'

July 22, 2025

Title Identifying Infection with Machine Intelligence

Version 1.2.1

Description A novel machine learning method for plant viruses diagnostic using genome sequencing data. This package includes three different machine learning models, random forest, XGBoost, and elastic net, to train and predict mapped genome samples. Mappability profile and unreliable regions are introduced to the algorithm, and users can build a mappability profile from scratch with functions included in the package. Plotting mapped sample coverage information is provided.

Encoding UTF-8

RoxygenNote 7.3.1

LazyData true

VignetteBuilder knitr

Imports Biostrings, caret, data.table, dplyr, GenomicAlignments, IRanges, mltools, randomForest, Rsamtools, stats, xgboost, Rdpack, MTPS, R.utils, stringr

Depends R (>= 3.5.0)

Suggests rmarkdown, testthat (>= 3.0.0), httr, knitr

RdMacros Rdpack

License MIT + file LICENSE

LazyDataCompression xz

NeedsCompilation no

Author Haochen Ning [aut], Ian Boyes [aut], Ibrahim Numanagić [aut] (ORCID: <https://orcid.org/0000-0002-2970-7937>), Michael Rott [aut], Li Xing [aut] (ORCID: <https://orcid.org/0000-0002-4186-7909>), Xuekui Zhang [aut, cre] (ORCID: <https://orcid.org/0000-0003-4728-2343>)

Maintainer Xuekui Zhang <xuekui@uvic.ca>

Repository CRAN Date/Publication 2024-11-01 20:10:01 UTC

Contents

convert_bam_to_rle
convert_rle_to_df
create_high_nucleotide_content
create_mappability_profile
example_cov
example_diag 6
nucleotide_info
plot_cov
predict_iimi
trained_en
trained_rf
trained_xgb
train_iimi
unreliable_regions
13

Index

convert_bam_to_rle convert_bam_to_rle

Description

Converts one or more indexed and sorted BAM files (ending in *.sorted.bam and *.bai) into a run-length encodings (RLEs) list.

Usage

```
convert_bam_to_rle(bam_file, paired = FALSE)
```

Arguments

bam_file	path to BAM file(s).	
paired	Indicate if the sequencing paired is single-end or paired-end reads. paired-end. FALSE if single-end.	TRUE if

Value

A list of coverage profile(s) in RLE format with one or more samples.

convert_rle_to_df

Examples

```
## Not run:
## Please change the path to your folder where you
## store sorted and indexed BAM files of mapped samples
rles <- convert_bam_to_rle("path/to/bam/file")
## End(Not run)
```

convert_rle_to_df *Convert run-length encodings (RLEs) to a data frame.*

Description

Converts a list of run-length encodings (RLEs) into a data frame with 16 features after mappability profiling and nucleotide filtering.

Usage

```
convert_rle_to_df(
  covs,
  unreliable_region_version = "1_4_0",
  unreliable_region_enabled = TRUE,
  additional_nucleotide_info = data.frame()
)
```

Arguments

```
    covs A list of Coverage profile(s) in RLE format. Can be one or more samples.
    unreliable_region_version

            The version number (character string) of unreliable regions of the virus segments. Default is 1_4_0. It includes the mappability profile from a host genome (we only have Arabidopsis thaliana right now) and virus references, and the regions that have CG% and A% over 60% and 45% respectively.
            unreliable_region_enabled
                Default is TRUE. If TRUE, the input will be checked against unreliable_region_df.
                If FALSE, this step will be skipped.

            additional_nucleotide_info
                Additional nucleotide information for virus segments that are not included in nucleotide_info. The information provided must be a data frame that follows the format of nucleotide_info. Default is an empty data frame.
```

Details

Converts a list of run-length encodings (RLEs) into a data frame.

The returned dataframe contains 16 features for training a machine learning model. after mappability profiling and nucleotide filtering.

Value

A data frame object that contains the mapping result for each virus segment that the plant sample reads are aligned to and a RLE list of coverage information.

Examples

```
## Not run:
df <- convert_rle_to_df(example_cov)</pre>
```

End(Not run)

Description

Creates a data frame of the start and end positions of the regions_a that are considered high in A% and GC%.

Usage

```
create_high_nucleotide_content(gc = 0.6, a = 0.45, window = 75, virus_info)
```

Arguments

gc	The threshold for GC content. It is the proportion of G and C nucleotides in a sliding window. Default is 0.6.
а	The threshold for A nucleotide. It is the proportion of A nucleotide in a sliding window. Default is 0.45.
window	The sliding window size of your choice. Default is 75.
virus_info	A DNAStringSet of virus segments. The format should be similar to virus_segments.

Value

A data frame of the start and end positions of the regions_a that are considered high in A% and GC%.

Examples

Not run: high_nucleotides_regions <- create_high_nucleotide_content()</pre>

create_mappability_profile

create_mappability_profile

Description

Creates a data frame of start and end positions of the regions that are considered unmappable. Unmappable areas indicate that they can be mapped to another virus segment or a host genome. Note that we only have Arabidopsis Thaliana as a host.

Usage

```
create_mappability_profile(
  path_to_bam_files,
  category,
  window = 75,
  virus_info
)
```

Arguments

path_to_bam_files	
	Path to the folder that stores the indexed and sorted BAM file(s) (ending in *.sorted.bam and *.bai).
category	Type of unreliable region you are creating. You can use categories in the pro- vided unreliable_regions data frame or customize in your own way.
window	The sliding window size of your choice. Default is 75.
virus_info	A DNAStringSet of virus segments. The format should be similar to virus_segments.

Value

A data frame of start and end positions of the regions that are considered unmappable.

Examples

```
## Not run:
## Please change the path to your folder where you store the mapped viruses
mappability_profile <- create_mappability_profile("path/to/folder",
    category = "Unmappable regions")
```

End(Not run)

example_cov

Description

A list of coverage profiles for three plant samples. This is only a toy sample. You can use it for running the examples in the vignette. We recommend using more data to train the model, the more the better.

Usage

example_cov

Format

A list of 3 run length encoding (RLE) lists for 3 plant samples. Each RLE list has the RLE vector of a virus segment

example_diag

Known diagnostics result of virus segments

Description

A matrix containing the known truth about the diagnostics result (using virus database version 1.4.0) for each plant sample for the example data. It records whether the sample is infected with a virus segment. Each column is a sample, and each row is a virus segment's diagnostics status for three samples.

Usage

example_diag

Format

A matrix with 3 columns:

- S1 Sample one
- S2 Sample two
- S3 Sample three

nucleotide_info

Description

A data set containing the GC content and other information about the virus segments from the official Virtool virus data base (version 1.4.0). The variables are as follows:

Usage

nucleotide_info

Format

A data frame with 7 variables:

virus_name The virus name
iso_id The virus isolate ID
seg_id The virus segment ID
A_percent The percentage of A nucleotides in the virus segment
C_percent The percentage of C nucleotides in the virus segment
T_percent The percentage of T nucleotides in the virus segment
GC_percent The percentage of G and C nucleotides in the virus segment (GC content)
seg_len The length of the virus segment
1_4_0 The version number of the virus database

plot_cov

plot_cov()

Description

Plots the coverage profile of the mapped plant sample.

Usage

```
plot_cov(
  covs,
  legend_status = TRUE,
  nucleotide_status = TRUE,
  window = 75,
  nucleotide_info_version = "1_4_0",
  virus_info,
  ...
)
```

Arguments

COVS	An RLE list of coverage information of one or more plant samples.	
legend_status	Whether display legend. Default is TRUE.	
nucleotide_status		
	Whether display a sliding window of A percentage and CG content. Default is TRUE.	
window	The sliding window size. Default is 75.	
nucleotide_info_version		
	The version number (character string) of the nucleotide information of the virus segments. Default is 1_4_0.	
virus_info	A DNAStringSet of virus segments. The format should be similar to virus_segments.	
	Other arguments that can be passed to plot, lines, or legend.	

Value

The coverage profile of the mapped plant sample.

Examples

```
plot_cov(example_cov$S1)
```

predict_iimi	<pre>predict_iimi()</pre>	
--------------	---------------------------	--

Description

Uses a machine learning model to predict the infection status for the plant sample(s). User can use their own model if needed.

Usage

```
predict_iimi(newdata, method = "xgb", trained_model, report_virus_level = TRUE)
```

Arguments

newdata	A matrix or data frame that contains the features extracted from the coverage profile using convert_bam_to_cov().
method	The machine learning method of choice, rf, xgb, or en. rf stands for ran- dom forest model; xgb stands for XGBoost model; and en stands for elastic net model.
trained_model	The trained model. If not provided, default model is used.

trained_en

report_virus_level

If TRUE, the function returns the aggregated results based on the virus. If FALSE, the function returns the unaggregated results based on segment level with each decision's probability decided by the model. We do not recommended to set this to FALSE.

Value

A data frame of diagnostics result for each sample

Examples

```
## Not run: df <- convert_rle_to_df(example_cov)
predictions <- predict_iimi(df)</pre>
```

End(Not run)

trained_en

A trained model using the default Elastic Net settings

Description

A trained model using the default Elastic Net settings

Usage

trained_en

Format

An object of class cv.glmnet of length 13.

trained_rf

A trained model using the default Random Forest settings

Description

A trained model using the default Random Forest settings

Usage

```
trained_rf
```

Format

An object of class randomForest.formula (inherits from randomForest) of length 19.

trained_xgb

Description

A trained model using the default XGBoost settings

train_iimi()

Usage

trained_xgb

Format

An object of class raw of length 130645.

train_iimi

Description

Trains a XGBoost (default), Random Forest, or Elastic Net model using user-provided data.

Usage

```
train_iimi(
    train_x,
    train_y,
    method = "xgb",
    nrounds = 100,
    min_child_weight = 10,
    gamma = 20,
    ntree = 200,
    mtry = 10,
    k = 5,
    ....
)
```

Arguments

train_x	A data frame or a matrix of predictors.
train_y	A response vector of labels (needs to be a factor).
method	The machine learning method of choice, Random Forest or XGBoost, or Elastic Net model. Default is XGBoost model.
nrounds	Max number of boosting iterations for XGBoost model. Default is 100.

min_child_weight	
	Default is 10.
gamma	Minimum loss reduction required in XGBoost model. Default is 20.
ntree	Number of trees in Random Forest model. Default is 100.
mtry	Default is 10.
k	Number of folds. Default is 5.
	Other arguments that can be passed to randomForest, xgboost, or glmnet.

Value

A Random Forest, XGBoost, Elastic Net model

Examples

```
## Not run:
df <- convert_rle_to_df(example_cov)
train_x <- df[,-c(1:4)]
train_y = c()
for (ii in 1:nrow(df)) {
    seg_id = df$seg_id[ii]
    sample_id = df$sample_id[ii]
    train_y = c(train_y, example_diag[seg_id, sample_id])
}
trained_model <- train_iimi(train_x = train_x, train_y = train_y)
## End(Not run)
```

unreliable_regions The unreliable regions of the virus segments

Description

A data frame of unmappable regions and regions of CG% and A% over 60% and 45% respectively for the virus segments. It is worth to note that if a virus segment does not have any unreliable regions, that virus segment is not shown in this data frame.

Usage

unreliable_regions

Format

A data frame of unreliable regions in the run-length encoding format for virus segments.

Start The start position of the region that is considered unreliable

End The end position of the region that is considered unreliable

Virus segment The virus segment ID

- **Categories** The category that this unrelible region belong to, which are Unmappable regions (host), Unmappable regions (virus), CG% > 60%, A% > 45%
- 1_4_0 The version number of the virus database
- 1_5_0 The version number of the virus database

Index

* datasets example_cov, 6 example_diag, 6 nucleotide_info, 7 trained_en,9 trained_rf,9 trained_xgb, 10 unreliable_regions, 11convert_bam_to_rle, 2 $\texttt{convert_rle_to_df, 3}$ create_high_nucleotide_content, 4 create_mappability_profile, 5 example_cov, 6 example_diag, 6 nucleotide_info, 7 plot_cov, 7 predict_iimi, 8 train_iimi, 10 trained_en,9 trained_rf,9 trained_xgb, 10

unreliable_regions, 11