Using icenReg for interval censored data in R
v2.0.9

Clifford Anderson-Bergman
January 13, 2024

Contents

1 Introduction 1
1.1 Interval Censoring 1
1.2 Classic Estimators 2
1.3 Models fit with icenReg 4
1.4 Data Examples in icenReg 4

2 Fitting Models using icenReg 5
2.1 Non-parametric models, 5
2.2 Semi-parametric models 6
2.3 Parametric Models 8
2.4 Bayesian Parametric Models0, 10
2.5 Extracting Estimatesand CIs 15

3 Inspecting model fit 16
3.1 Examining Baseline Distribution 16
3.2 Examining Covariate Effect 18

4 Appendix 19
4.1 Parallel Bootstrapping Lo L. 19

1 Introduction

This manual is meant to provide an introduction to using icenReg to analyze
interval censored data. It is written with expectation that the reader is familiar
with basic survival analysis methods. Familiarity with the Kaplan Meier curves,
survival regression models (Cox PH, AFT and proportional odds) and basic
Bayesian principles should be sufficient for all that is covered in this text.

1.1 Interval Censoring

Interval censoring occurs when a response is known only up to an interval. A
classic example is testing for diseases at a doctor’s clinic; if a subject tests neg-
ative at t; and positive at ty, all that is known is that the subject acquired the
disease in (t1, t2), rather than an exact time. Other classic examples include
examining test mice for tumors after sacrifice (results in current status or case

I interval censored data, in which all observations are either left or right cen-
sored, as opposed to the more general case II, which allows for any interval),
customer choice models in economics (customers are presented a price for a
product and chose to purchase or not, researcher wants to know distribution of
maximum spending amount; this results in current status data again), data re-
duction methods for sensor analyses (to reduce load on sensor system, message
is intentionally surpressed if outcome is in an expected region) and data binning
(responses reported only up to an interval, in some cases to keep the subjects
anonymous, in some cases to reduce size of data).

Often interval censoring is ignored in analysis. For example, age is usually
reported only up to the year, rather than as a continuous variable; when a
subject reports that their age is 33, the information we have is really that their
age is in the interval [33,34). In the case that these intervals are very short
relative to the question of interest, such as with reported age when the scientific
quesiton is about age of onset of type II diabetes, the bias introduced by ignoring
the interval censoring may besmall enough to be safely ignored. However, in the
case that the width of intervals is non-trivial, statistical methods that account
for this should be used for reliable analysis.

Standard notation for interval censoring is that each subject has a true event
time ¢; which is potentially unobserved. Rather, we observe a response interval
l;,r; such that the true event time is known to have occurred within. Default
behavior is to assume this an half open, half closed interval, i.e. t; € (I;, ;]!
An exception to the rule in this notation is that (¢;,¢;] always implies that event
1 is uncensored with event time at ¢;, despite this being an undefined interval.
This allows for uncensored observations (I; = r;), right censored(r; = o), left
censored (I; = 0) or none of the above (0 < I; <r; < 00).

In icenReg, several models are included in which the response value is
allowed to be interval censored. If our data contains the values L and R, repre-
senting the left and right sides of the response interval, we can pass our response
to a regression model using either

cbind(L, R)
Surv(L, R, type = "interval2")

1.2 Classic Estimators

The topic of interval censoring began in the field of survival analysis. Although
it is now considered in other fields of study (such as tobit regression), at this
time icenReg focusses on survival models.

One of the earliest models is the Non-Parametric Maximum Likelihood Es-
timator (NPMLE), also referred to as Turnbull’s Estimator. This is a general-
ization of the Kaplan Meier curves (which is a generalization of the empirical
distribution function) that allows for interval censoring. Unlike the Kaplan
Meier curves, the solution is not in closed form and several algorithms have
been proposed for efficient computation.

Semi-parametric models exist in the literature as well; two classic regression
models fit by icenReg are the Cox-PH model and the proportional odds model.

Tn icenReg, whether the boundaries of the interval are included or not can be controlled
by the option B in the model fitting functions.

The well known Cox-PH, or proportional hazards regression model, has the
property that

h(t1X, B) = ho(t)eX" P

where h(t| X, 8) is the hazard rate conditional on covariates X and regression
parameters (3, with h, as the baseline hazard function. This relation is equivalent
to

xTpg
S(t1X, B) = So(t)°

where S(t| X, B) is the conditional survival and S,(t) is the baseline survival
function.

The somewhat less common proportional odds model can be expressed as

0dds(S(t|X,) = eX P0Odds(S,(t))
SHX,8) xrs Sol(t)

1-SWX,5) ¢ 1-5,0)

Unlike the special example of the Cox PH model with right-censored data,
it is very difficult to estimate the regression parameters without estimating
the baseline distribution?. The model can be kept semi-parametric (i.e. no
need to decide on a parametric baseline distribution) by using the Turnbull
estimator, modified to account for the given regression model, as the baseline
distribution. The semi-parametric model can be computationally very difficult,
as the number of baseline parameters can be quite high (up to n), which must
follow shape constraints (i.e. either a set of probability masses or a cumulative
hazard function, which must be strictly increasing) and there is no closed form
solution to either regression or baseline parameters. One of the contribution
the algorithms in icenReg make to the field of statistical computing is efficient
computation of the non-parametric and semi-parametric estimators, allowing
for relatively efficient estimation on standard computers (i.e. less than one
second) of relatively large samples (n = 10,000 for the semi-paramtric model, n
= 100,000 for the non-parametric model), although the semi-parametric models
are still significantly slower than fully-parametric models.

Fully parametric models exist as well and can be calculated using fairly
standard algorithms. In addition to the proportional hazards and odds models,
the accelerated failure time model can be used for parameteric modeling. These
models have the following relationship:

S(t|X, B) = S,(teX"7)

For technical reasons not discussed here, this model is very simple to im-
plement for a fully parameteric model, but very difficult for a semi-parametric
model. As such, icenReg contains tools for a fully-parametric accelerated fail-
ure time model, but not a semi-parametric one.

There are slight complications in that the interval censoring can cause the log
likelihood function to be non-concave. However, for reasonable sized data, the

2Methods to estimate the regression parameters without estimating the baseline parameters
have been proposed, but at great computational cost without any clear statistical benefit.

log likelihood function is usually locally concave near the mode and only slight
modifications are required to address this issue. In practice, fully-parametric
models should be used with caution; the lack of observed values means that
model inspection can be quite difficult; there are no histograms, etc., to be made.
As such, even if fully parametric models are to be used for the final analysis, it is
strongly encouraged to use semi-parametric models at least for model inspection.
icenReg fits fully parametric accelerated failure time, proportional odds and
proporitonal hazard models for interval censored data.

1.3 Models fit with icenReg

At this time, the following set of models can be fit (name in paratheses is
function call in icenReg):

e NPMLE (ic_np)
e Semi-parametric model (ic_sp)

— model for model type
x "po" for proportional odds
* "ph" for proportional hazards

e Fully parametric frequentest model (ic_par) or Bayesian model (ic_bayes)

— model for model type

* "po" for proportional odds

x "ph" for proportional hazards

x "aft" for accelerated failure time model
— dist for baseline distribution

"exponential"
"gamma"
"weibull"
"lnorm"
"loglogistic"

*OOX X X ¥ X

"generalgamma"
In addition, icenReg includes various diagnostic tools. These include
e Plots for diagnosising baseline distribution (diag_baseline)

e Plots for diagnosising covariate effects (diag_covar)

1.4 Data Examples in icenReg

The package includes 3 sources of example data: one function that simulates
data and two sample data sets. The simulation function is simIC_weib, which
simulates interval censored regression data with a Weibull baseline distribution
The sample data sets are miceData, which contains current status data regard-
ing lung tumors from two groups of mice and IR_diabetes, which includes data
on time from diabetes to diabetic nephronpathy in which 136 of 731 observations
are interval censored due to missed follow up.

2 Fitting Models using icenReg

2.1 Non-parametric models

The non-parametric maximum likelihood estimator (NPMLE) can be fit using
ic_np. If the data set is relatively small and the user is interested in non-
parametric tests, such as the log-rank statistic, we actually advise using the
interval package, as this provides several testing functions. However, com-
puting the NPMLE icenReg is several fold faster than interval, so if large
datasets are used (i.e. n > 1,000), the user may have no choice but to use icen-
Reg to fit the NPMLE. And while hypothesis testing is not currently available
for the NPMLE in icenReg, these fits can still provide visual diagnostics for
semi-parametric and fully parametric models.

To fit an NPMLE model for interval censored data, we will consider the
miceData provided in icenReg. This dataset contains three variables: 1, u
and grp. 1 and u represent the left and right side of the interval containing the
event time (note: data is current status) and grp is a group indicator with two
categories.

> data(miceData)
> head(miceData, 3)

1 ugrp
1 0 381 ce
2 0 477 ce
3 0 485 ce

We can fit a non-parametric estimator for each group by
> np_fit = ic_np(cbind(1, u) ~ grp, data = miceData)

If we wanted only a single fit for both groups, this can be done in two ways.
The two fits are equivalent, but are just used to demonstrate differing possible
syntax.

> groupedFitl <- ic_np(cbind(1,u) ~ 0, data = miceData)
> groupedFit2 <- ic_np(miceDatal,c('1', 'u')])

The fits can be plotted as follows:

> plot(np_fit, col = c('blue', 'orange'),
+ xlab = 'Time', ylab = 'Estimated Survival')

1.0

ge

0.6
|

Estimated Survival

0.2

0.0
|

I I I I I I I
400 500 600 700 800 900 1000

Time

Looking at the plots, we can see a unique feature about the NPMLE for
interval censored data. That is, there are two lines used to represent the survival
curve. This is because with interval censored data, the NPMLE is not always
unique; any curve that lies between the two lines has the same likelihood. For
example, any curve that lies between the two blues lines maximizes the likelihood
associated with "ge" group of mice.

2.2 Semi-parametric models

Semi-parametric models can be fit with ic_sp function. This function follows
standard regression syntax. As an example, we will fit the IR_diabetes dataset,
which contains data on time from diabetes to diabetic nephropathy. In this
dataset, we have the left and right sides of the observation interval containing
the true response time and the gender of the patient.

> data("IR_diabetes")
> head (IR_diabetes, 3)

left right gender

1 24 27 male
22 22 female

3 37 39 male

We fit the model below. Note that this may be time consuming, as the
semi-parametric model is somewhat computationally intense and we are taking
bs_samples bootstrap samples of the estimator.

fit_ph <- ic_sp(cbind(left, right) ~ gender, model = 'ph',
bs_samples = 100, data = IR_diabetes)

fit_po <- ic_sp(cbind(left, right) ~ gender, model = 'po’,
bs_samples = 100, data = IR_diabetes)

+ Vv + V

The first model by default fits a Cox-PH model, while the second fits a
proportional odds model, as controlled by the model argument. We can look
at the results using either the summary function, or just directly looking at the
results (what is displayed is the same).

> fit_po

Model: Proportional 0Odds

Dependency structure assumed: Independence

Baseline: semi-parametric

Call: ic_sp(formula = cbind(left, right) ~ gender, data = IR_diabetes,
model = "po", bs_samples = 100)

Estimate Exp(Est) Std.Error z-value p
gendermale 0.4013 1.494 0.1405 2.856 0.004286

final 11k = -1962.4
Iterations = 25
Bootstrap Samples = 100

> fit_ph

Model: Cox PH

Dependency structure assumed: Independence

Baseline: semi-parametric

Call: ic_sp(formula = cbind(left, right) ~ gender, data = IR_diabetes,
model = "ph", bs_samples = 100)

Estimate Exp(Est) Std.Error z-value)
gendermale -0.1402 0.8692 0.07168 -1.956 0.05042

final 11k = -1964.96
Iterations = 36
Bootstrap Samples = 100

For the semi-parametric models, bootstrap samples are used for inference on
the regression parameters. The reason for this is that as far as we know, the
limiting distribution of the baseline distribution is currently not characterized.
In fact, to our knowledge, even using the bootstrap error estimates for the
baseline distribution is not valid. Because the regression parameters cannot be
seperated in the likelihood function, using the negative inverse of the Hessian
for the regression standard errors is not generally valid. However, it has been
shown that using the bootstrap for inference on the regression parameters leads
to valid inference.

We can use these fits to create plots as well. The plot function will plot the
estimated survival curves or CDF for subjects with the set of covariates provided

in the newdata argument. If newdata is left equal to NULL, the baseline survival
function will be plotted.

Below is a demonstration of how to plot the semi-parametric fit for males
and females.

> newdata <- data.frame(gender = c('male', 'female'))
> rownames (newdata) <- c('males', 'females')
> plot(fit_po, newdata)

o _|
— —— males
—— females
@ _|
o
(o]
S
a
<
g
N
o
o |
o
T T T T
10 20 30 40

time

2.3 Parametric Models

We can fit parametric models in icenReg using the ic_par function. The
syntax is essentially the same as above, except that the user needs to spec-
ify dist, the parametric family that the baseline distribution belongs to. The
current choices are "exponential", "weibull" (default), "gamma", "lnorm"
(log-normal), "loglogistic" and "generalgamma" (generalized gamma distri-
bution). The user must also select model = "ph", "po", or "aft" as the model
type.

It is not necessary to specify bs_samples for parametric models, as inference
is done using the asymptotic normality of the estimators. Fitting a parametric
model is typically faster than the semi-parametric model, even if no bootstrap
samples are taken for the semi-parametric model. This is because the fully-
parametric model is of lower dimensional space without constraints.

Suppose we wanted to fit a proportional odds model to the IR_diabets data
with a baseline gamma distribution. This could be fit by

> fit_po_gamma <- ic_par(cbind(left, right) ~ gender,
+ data = IR_diabetes, model = "po", dist = "gamma")

We can examine the regression coefficients in the same way as with the
semi-parametric model.

> fit_po_gamma

Model: Proportional 0Odds

Dependency structure assumed: Independence

Baseline: gamma

Call: ic_par(formula = cbind(left, right) ~ gender, data = IR_diabetes,
model = "po", dist = "gamma")

Estimate Exp(Est) Std.Error z-value p
log_shape 1.9980 7.377 0.05449 36.670 0.000000
log_scale 0.8248 2.281 0.05562 14.830 0.000000
gendermale 0.3496 1.419 0.13550 2.581 0.009865

final 11k = -2006.619
Iterations = 4

We can also examine the survival/cdf plots in the same way.

> plot(fit_po_gamma, newdata, lgdLocation = "topright")

o
— —— males
—— females

® _|

o

© _|

o

17}

<

o

N

S

o

S
T T T T T T T
0 5 10 15 20 25 30

time

2.4 Bayesian Parametric Models

The option for parametric Bayesian models is also permitted in icenReg with
the ic_bayes function. If a flat prior is desired, the use is exactly identical to
ic_par.

> flatPrior_fit <- ic_bayes(cbind(left, right) ~ gender,
+ data = IR_diabetes, model = "po", dist = "gamma")

The standard methods work in the same manner as other icenReg fits,
although the basic output looks fairly different.

> flatPrior_fit

Model: Bayesian Proportional 0Odds

Dependency structure assumed: Independence

Baseline: gamma

Call: ic_bayes(formula = cbind(left, right) ~ gender, data = IR_diabetes,
model = "po", dist = "gamma")

Iterations = 2001:6996
Thinning interval = 5
Number of chains = 4

Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
log_shape 1.9955 0.05359 0.0008474 0.001399
log_scale 0.8280 0.05433 0.0008590 0.001395
gendermale 0.3479 0.13489 0.0021328 0.003345

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
log_shape 1.88786 1.9590 1.9949 2.0319 2.1005
log_scale 0.72185 0.7908 0.8282 0.8644 0.9349
gendermale 0.08426 0.2559 0.3457 0.4401 0.6122

3. MAP estimates:
log_shape log_scale gendermale
2.0250 0.7794 0.3944

User that want access to the raw samples can do so through the $samples
field.

> head(flatPrior_fit$samples)

log_shape log_scale gendermale
[1,] 2.024798 0.7793918 0.3944293

10

[2,] 1.991599 0.8300576 0.2153600
[3,] 1.973985 0.8451101 0.1870222
[4,] 2.039208 0.8111638 0.2648244
[5,1] 2.073695 0.7470181 0.4964900
[6,1 1.990102 0.8142439 0.4033938

This object is a matrix of samples from all chains combined. Alternatively,
one can look at the samples from each chain individually through the $mcmcList
field, with each element corresponding to a given chain. Note that $mcmcList
is a coda object of class mcmc.1list.

> # Accessing the first few samples of the first chain
> head(flatPrior_fit$memcList[[1]])

Markov Chain Monte Carlo (MCMC) output:
Start = 2001
End = 2031
Thinning interval = 5
log_shape log_scale gendermale

[1,] 2.024798 0.7793918 0.3944293
[2,] 1.991599 0.8300576 0.2153600
[3,1] 1.973985 0.8451101 0.1870222
[4,] 2.039208 0.8111638 0.2648244
[6,] 2.073695 0.7470181 0.4964900
[6,] 1.990102 0.8142439 0.4033938
[7,] 1.944283 0.8672329 0.5043440

> # Accessing the first few samples of the second chain
> head(flatPrior_fit$mcmcList[[2]])

Markov Chain Monte Carlo (MCMC) output:
Start = 2001
End = 2031
Thinning interval = 5
log_shape log_scale gendermale

[1,] 1.889650 0.9214355 0.16743217
[2,] 2.109349 0.6974256 0.40395324
[3,] 2.030912 0.7856102 0.06858863
[4,] 1.932705 0.8847234 0.27420770
[5,] 1.982897 0.8397363 0.03247315
[6,] 2.008348 0.8292245 0.08930453
[7,] 2.038888 0.7929703 0.18199404

The log posterior density at each iteration can be accessed through the
$logPosteriorDensities field. Note that this is a list, with each item of
the list being a vector from each chain.

> head(flatPrior_fit$logPosteriorDensities[[1]])

[1] -2007.753 -2007.119 -2007.447 -2008.976 -2008.085 -2007.596

11

Plotting calls are as standard. Important note: the solids plots the posterior
median estimates of the survival curve for a subject with given covariates, not
the posterior mean estimates!

> plot(flatPrior_fit, newdata,
+ main = 'Posterior Median Estimates')

Posterior Median Estimates

o |
— . —— males
\ —— females

® _|

o

© _|

o

@

<

o

N

S

o

S
T T T T T T T
0 5 10 15 20 25 30

time

MCMC diagnositic plots can be generated by accessing the $mcmcList field.

> plot(flatPrior_fit$mcmcList)

12

Trace of log_shape Density of log_shape

2000 3000 4000 5000 6000 7000 18 19 20 21 22

Iterations N =1000 Bandwidth =0.01081

Trace of log_scale Density of log_scale

07 08 09 10

01234567

T T T T T T T T T T T
2000 3000 4000 5000 6000 7000 0.6 0.7 0.8 0.9 1.0

Iterations N=1000 Bandwidth = 0.01096

Trace of gendermale Density of gendermale

00 02 04 06 08

0.0

T T T T T
2000 3000 4000 5000 6000 7000 0.0 0.2 0.4 0.6 0.8

Iterations N=1000 Bandwidth =0.02722

As noted earlier, default behavior is to use a flat prior. If a user wants
to use an informative prior, they can provide whichever custom written prior
they choose. This function must take in a vector of values corresponding to all
the parameters of the model (i.e. first baseline parameters and then regression
parameters) and return the log-prior, calculated up to a additive constant.

This is illustrated with an example where we decide to put a tight prior
about the shape parameter (i.e. first baseline parameter) and the regression
parameter, and a diffuse prior about the scale parameter.

logPriorFunction <- function(x){
ans <- 0
ans <- ans + dnorm(x[1], sd = 0.1, log = T)
Tight prior about 1st parameter, log_shape
ans <- ans + dnorm(x[2], sd = 10, log = T)
Diffuse prior about 2nd parameter, log_scale
ans <- ans + dnorm(x[3], sd = 0.1, log = T)
Tight prior about 3rd parameter, regression parameter
return (ans)
}
informPrior_fit <- ic_bayes(cbind(left, right) ~ gender,
data = IR_diabetes, model = "po", dist = "gamma",
logPriorFxn = logPriorFunction)
Fitting model with prior.

VVV 4+ +V++ A+ A+ o+ o+ A+ ++V

informPrior_fit

Model: Bayesian Proportional Odds

13

Dependency structure assumed: Independence

Baseline: gamma

Call: ic_bayes(formula = cbind(left, right) ~ gender, data = IR_diabetes,
logPriorFxn = logPriorFunction, model = "po", dist = "gamma")

Iterations = 2001:6996
Thinning interval = 5
Number of chains = 4

Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
log_shape 1.44534 0.05814 0.0009193 0.001604
log_scale 1.37014 0.06123 0.0009681 0.001692
gendermale 0.09825 0.07881 0.0012461 0.001598

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
log_shape 1.33093 1.40651 1.44619 1.4831 1.559
log_scale 1.24984 1.32963 1.36946 1.4116 1.490
gendermale -0.05572 0.04408 0.09824 0.1513 0.253

3. MAP estimates:
log_shape 1log_scale gendermale
1.32300 1.49000 -0.01516

Note that the posterior mean for log_shape is pulled down significantly.

Default behavior for ic_bayes is to use an adaptive MH block updater,
started from the MLE (not MAP) estimate to seed the starting point of the
chain and starting proposal covariance. The proposal covariance is updated as
more samples are taken. This should work well with informative likelihoods
and relatively weak priors. On the other hand, it can be quite problematic with
weak likelihoods and relatively strong priors. In such cases, a user may prefer
to turn off the MLE initialization. This can be done with the bayesControl
function.

> weak_data <- IR_diabetes[1:2,]

> weakData_fit <- ic_bayes(cbind(left, right) ~ gender,
+ data = weak_data,

+ model = "po", dist = "gamma",

+ JogPriorFxn = logPriorFunction,

+ controls = bayesControls(useMLE_start = F))

> plot(weakData_fit$mcmcList)

14

Trace of log_shape Density of log_shape

00 02 04

-0.4

2000 3000 4000 5000 6000 7000 -0.4 -0.2 0.0 0.2 0.4

Iterations N =1000 Bandwidth = 0.02036

Trace of log_scale Density of log_scale

2 3 4 5 6
I
0.2

0.0

2000 3000 4000 5000 6000 7000 1 2 3 4 5 6 7

Iterations N =1000 Bandwidth =0.143

Trace of gendermale Density of gendermale

0.3

-03 -01 01

T T T T T T T T T
2000 3000 4000 5000 6000 7000 -0.2 0.0 0.2

Iterations N=1000 Bandwidth =0.01912

Note that in this sample, we see evidence that the chain has not properly
mixed, especially in regards to the log_scale parameter. Using bayesControls
we could increase both the samples and burnln to address this issue.

2.5 Extracting Estimates and ClIs

We can also extract survival estimates and confidence/credible intervals for a
given set of covariates using the survCIs.

> # Extract estimates for inverse CDF
> invCDF_ests = survCIs(informPrior_fit, newdata,
+ p = seq(from = 0.05, to = .95, by = 0.2))
> # Extract estimates for *CDF* probabilities at given values
> CDF_ests = survCIs(informPrior_fit, newdata,
+ q = seq(from = 5, to = 25, by = 5))
> invCDF_ests
Model call:
ic_bayes(formula = cbind(left, right) ~ gender, data = IR_diabetes,
logPriorFxn = logPriorFunction, model = "po", dist = "gamma")

Credible Level = 0.95
Rowname: males

Percentile estimate (mean) estimate (median) lower upper
[1,] 0.05 6.007985 6.012255 5.484412 6.525176
[2,] 0.25 10.902751 10.902875 10.321784 11.466508
[3,] 0.45 14.631924 14.629291 14.001600 15.278505
[4,] 0.65 18.788092 18.775979 18.083122 19.564651

15

[5,] 0.85 25.102949 25.079967 24.079518 26.214286
Rowname: females

Percentile estimate (mean) estimate (median) lower upper
[1,] 0.05 5.829669 5.833583 5.285651 6.352369
[2,] 0.25 10.553974 10.555256 9.915543 11.166897
[3,] 0.45 14.178955 14.174578 13.466394 14.884354
[4,] 0.65 18.260706 18.255304 17.433466 19.133954
[5,] 0.85 24 .533526 24.522588 23.423708 25.704973
> CDF_ests
Model call:
ic_bayes(formula = cbind(left, right) ~ gender, data = IR_diabetes,
logPriorFxn = logPriorFunction, model = "po", dist = "gamma")

Credible Level = 0.95
Rowname: males

Time estimate (mean) estimate (median) lower upper
[1,] 5 0.02819123 0.02784022 0.01990674 0.03821839
[2,] 10 0.20458708 0.20446229 0.17774173 0.23337367
[3,] 15 0.46950236 0.46973793 0.43577991 0.50259153
(4,1 20 0.69859319 0.69891488 0.66743788 0.72724340
(5,1 25 0.84768754 0.84823506 0.82317062 0.87034024
Rowname: females

Time estimate (mean) estimate (median) lower upper
[1,] 5 0.0310219 0.03060962 0.02184893 0.04239075
[2,] 10 0.2210772 0.22079074 0.19051552 0.25462212
[3,] 15 0.4940004 0.49420362 0.45599419 0.53248912
[4,] 20 0.7187841 0.71908008 0.68383547 0.75092584
[5,] 25 0.8598682 0.86012463 0.83448905 0.88282417

Note that the output from survCls is what is used to create the plots for
icenReg fits, so if one wanted to export the plotting to ggplot or plot the
posterior mean rather than the posterior median, for example, one could do so
directly with survCIs.

3 Inspecting model fit

3.1 Examining Baseline Distribution

Althought the semi-parametric model is more flexible, and thus more robust to
unusual baseline distributions, there are many reasons one may decide to use
a parametric model instead. One reasons is that, as stated earlier, we are not
aware of any general distributional theory regarding the baseline distribution,
outside of the univariate case with case I interval censored data. Even in this
case, the estimator is highly inefficient, observing convergence rates of n'/? in-
stead of the more standard n'/2. Because of this, making inference about values
that directly require the baseline distribution, such as creating a confindence in-
terval for the median for subjects with a given set of covariates, cannot be done
with the semi-parametric model.

16

However, even if a parametric model is used for final inference, the semi-
parametric model is still useful for assessing model fit. This is especially impor-
tant for interval censored data, as we do not have the option of examining typical
residuals or histograms as we would if the outcome was uncensored. icenReg
has the function diag_baseline that plots several choices of parametric baseline
distributions against the semi-parametric estimate. If the parametric distribu-
tion shows no systematic deviations from the semi-parametric fit, this implies
the choice of parametric family may do a reason job of describing the underlying
distribution. If there are clear deviations, this model should not be trusted.

To use diag_baseline, you must provide either a fitted model, or a formula,
data and model. You then select the parametric families that you would like
plotted against the non-parametric estimate (default is to fit all available). As
an example, suppose we wanted to examine the different parametric fits for the
IR_diabetes dataset. This could be done with

> diag_baseline(cbind(left, right) ~ gender,
+ model = "po",

+ data = IR_diabetes,
+ dists = c("exponential, "weibull",
+ "loglogistic", "gamma"),
+ lgdLocation = "topright")

o
= —— Semi-parametric
—— exponential
weibull
(o) P
S —— loglogistic
gamma
©
Q
@
<
3
N
o
. e
o “—‘_‘ﬁ‘_L\
S —
T T T T
10 20 30 40

time

Alternatively, using the fits from earlier, we can just call

diag_baseline(fit_po, lgdLocation = "topright",
dists = c("exponential", "weibull",
"loglogistic", "gamma')

+ + + VvV

17

Visual diagnostics are always subjective, but in this case we definitively
know that the exponential fit is not appropriate and we believe the gamma
baseline is most appropriate for the proporitonal odds model (although there is
not overwhelming evidence that it is best).

3.2 Examining Covariate Effect

Although semi-parametric models do not make assumptions about the paramet-
ric family of the baseline distribution, both fully-parametric and semi-parametric
models make assumptions about the form of the covariate effect, akin to the link
function in generalized linear models.

A rule of thumb for identifying gross violations of proportional hazards is to
check if the Kaplan Meier curves cross; if they do, and this cross appears not
purely by chance, the proportional hazards assumption seems inappropriate.

This can naturally extend to the case of interval censored data by replacing
the Kaplan Meier curves with the NPMLE. Also, this informal test can be
generalized to the proportional odds model; the proportional odds assumption
also implies that survival curves that differ only by a constant factor of the odds
of survival should not cross.

Another method of assessing involves transforming yoursurvival estimates
such that if the assumptions are met, the difference in transformed survival will
be constant. For the proportional hazards model, this is the complementary
log-log tranformation (i.e. log(—log(s))). For the proportional odds model,
this is the logit transformation (i.e. log(s/(1 —s))).

Plotting these functions can be done automatically in icenReg using the
diag_covar function. The basic flow is that function takes in the fit, divides
the data up on a covariate of interest. If it is categorical, it simply breaks up by
category, if it is numeric, it attempts to find break point to evenly split up the
data. Then, for each subset of the data, it fits the corresponding semi-parametric
model and plots the transformation of the baseline distribution.

To demonstrate, suppose we wanted to assess whether the Cox-PH or pro-
portional odds model was more appropriate for the IR_diabetes. This could
be done by

> diag_covar(fit_po, lgdLocation = "topright",

+ main = "Checking Proportional 0Odds")
> diag_covar(fit_ph, lgdLocation = "topright",
+ main = "Checking Proportional Hazards")

We see that especially for gender, the porportional odds seems somewhat
more appropriate (the difference between transformed values seems more con-
stant). This agrees with the fact that the likelihood is approximately 2.5 greater
for the proportional odds model than Cox-PH.

18

gender

© | —— female
§ S] male
b«
1 o |
—
=GN
g °
g o | 3y —
; o
R
E 9
[J]
a4
T _
3

(o]
= 2

]

T T T I
10 20 30 40
t
gender

=
~~
— (o]
» o —— female
> male
3 _
L«
g o
S _ o~ 9
(]
3 o
£ 9
m pu—
c [{e)
§ o
=

10 20 30 40

4 Appendix

4.1 Parallel Bootstrapping

Bootstrapping can be very computationally intensive. Fortunately, it is also
embarrassingly parallel. As such, icenReg is written to work seamlessly with
doParallel

> library(doParallel)
> myCluster <- makeCluster(4) #uses 4 cores

19

> registerDoParallel (myCluster)

> fit <- ic_sp(cbind(left, right) ~ gender,

+ data = IR_diabetes, model = "po",
+ bs_samples = 50, useMCores = TRUE)
>stopCluster (myCluster)

20

