Package 'iCellR'

January 29, 2024

Type Package

Title Analyzing High-Throughput Single Cell Sequencing Data

Version 1.6.7

Maintainer Alireza Khodadadi-Jamayran <alireza.khodadadi.j@gmail.com>

Description A toolkit that allows scientists to work with data from single cell sequencing technologies such as scRNA-seq, scVDJ-seq, scATAC-seq, CITE-Seq and Spatial Transcriptomics (ST). Single (i) Cell R package ('iCellR') provides unprecedented flexibility at every step of the analysis pipeline, including normalization, clustering, dimensionality reduction, imputation, visualization, and so on. Users can design both unsupervised and supervised models to best suit their research. In addition, the toolkit provides 2D and 3D interactive visualizations, differential expression analysis, filters based on cells, genes and clusters, data merging, normalizing for dropouts, data imputation methods, correcting for batch differences, pathway analysis, tools to find marker genes for clusters and conditions, predict cell types and pseudotime analysis. See Khodadai-Jamayran, et al (2020) <doi:10.1101/2020.05.05.078550> and Khodadai-Jamayran, et al (2020) <doi:10.1101/2020.03.31.019109> for more details.

Depends R (>= 3.3.0), ggplot2, plotly

Imports Matrix, Rtsne, gridExtra, ggrepel, ggpubr, scatterplot3d, RColorBrewer, knitr, NbClust, shiny, pheatmap, ape, ggdendro, plyr, reshape, Hmisc, htmlwidgets, methods, uwot, hdf5r, progress, igraph, data.table, Rcpp, RANN, jsonlite, png

License GPL-2

LinkingTo Rcpp

Encoding UTF-8

LazyData true

RoxygenNote 7.1.2

BugReports https://github.com/rezakj/iCellR/issues

URL https://github.com/rezakj/iCellR

NeedsCompilation yes

Author Alireza Khodadadi-Jamayran [aut, cre]

(<https://orcid.org/0000-0003-2495-7504>), Joseph Pucella [aut, ctb] (<https://orcid.org/0000-0003-0875-8046>), Hua Zhou [aut, ctb] (<https://orcid.org/0000-0003-1822-1306>), Nicole Doudican [aut, ctb] (<https://orcid.org/0000-0003-3827-9644>), John Carucci [aut, ctb] (<https://orcid.org/0000-0001-6817-9439>), Adriana Heguy [aut, ctb], Boris Reizis [aut, ctb] (<https://orcid.org/0000-0003-1140-7853>), Aristotelis Tsirigos [aut, ctb] (<https://orcid.org/0000-0002-7512-8477>)

Repository CRAN

Date/Publication 2024-01-29 20:20:02 UTC

R topics documented:

ndd.10x.image	 . 3
ıdd.adt	
ıdd.vdj	 . 5
udt.rna.merge	 . 5
pubble.gg.plot	 . 6
capture.image.10x	 . 7
x	 . 7
zell.cycle	 . 8
zell.filter	 . 8
cell.gating	 . 9
cell.type.pred	 . 10
change.clust	 . 11
clono.plot	 . 11
clust.avg.exp	 . 12
elust.cond.info	 . 13
clust.ord	 . 14
elust.rm	 . 14
clust.stats.plot	 . 15
cluster.plot	 . 16
lata.aggregation	 . 17
lata.scale	 . 18
lown.sample	 . 19
ind.dim.genes	 . 19
indMarkers	 . 20
ind_neighbors	 . 21
22m.phase	 . 21
gate.to.clust	
gene.plot	 . 22
gene.stats	 . 24
g.cor	 . 24
neatmap.gg.plot	 . 25
nto.anno	 . 27

2

i.score	7
	÷.,
iba	
iclust	
load.h5	
load10x	
make.bed	
make.gene.model	
make.obj	
myImp	3
norm.adt	4
norm.data	4
opt.pcs.plot	5
prep.vdj	6
pseudotime	6
pseudotime.knetl	7
pseudotime.tree	8
qc.stats	9
Rphenograph	0
run.anchor	1
run.cca	3
run.clustering	
run.diff.exp	
run.diffusion.map	
run.impute	
run.knetl	
run.mnn	
run.pc.tsne	
1	
1	
run.umap	
s.phase	
spatial.plot	
stats.plot	
top.markers	
vdj.stats	
volcano.ma.plot	8
_	~
71	U

Index

add.10x.image

Add image data to iCellR object

Description

This function takes a list of image data adds it to the iCellR object.

Usage

add.10x.image(x = NULL, image.data.list = NULL, condition.names = NULL)

Arguments

х

An object of class iCellR.

image.data.list

A character vector of list object names. Lists should be made using "image.capture.10x" function. .

condition.names

A character vector of condition names.

Value

An object of class iCellR

add.adt

Add CITE-seq antibody-derived tags (ADT)

Description

This function takes a data frame of ADT values per cell and adds it to the iCellR object.

Usage

add.adt(x = NULL, adt.data = "data.frame")

Arguments

х	An object of class iCellR.
adt.data	A data frame containing ADT counts for cells.

Value

add.vdj

Description

This function takes a data frame of VDJ information per cell and adds it to the iCellR object.

Usage

add.vdj(x = NULL, vdj.data = "data.frame")

Arguments

Х	An object of class iCellR.
vdj.data	A data frame containing VDJ information for cells.

Value

An object of class iCellR

Description

This function is to merge the RNA and ADT data to the main.data slot of the iCellR object.

Usage

```
adt.rna.merge(x = NULL, adt.data = "raw")
```

Arguments

х	An object of class iCellR.
adt.data	Choose from raw or main (normalized) ADT data, default = "raw".

Value

bubble.gg.plot

Description

This function takes an object of class iCellR and genes and provides a heatmap.

Usage

```
bubble.gg.plot(
  x = NULL,
  gene = "NULL",
  data.type = "main",
  conds.to.plot = NULL,
  min.scale = -2.5,
  max.scale = 2.5,
  interactive = TRUE,
  colour = "Expression",
  size = "Percent.Expressed",
  out.name = "plot",
  heat.colors = c("blue", "red")
)
```

Arguments

x	A data frame containing gene counts for cells.
gene	A set of gene names to be heatmapped.
data.type	Choose from "main", "atac", atac.imputed and "imputed", default = "main".
conds.to.plot	Choose the conditions you want to see in the plot, default = NULL (all conditions).
min.scale	Set a minimum color scale, default = -2.5 .
<pre>max.scale</pre>	Set a maximum color scale, $default = 2.5$.
interactive	If TRUE an html interactive file will be made, default = TRUE.
colour	Set color to "Percent.Expressed", or "Expression", , default = "Expression".
size	Set size to "Percent.Expressed", or "Expression", , default = "Percent.Expressed".
out.name	Output name for html file if interactive = TRUE, default = "plot".
heat.colors	Colors for heatmap, default = c("blue", "white", "red").

Value

Description

This function takes 10X image data files and converts them to proper file format for iCellR.

Usage

```
capture.image.10x(dir.10x = NULL)
```

Arguments

dir.10x A directory that includes the 10X image files (scalefactors_json.json, tissue_lowres_image.png and tissue_positions_list.csv).

Value

A list object

сс

Calculate Cell cycle phase prediction

Description

This function takes an object of class iCellR and assignes cell cycle stage for the cells.

Usage

cc(object = NULL, s.genes = s.phase, g2m.genes = g2m.phase)

Arguments

object	A data frame containing gene counts for cells.
s.genes	Genes that are used as a marker for S phase.
g2m.genes	Genes that are used as a marker for G2 and M phase.

Value

The data frame object

cell.cycle

Description

This function takes an object of class iCellR and assignes cell cycle stage for the cells.

Usage

```
cell.cycle(
  object = NULL,
  scoring.List = NULL,
  return.stats = FALSE,
  scoring.method = "tirosh"
)
```

Arguments

object	A data frame containing gene counts for cells.
scoring.List	Genes that are used as a marker for phases.
return.stats	Return the data or object. If FALSE the object would be returned.
scoring.method	Choose from "coverage" or "tirosh" for scoring method.

Value

The data frame object

cell.filter Filter cells

Description

This function takes an object of class iCellR and filters the raw data based on the number of UMIs, genes per cell, percentage of mitochondrial genes per cell, genes, gene expression and cell ids.

Usage

```
cell.filter(
  x = NULL,
  min.mito = 0,
  max.mito = 1,
  min.genes = 0,
  max.genes = Inf,
  min.umis = 0,
  max.umis = Inf,
```

```
filter.by.cell.id = "character",
keep.cell.id = "character",
filter.by.gene = "character",
filter.by.gene.exp.min = 1
```

Arguments

	Х	An object of class iCellR.
	min.mito	Min rate for mitochondrial gene expression per cell, $default = 0$.
	max.mito	Max rate for mitochondrial gene expression per cell, default = 1.
	min.genes	Min number genes per cell, $default = 0$.
	max.genes	Max number genes per cell, default = Inf.
	min.umis	Min number UMIs per cell, $default = 0$.
	max.umis	Max number UMIs per cell, default = Inf.
filter.by.cell.id		
		A character vector of cell ids to be filtered out.
	keep.cell.id	A character vector of cell ids to keep.
	filter.by.gene	A character vector of gene names to be filtered by thier expression. If more then one gene is defined it would be OR not AND.
filter.by.gene.exp.min		
		Minimum gene expression to be filtered by the genes set in filter.by.gene, default = 1.

Value

An object of class iCellR.

cell.gating	Cell gating	
cell.gating	Cell gating	

Description

This function takes an object of class iCellR and a 2D tSNE or UMAP plot and gates around cells to get their ids.

Usage

cell.gating(x = NULL, my.plot = NULL, plot.type = "tsne")

Arguments

х	An object of class iCellR.
my.plot	The plot to use for gating. Must be a 2D plot.
plot.type	Choose from knetl, umap and tsne, default = NULL.

Value

An object of class iCellR.

cell.type.pred	Create heatmaps or dot plots for genes in clusters to find thier cell
	types using ImmGen data.

Description

This function takes an object of class iCellR and genes and provides a heatmap.

Usage

```
cell.type.pred(
    immgen.data = "rna",
    gene = "NULL",
    top.cell.types = 50,
    plot.type = "heatmap",
    heat.colors = c("blue", "white", "red")
)
```

Arguments

immgen.data	Choose from ,"GSE109125","GSE122108","GSE122597","GSE124829","GSE15907","GSE37448", rna", "uli.rna" or "mca", default = "rna"
gene	A set of gene names to used to predict cell type.
<pre>top.cell.types</pre>	Top cell types sorted by cumulative expression, default = 25 .
plot.type	Choose from "heatmap" od "point.plot", default = "heatmap"
heat.colors	Colors for heatmap, default = c("blue", "white", "red").

Value

change.clust

Description

This function re-names the clusters in the best.clust slot of the iCellR object.

Usage

```
change.clust(x = NULL, change.clust = 0, to.clust = 0, clust.reset = FALSE)
```

Arguments

Х	An object of class iCellR.
change.clust	The name of the cluster to be changed.
to.clust	The new name for the cluster.
clust.reset	Reset to the original clustering.

Value

An object of class iCellR.

clono.plot

Make 2D and 3D scatter plots for clonotypes.

Description

This function takes an object of class iCellR and provides plots for clonotypes.

Usage

```
clono.plot(
  x = NULL,
  plot.data.type = "tsne",
  clonotype.column = 1,
  barcode.column = 2,
  clono = NULL,
  conds.to.plot = NULL,
  clust.dim = 2,
  cell.size = 1,
  cell.colors = c("red", "gray"),
  box.cell.col = "black",
  back.col = "white",
  cell.transparency = 1,
  interactive = TRUE,
  out.name = "plot"
)
```

Arguments

x	An object of class iCellR.	
plot.data.type	Choose from "tsne" and "pca", default = "tsne".	
clonotype.colur	nn	
	The column which has the clonotype IDs, default = 2 .	
barcode.column	The column which has the barcode IDs, default = 1 .	
clono	A clonotype name to be plotted, default = NULL.	
conds.to.plot	Choose one condition you want to see in the plot, default = NULL (all conditions).	
clust.dim	2 for 2D plots and 3 for 3D plots, default = 2 .	
cell.size	A number for the size of the points in the plot, $default = 1$.	
cell.colors	Colors for heat mapping the points in "scatterplot", default = c("gray","red").	
box.cell.col	Choose a color for box default = "black".	
back.col	A color for the plot background, default = "black".	
cell.transparency		
	Color transparency for points, default = 0.5 .	
interactive	If set to TRUE an intractive HTML file will be created, default = TRUE.	
out.name	If "interactive" is set to TRUE, the out put name for HTML, default = "plot".	

Value

An object of class iCellR.

clust.avg.exp Create a data frame of mean expression of genes per cluster

Description

This function takes an object of class iCellR and creates an average gene expression for every cluster.

Usage

```
clust.avg.exp(
  x = NULL,
  data.type = "main",
  conds.to.avg = NULL,
  rounding.digits = 4,
  low.cell.filt = 5,
  round.num = FALSE
)
```

clust.cond.info

Arguments

Х	An object of class iCellR.
data.type	Choose from "main", "atac", "atac.imputed" and "imputed", default = "main"
conds.to.avg rounding.digit:	Choose the conditions you want to average, default = NULL (all conditions).
	integer indicating the number of decimal places (round) or significant digits (sig- nif) to be used.
low.cell.filt	filter out clusters with low number of cells, default = 5 .
round.num	Rounding of Numbers, default = FALSE.

Value

An object of class iCellR.

clust.cond.info Calculate cluster and conditions frequencies

Description

This function takes an object of class iCellR and calculates cluster and conditions frequencies.

Usage

```
clust.cond.info(
  x = NULL,
  plot.type = "pie",
  my.out.put = "data",
  normalize.ncell = TRUE,
  normalize.by = "percentage"
)
```

Arguments

х	An object of class iCellR.
plot.type	Choose from pie/pie.cond or bar/bar.cond, defult = pie.
my.out.put	Chose from "data" or "plot", default = "data".
normalize.ncel	1
	If TRUE the values will be normalized to the number of cells by downsampling.
normalize.by	Chose from "sf" (size factor) or "percentage", default = "percentage".

Value

clust.ord

Description

This function takes an object of class iCellR and re-ordersthe clusters based on pseudotime (distance).

Usage

```
clust.ord(
  x = NULL,
  top.rank = 500,
  dist.method = "euclidean",
  clust.method = "complete",
  how.to.order = "distance"
)
```

Arguments

х	An object of class iCellR.
top.rank	A number. Taking the top genes ranked by base mean, default = 500 .
dist.method	Choose from "euclidean", "maximum", "manhattan", "canberra", "binary" or "minkowski", default = "euclidean".
clust.method	Choose from "ward.D", "ward.D2", "single", "complete", "average", "mcquitty", "median" or "centroid", default = "complete".
how.to.order	Choose from "distance" and "random".

Value

An object of class iCellR.

clust.rm	
----------	--

Remove the cells that are in a cluster

Description

This function removes the cells from a designated cluster. Notice the cells will be removed from the main data (raw data would still have the original data).

Usage

clust.rm(x = NULL, clust.to.rm = "numeric")

clust.stats.plot

Arguments

х	A data frame containing gene counts for cells.
clust.to.rm	The name of the cluster to be removed.

Value

An object of class iCellR

clust.stats.plot Plotting tSNE, PCA, UMAP, Diffmap and other dim reductions

Description

This function takes an object of class iCellR and creates QC plot.

Usage

```
clust.stats.plot(
  x = NULL,
  plot.type = "box.mito",
  conds.to.plot = NULL,
  cell.color = "slategray3",
  cell.size = 1,
  cell.transparency = 0.5,
  box.color = "red",
  box.line.col = "green",
  back.col = "white",
  notch = FALSE,
  interactive = TRUE,
  out.name = "plot"
)
```

Arguments

х	An object of class iCellR.	
plot.type	Choose from "bar.cc", "pie.cc", box.umi", "box.mito", "box.gene", default = "box.mito".	
conds.to.plot	Choose the conditions you want to see in the plot, default = NULL (all conditions).	
cell.color	Choose a color for points in the plot.	
cell.size	A number for the size of the points in the plot, $default = 1$.	
cell.transparency		
	Color transparency for points in "scatterplot" and "boxplot", default = 0.5.	
box.color	A color for the boxes in the "boxplot", default = "red".	

box.line.col	A color for the lines around the "boxplot", default = "green".
back.col	Background color, default = "white"
notch	Notch the box plots, default = FALSE.
interactive	If set to TRUE an interactive HTML file will be created, default = TRUE.
out.name	If "interactive" is set to TRUE, the out put name for HTML, default = "plot".

Value

An object of class iCellR.

cluster.plot Plot nGenes, UMIs and perecent mito

Description

This function takes an object of class iCellR and creates plots to see the clusters.

Usage

```
cluster.plot(
 x = NULL,
  cell.size = 0.5,
  plot.type = "tsne",
  cell.color = "black",
  back.col = "white",
  col.by = "clusters",
  cond.facet = FALSE,
  cond.shape = FALSE,
  anno.clust = FALSE,
  anno.size = 4,
  cell.transparency = 1,
  clust.dim = 2,
  angle = 20,
  clonotype.max = 10,
  density = FALSE,
  interactive = TRUE,
  static3D = FALSE,
  out.name = "plot"
```

```
)
```

Arguments

x	An object of class iCellR.
cell.size	A numeric value for the size of the cells, $default = 1$.
plot.type	Choose between "tsne", "pca", "umap", "knetl", "diffusion", default = "tsne".

cell.color	Choose cell color if col.by = "monochrome", default = "black".	
back.col	Choose background color, default = "black".	
col.by	Choose between "clusters", "conditions", "cc" (cell cycle) or "monochrome", default = "clusters".	
cond.facet	Show the conditions in separate plots.	
cond.shape	If TRUE the conditions will be shown in shapes.	
anno.clust	Annotate cluster names on the plot, default = TRUE.	
anno.size	If anno.clust is TRUE set font size, $default = 3$.	
cell.transparency		
	A numeric value between 0 to 1, default = 0.5 .	
clust.dim	A numeric value for plot dimensions. Choose either 2 or 3, default = 2 .	
angle	A number to rotate the non-interactive 3D plot.	
clonotype.max	Number of clonotype to plot, $default = 10$.	
density	If TRUE the density plots for PCA/tSNE second dimension will be created, default = FALSE.	
interactive	If TRUE an html interactive file will be made, default = TRUE.	
static3D	If TRUE a non-interactive 3D plot will be made.	
out.name	Output name for html file if interactive = TRUE, default = "plot".	

Value

An object of class iCellR.

ids	data.aggregation	Merge multiple data frames and add the condition names to their cell ids
-----	------------------	--

Description

This function takes data frame and merges them while also adding condition names to cell ids..

Usage

```
data.aggregation(samples = NULL, condition.names = NULL)
```

Arguments

samples A character vector of data.frame object names. condition.names

A character vector of data.frame condition names.

Value

Examples

data.scale

Scale data

Description

This function takes an object of class iCellR and scales the normalized data.

Usage

data.scale(x = NULL)

Arguments

x An object of class iCellR.

Value

An object of class iCellR.

18

down.sample

Description

This function takes an object of class iCellR and down samples the condition to have equal number of cells in each condition.

Usage

down.sample(x = NULL)

Arguments

Х

An object of class iCellR.

Value

An object of class iCellR.

find.dim.genes Find model genes from PCA data

Description

This function takes an object of class iCellR finds the model genes to run a second round of PCA.

Usage

find.dim.genes(x = NULL, dims = 1:10, top.pos = 15, top.neg = 5)

Arguments

х	An object of class iCellR.
dims	PC dimentions to be used.
top.pos	Number of top positive marker genes to be taken from each PC, default = 15.
top.neg	Number of top negative marker genes to be taken from each PC, default = 5.

Value

findMarkers

Description

This function takes an object of class iCellR and performs differential expression (DE) analysis to find marker genes for each cluster.

Usage

```
findMarkers(
   x = NULL,
   data.type = "main",
   pval.test = "t.test",
   p.adjust.method = "hochberg",
   fold.change = 2,
   padjval = 0.1,
   low.cell.filt = 5,
   Inf.FCs = FALSE,
   uniq = FALSE,
   positive = TRUE
)
```

Arguments

Х	An object of class iCellR.
data.type	Choose from "main", "atac", "atac.imputed" and "imputed", default = "main"
pval.test	Choose from "t.test", "wilcox.test", default = "t.test".
p.adjust.method	
	Correction method. Choose from "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none", default = "hochberg".
fold.change	A number that designates the minimum fold change for out put, default = 2.
padjval	Minimum adjusted p value for out put, default = 0.1 .
low.cell.filt	filter out clusters with low number of cells, $default = 5$.
Inf.FCs	If set to FALSE the infinite fold changes would be filtered from out put, default = FALSE.
uniq	If set to TRUE only genes that are a marker for only one cluster would be in the out put, default = FALSE.
positive	If set to FALSE both the up regulated (positive) and down regulated (negative) markers would be in the out put, default = TRUE.

Value

find_neighbors K Nearest Neighbour Search

Description

Uses a kd-tree to find the p number of near neighbours for each point in an input/output dataset.

Usage

```
find_neighbors(data, k)
```

Arguments

data	matrix; input data matrix
k	integer; number of nearest neighbours

Details

Use the nn2 function from the RANN package, utilizes the Approximate Near Neighbor (ANN) C++ library, which can give the exact near neighbours or (as the name suggests) approximate near neighbours to within a specified error bound. For more information on the ANN library please visit http://www.cs.umd.edu/~mount/ANN/.

g2m.phase

A dataset of G2 and M phase genes

Description

A dataset containing the genes for G2 and M phase

Usage

g2m.phase

Format

A character with 54 genes

Source

https://www.science.org/doi/abs/10.1126/science.aad0501

gate.to.clust

Description

This function takes an object of class iCellR and assigns cluster number to a vector of cell ids.

Usage

gate.to.clust(x = NULL, my.gate = NULL, to.clust = 0)

Arguments

х	An object of class iCellR.
my.gate	A vector of cell ids.
to.clust	A cluster id to be assigned to the provided cell ids.

Value

An object of class iCellR.

gene.plot

Make scatter, box and bar plots for genes

Description

This function takes an object of class iCellR and provides plots for genes.

Usage

```
gene.plot(
  x = NULL,
  gene = NULL,
  cond.shape = FALSE,
  conds.to.plot = NULL,
  data.type = "main",
  box.to.test = 0,
  box.pval = "sig.signs",
  plot.data.type = "tsne",
  scaleValue = TRUE,
  min.scale = 0,
  max.scale = 2.5,
  clust.dim = 2,
  col.by = "clusters",
  plot.type = "scatterplot",
```

gene.plot

```
cell.size = 1,
cell.colors = c("gray", "red"),
box.cell.col = "black",
box.color = "red",
box.line.col = "green",
back.col = "white",
cell.transparency = 1,
box.transparency = 0.5,
interactive = TRUE,
out.name = "plot",
write.data = FALSE
)
```

Arguments

x	An object of class iCellR.
gene	Gene name/names to be plotted.
cond.shape	If TRUE the conditions will be shown in shapes.
conds.to.plot	Choose the conditions you want to see in the plot, default = NULL (all conditions).
data.type	Choose from "main", "atac, "atac.imputed" and "imputed", default = "main".
box.to.test	A cluster number so that all the boxes in the box plot would be compared to. If set to "0" the cluster with the highest avrage would be choosen, default = 0 .
box.pval	Choose from "sig.values" and "sig.signs". If set to "sig.signs" p values would be replaced with signs ("na", "*", "**", "***"), default = "sig.signs".
plot.data.type	Choose between "tsne", "pca", "umap", "knetl", "diffusion", "pseudo.A" and "pseudo.B", default = "tsne".
scaleValue	Scale the colors, $default = FALSE$.
min.scale	If scaleValue = TRUE, set a number for min, default = -2.5 .
max.scale	If scaleValue = TRUE, set a number for max, default = 2.5 .
clust.dim	2 for 2D plots and 3 for 3D plots, default = 2 .
col.by	Choose from "clusters" and "conditions", default = "clusters".
plot.type	Choose from "scatterplot", "boxplot" and "barplot", default = "scatterplot".
cell.size	A number for the size of the points in the plot, $default = 1$.
cell.colors	Colors for heat mapping the points in "scatterplot", default = c("gray","red").
box.cell.col	A color for the points in the box plot, default = "black".
box.color	A color for the boxes in the "boxplot", default = "red".
box.line.col	A color for the lines around the "boxplot", default = "green".
back.col	A color for the plot background, default = "black".
cell.transparer	-
	Color transparency for points in "scatterplot" and "boxplot", default = 1.
box.transparenc	Color transparency for box in "boxplot", default = 0.5.

interactive	If set to TRUE an interactive HTML file will be created, default = TRUE.
out.name	If "interactive" is set to TRUE, the out put name for HTML, default = "plot".
write.data	Write export the data used for the plot plot, default = TFALSE.

Value

An object of class iCellR.

gene.stats	Make statistical information for each gene across all the cells (SD,
	mean, expression, etc.)

Description

This function takes an object of class iCellR and provides some statistical information for the genes.

Usage

```
gene.stats(x = NULL, which.data = "raw.data", each.cond = FALSE)
```

Arguments

х	An object of class iCellR.
which.data	Choose from "raw.data" or "main.data", default = "raw.data".
each.cond	If TRUE each condition will be calculated, default = FALSE.

Value

An object of class iCellR.

gg.cor	Gene-gene correlation. This function helps to visulaize and calculate
	gene-gene correlations.

Description

Gene-gene correlation. This function helps to visulaize and calculate gene-gene correlations.

heatmap.gg.plot

Usage

```
gg.cor(
  x = NULL,
  data.type = "imputed",
  gene1 = NULL,
  gene2 = NULL,
  conds = NULL,
  clusts = NULL,
  cell.size = 1,
  cell.transparency = 0.5,
  interactive = TRUE,
  out.name = "plot"
)
```

Arguments

x	An object of class iCellR.	
data.type	Choose from imputed and main, default = "imputed".	
gene1	First gene name.	
gene2	Second gene name.	
conds	Filter only one condition (only one), default is all conditions.	
clusts	Choose clusters to plot.	
cell.size	A numeric value for the size of the cells, $default = 1$.	
cell.transparency		
	A numeric value between 0 to 1, default = 0.5 .	
interactive	If TRUE an html interactive file will be made, default = TRUE.	
out.name	Output name for html file if interactive = TRUE, default = "plot".	

Value

An object of class iCellR

heatmap.gg.plot Create heatmaps for genes in clusters or conditions.

Description

This function takes an object of class iCellR and genes and provides a heatmap.

Usage

```
heatmap.gg.plot(
 x = NULL,
 gene = "NULL",
 cell.sort = FALSE,
 data.type = "main",
 cluster.by = "clusters",
 conds.to.plot = NULL,
 min.scale = -2.5,
 max.scale = 2.5,
 interactive = TRUE,
 cex.col = 10,
 cex.row = 10,
 no.key = FALSE,
 out.name = "plot",
 heat.colors = c("blue", "white", "red")
)
```

Arguments

x	A data frame containing gene counts for cells.
gene	A set of gene names to be heatmapped.
cell.sort	If FALSE the cells will not be sorted based on their distance, default = TRUE.
data.type	Choose from "main", "atac", atac.imputed and "imputed", default = "main".
cluster.by	Choose from "clusters" or "none", default = "clusters".
conds.to.plot	Choose the conditions you want to see in the plot, default = NULL (all conditions).
min.scale	Set a minimum color scale, default = -2.5 .
max.scale	Set a maximum color scale, default = 2.5 .
interactive	If TRUE an html interactive file will be made, default = TRUE.
cex.col	Chhose a size, $default = 10$.
cex.row	Choose a size, $default = 10$.
no.key	If you want a color legend key, default = FALSE.
out.name	Output name for html file if interactive = TRUE, default = "plot".
heat.colors	Colors for heatmap, default = c("blue", "white", "red").

Value

An object of class iCellR

26

hto.anno

Demultiplexing HTOs

Description

Demultiplexing HTOs

Usage

```
hto.anno(hto.data = "data.frame", cov.thr = 10, assignment.thr = 80)
```

Arguments

hto.data	HTO raw data
cov.thr	A number which average coverage is divided by to set a threshold for low coverage. For example 10 means it is 10 time less than the average. default = 10 .
assignment.thr	A percent above which you decide to set as a good sample assignment/HTO, $default = 80$.

Value

An object of class iCellR

i.score

Cell cycle phase prediction

Description

This function takes an object of class iCellR and assignes cell cycle stage for the cells.

Usage

```
i.score(
   object = NULL,
   data.type = "main.data",
   scoring.List = NULL,
   return.stats = TRUE,
   scoring.method = "tirosh"
)
```

Arguments

28

object	A data frame containing gene counts for cells.
data.type	Choose from "raw.data" or "main.data", "imputed.data", default = "main.data".
scoring.List	Genes that are used as a marker for phases.
return.stats	Return the data or object. If FALSE the object would be returned.
scoring.method	Choose from "tirosh (Tirosh, et. al. 2016), mean, sum, gsva, ssgsea, zscore and plage. , default = "tirosh".

Value

The data frame object

iba

iCellR Batch Alignment (IBA)

Description

This function takes an object of class iCellR and runs CCCA or CPCA batch alignment.

Usage

```
iba(
  x = NULL,
  dims = 1:30,
  k = 10,
  ba.method = "CPCA",
  method = "base.mean.rank",
  top.rank = 500,
  plus.log.value = 0.1,
  scale.data = TRUE,
  gene.list = "character"
)
```

Arguments

х	An object of class iCellR.
dims	PC dimentions to be used
k	number of neighboring cells for KNN, $default = 10$.
ba.method	Batch alignment method. Choose from "CCCA" and "CPCA", default = "CPCA".
method	Choose from "base.mean.rank" or "gene.model", default is "base.mean.rank". If gene.model is chosen you need to provide gene.list.
top.rank	A number. Taking the top genes ranked by base mean, default = 500 .
plus.log.value	A number to add to each value in the matrix before log transformasion to avoid Inf numbers, default = 0.1 .

iclust

scale.data	If TRUE the data will be scaled $(\log 2 + \text{plus.log.value})$, default = TRUE.
gene.list	A charactor vector of genes to be used for PCA. If "clust.method" is set to
	"gene.model", default = "my_model_genes.txt".

iclust

iCellR Clustering

Description

This function takes an object of class iCellR and finds optimal number of clusters and clusters the data.

Usage

```
iclust(
  x = NULL,
  dist.method = "euclidean",
  sensitivity = 100,
  data.type = "pca",
  dims = 1:10,
  return.graph = FALSE
)
```

Arguments

х	An object of class iCellR.
dist.method	the distance measure to be used to compute the dissimilarity matrix. This must be one of: "euclidean", "maximum", "mandatattan", "canberra", "binary", "minkowski' or "NULL". By default, distance="euclidean". If the distance is "NULL", the dissimilarity matrix (diss) should be given by the user. If distance is not "NULL", the dissimilarity matrix should be "NULL".
sensitivity	The higher the number the less sensitivity, default = 100.
data.type	Choose between "tsne", "pca", "umap", default = "pca".
dims	PCA dimentions to be use for clustering, $default = 1:10$.
return.graph	return igraph object, default = FALSE.

Value

load.h5

Description

This function reads hdf5 files.

Usage

load.h5(filename, feature.names = TRUE, uniq.rows = TRUE)

Arguments

filename	path to the input (h5) file
feature.names	row names to be feature names or ID numbers.
uniq.rows	make row names unique.

Value

The data frame object

load10x	Load 10X data as data.frame
---------	-----------------------------

Description

This function takes 10X data files barcodes.tsv, genes.tsv and matrix.mtx and converts them to proper matrix file for iCellR.

Usage

```
load10x(dir.10x = NULL, gene.name = 2)
```

Arguments

dir.10x	A directory that includes the 10X barcodes.tsv, genes.tsv and matrix.mtx files
gene.name	Gene names or ids column number, $default = 2$.

Value

The data frame object

make.bed

Examples

my.data <- load10x(system.file("extdata", "filtered_gene_bc_matrices", package = "iCellR"))</pre>

```
# See first few rows and columns
head(my.data)[1:5]
```

make.bed

Make BED Files

Description

This function takes peak marker files and makes the bed files per cluster.

Usage

make.bed(x = NULL)

Arguments ×

Peak marker file.

Value

Bed files

make.gene.model Make a gene model for clustering

Description

This function takes an object of class iCellR and provides a gene list for clustering based on the parameters set in the model.

Usage

```
make.gene.model(
  x = NULL,
  dispersion.limit = 1.5,
  base.mean.rank = 500,
  gene.num.max = 2000,
  non.sig.col = "darkgray",
  right.sig.col = "chartreuse3",
  left.sig.col = "cadetblue3",
  disp.line.col = "black",
  rank.line.col = "red",
```

```
my.out.put = "data",
cell.size = 1.75,
cell.transparency = 0.5,
no.mito.model = TRUE,
no.cell.cycle = TRUE,
mark.mito = TRUE,
interactive = TRUE,
out.name = "plot"
```

Arguments

An object of class iCellR. Х dispersion.limit A number for taking the genes that have dispersion above this number, default = 1.5.base.mean.rank A number taking the top genes ranked by base mean, default = 500. Maximum number of genes , default = 2000. gene.num.max Color for the genes not used for the model, default = "darkgray". non.sig.col Color for the genes above the dispersion limit, default = "chartreuse3". right.sig.col left.sig.col Color for the genes above the rank limit, default = "cadetblue3". disp.line.col Color of the line for dispersion limit, default = "black". Color of the line for rank limit, default = "red". rank.line.col Chose from "data" or "plot", default = "data". my.out.put cell.size A number for the size of the points in the plot, default = 1.75. cell.transparency Color transparency for the points in the plot, default = 0.5. If set to TRUE, mitochondrial genes would be excluded from the gene list made no.mito.model for clustering, default = TRUE. no.cell.cycle If TRUE the cell cycle genes will be removed (s.phase and g2m.phase), default = TRUE. mark.mito Mark mitochondrial genes in the plot, default = TRUE. interactive If set to TRUE an interactive HTML file will be created, default = TRUE. out.name If "interactive" is set to TRUE, the out put name for HTML, default = "plot".

Value

An object of class iCellR.

32

make.obj

Description

This function takes data frame and makes an object of class iCellR.

Usage

make.obj(x = NULL)

Arguments

Х

A data frame containing gene counts for cells.

Value

An object of class iCellR

Examples

```
demo <- read.table(
file = system.file('extdata', 'demo_data.txt', package = 'iCellR'),
as.is = TRUE)
myDemo.obj <- make.obj(demo)
myDemo.obj</pre>
```

myImp

Impute data

Description

This function imputes data.

Usage

myImp(x = NULL)

Arguments ×

An object of class iCellR.

Value

norm.adt

Description

Normalize ADT data. This function takes data frame and Normalizes ADT data.

Usage

norm.adt(x = NULL)

Arguments

x An object of class iCellR.

Value

An object of class iCellR

norm.data

Normalize data

Description

This function takes an object of class iCellR and normalized the data based on "global.glsf", "ranked.glsf" or "spike.in" methods.

Usage

```
norm.data(
  x = NULL,
  norm.method = "ranked.glsf",
  top.rank = 500,
  spike.in.factors = NULL,
  rpm.factor = 1000,
  rounding.digits = 3,
  round.num = TRUE,
  ATAC.data = FALSE,
  ATAC.filter = TRUE
)
```

opt.pcs.plot

Arguments

x	An object of class iCellR.	
norm.method	Choose a normalization method, there are three option currently. Choose from "global.glsf", "ranked.glsf", "spike.in" or no.norm, default = "ranked.glsf".	
top.rank	If the method is set to "ranked.glsf", you need to set top number of genes sorted based on global base mean, default = 500.	
spike.in.facto	rs	
	A numeric vector of spike-in values with the same cell id order as the main data.	
rpm.factor	If the norm.method is set to "rpm" the library sizes would be divided by this number, default = 1000 (higher numbers recomanded for bulk RNA-Seq).	
rounding.digits		
	integer indicating the number of decimal places (round) or significant digits (sig- nif) to be used.	
round.num	Rounding of Numbers, default = FALSE.	
ATAC.data	If TURE, it would normalize ATAC-Seq data and not RNA-Seq, default = FALSE.	
ATAC.filter	If TURE, all the cells filtered in RNA-Seq will be filtered in ATAC-Seq. This needs to be done for both data to match, default = TRUE.	

Value

An object of class iCellR.

opt.pcs.plot	Find optimal number of PCs for clustering	

Description

This function takes an object of class iCellR and finds optimal number of PCs for clustering.

Usage

```
opt.pcs.plot(x = NULL, pcs.in.plot = 50)
```

Arguments

х	An object of class iCellR.
pcs.in.plot	Number of PCs to show in plot, $defult = 50$.

Value

prep.vdj

Description

This function takes a data frame of VDJ data per cell and prepares it to adds it to the iCellR object.

Usage

```
prep.vdj(vdj.data = "data.frame", cond.name = "NULL")
```

Arguments

vdj.data	A data frame containing vdj information.
cond.name	Conditions.

Value

An object of class iCellR

Pseudotime

Description

This function takes an object of class iCellR and marker genes for clusters and performs pseudotime analysis.

Usage

```
pseudotime(x = NULL, marker.genes = "NULL", dims = 1:10)
```

Arguments

x	An object of class iCellR.
marker.genes	A list of marker genes for clusters.
dims	PC dimentions to be used, , default = $1:10$.

Value
Description

This function takes an object of class iCellR and and runs kNet for dimensionality reduction.

Usage

```
pseudotime.knetl(
  x = NULL,
  dist.method = "euclidean",
  k = 5,
  abstract = TRUE,
  data.type = "pca",
  dims = 1:20,
  conds.to.plot = NULL,
  my.layout = "layout_with_fr",
  node.size = 10,
  cluster.membership = FALSE,
  interactive = TRUE,
  node.colors = NULL,
  edge.color = "gray",
  out.name = "Pseudotime.Abstract.KNetL",
  my.seed = 1
)
```

х	An object of class iCellR.
dist.method	the distance measure to be used to compute the dissimilarity matrix. This must be one of: "euclidean", "maximum", "mandatattan", "canberra", "binary", "minkowski" or "NULL". By default, distance="euclidean". If the distance is "NULL", the dissimilarity matrix (diss) should be given by the user. If distance is not "NULL", the dissimilarity matrix should be "NULL".
k	KNN the higher the number the less sensitivity, default = 5 .
abstract	Draw all the cells or clusters, , default = $TRUE$.
data.type	Choose between "tsne", "pca", "umap", default = "pca". We highly recommend PCA.
dims	PCA dimentions to be use for clustering, default = $1:20$.
conds.to.plot	Choose the conditions you want to see in the plot, default = NULL (all conditions).
my.layout	Choose a layout, default = "layout_with_fr".
node.size	Size of the nodes, , default = 10 .

cluster.members	hip
	Calculate memberships based on distance.
interactive	If set to TRUE an interactive HTML file will be created, default = TRUE.
node.colors	Color of the nodes, default = random colors.
edge.color	Solor of the edges, default = "gray".
out.name	If "interactive" is set to TRUE, the out put name for HTML, default = "Ab-stract.KNetL".
my.seed	seed number, $default = 1$.

Value

A plot.

|--|--|

Description

This function takes an object of class iCellR and marker genes for clusters and performs pseudotime for differentiation or time course analysis.

Usage

```
pseudotime.tree(
  x = NULL,
  marker.genes = "NULL",
  clust.names = "NULL",
  dist.method = "euclidean",
  clust.method = "complete",
  label.offset = 0.5,
  type = "classic",
  hang = 1,
  cex = 1
)
```

х	An object of class iCellR.
marker.genes	A list of marker genes for clusters.
clust.names	A list of names for clusters.
dist.method	Choose from "euclidean", "maximum", "manhattan", "canberra", "binary" or "minkowski", default = "euclidean".
clust.method	Choose from "ward.D", "ward.D2", "single", "complete", "average", "mcquitty", "median" or "centroid", default = "complete".

qc.stats

label.offset	Space between names and tree, $default = 0.5$.
type	Choose from "classic", "jitter", "unrooted", "fan", "cladogram", "radial", default = "classic".
hang	Hang, $default = 1$.
cex	Text size, $default = 1$.

Value

An object of class iCellR.

qc.stats	Calculate the number of UMIs and genes per cell and percentage of
	mitochondrial genes per cell and cell cycle genes.

Description

This function takes data frame and calculates the number of UMIs, genes per cell and percentage of mitochondrial genes per cell and cell cycle genes.

Usage

```
qc.stats(
  x = NULL,
  which.data = "raw.data",
  mito.genes = NULL,
  s.phase.genes = s.phase,
  g2m.phase.genes = g2m.phase
)
```

Arguments

х	A data frame containing gene counts for cells.
which.data	Choose from "raw.data" or "main.data", "imputed.data", default = "raw.data".
mito.genes	A character vector of mitochondrial genes names , default is the genes starting with mt.
s.phase.genes	A character vector of gene names for S phase, $default = s.phase$.
g2m.phase.genes	
	A character vector of gene names for G2 and M phase default = $\sigma^2 m$ phase

A character vector of gene names for G2 and M phase, default = g2m.phase.

Value

The data frame object

Rphenograph

Description

R implementation of the PhenoGraph algorithm

Usage

Rphenograph(data, k = 30)

Arguments

data	matrix; input data matrix
k	integer; number of nearest neighbours (default:30)

Details

A simple R implementation of the [PhenoGraph](http://www.cell.com/cell/abstract/S0092-8674(15)00637-6) algorithm, which is a clustering method designed for high-dimensional single-cell data analysis. It works by creating a graph ("network") representing phenotypic similarities between cells by calclating the Jaccard coefficient between nearest-neighbor sets, and then identifying communities using the well known [Louvain method](https://sites.google.com/site/findcommunities/) in this graph.

Value

a list contains an igraph graph object for graph_from_data_frame and a communities object, the operations of this class contains:

print	returns the communities object itself, invisibly.
length	returns an integer scalar.
sizes	returns a numeric vector.
membership	returns a numeric vector, one number for each vertex in the graph that was the input of the community detection.
modularity	returns a numeric scalar.
algorithm	returns a character scalar.
crossing	returns a logical vector.
is_hierarchical	l
	returns a logical scalar.
merges	returns a two-column numeric matrix.
cut_at	returns a numeric vector, the membership vector of the vertices.
as.dendrogram	returns a dendrogram object.
show_trace	returns a character vector.

run.anchor

code_len	returns a numeric scalar for communities found with the InfoMAP method and
	NULL for other methods.
plot	for communities objects returns NULL, invisibly.

Source

https://github.com/JinmiaoChenLab/Rphenograph

References

Jacob H. Levine and et.al. Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis. Cell, 2015.

run.anchor

Run anchor alignment on the main data.

Description

This function takes an object of class iCellR and runs anchor alignment. It's a wrapper for Seurat.

Usage

```
run.anchor(
  x = NULL,
 method = "base.mean.rank",
  top.rank = 500,
  gene.list = "character",
 data.type = "main",
  normalization.method = "LogNormalize",
  scale.factor = 10000,
 margin = 1,
  block.size = NULL,
  selection.method = "vst",
  nfeatures = 2000,
  anchor.features = 2000,
  scale = TRUE,
  sct.clip.range = NULL,
  reduction = c("cca", "rpca"),
  12.norm = TRUE,
  dims = 1:30,
  k.anchor = 5,
  k.filter = 200,
  k.score = 30,
 max.features = 200,
  nn.method = "rann",
  eps = 0,
  k.weight = 100
)
```

х	An object of class iCellR.	
method	Choose from "base.mean.rank" or "gene.model", default is "base.mean.rank". If gene.model is chosen you need to provide gene.list.	
top.rank	A number taking the top genes ranked by base mean, default = 500 .	
gene.list	A charactor vector of genes to be used for PCA. If "clust.method" is set to "gene.model", default = "my_model_genes.txt".	
data.type	Choose from "main" and "imputed", default = "main"	
normalization.m		
	Choose from "LogNormalize", "CLR" and "RC". LogNormalize: Feature counts for each cell are divided by the total counts for that cell and multiplied by the scale.factor. This is then natural-log transformed using log1p. CLR: Applies a centered log ratio transformation. RC: Relative counts. Feature counts for each cell are divided by the total counts for that cell and multiplied by the scale.factor. No log-transformation is applied. For counts per million (CPM) set 'scale.factor = 1e6'	
scale.factor	Sets the scale factor for cell-level normalization.	
margin	If performing CLR normalization, normalize across features (1) or cells (2)	
block.size	How many cells should be run in each chunk, will try to split evenly across threads	
selection.metho		
	Choose from "vst", "mean.var.plot (mvp)", "dispersion (disp)".	
nfeatures	Number of features to select as top variable features; only used when 'selec- tion.method' is set to 'dispersion' or 'vst''	
anchor.features		
	A numeric value. This will call 'SelectIntegrationFeatures' to select the pro- vided number of features to be used in anchor finding	
scale	Whether or not to scale the features provided. Only set to FALSE if you have previously scaled the features you want to use for each object in the object.list	
<pre>sct.clip.range</pre>	Numeric of length two specifying the min and max values the Pearson residual will be clipped to	
reduction	cca: Canonical correlation analysis. rpca: Reciprocal PCA	
12.norm	Perform L2 normalization on the CCA cell embeddings after dimensional re- duction	
dims	Which dimensions to use from the CCA to specify the neighbor search space	
k.anchor	How many neighbors (k) to use when picking anchors	
k.filter	How many neighbors (k) to use when filtering anchors	
k.score	How many neighbors (k) to use when scoring anchors	
max.features	The maximum number of features to use when specifying the neighborhood search space in the anchor filtering	
nn.method	Method for nearest neighbor finding. Options include: rann, annoy	
eps	Error bound on the neighbor finding algorithm (from RANN)	
k.weight	Number of neighbors to consider when weighting	

run.cca

Value

An object of class iCellR.

run.cca

Run CCA on the main data

Description

This function takes an object of class iCellR and runs CCA using Seurat.

Usage

```
run.cca(
  x = NULL,
  top.vari.genes = 1000,
  cc.number = 30,
  dims.align = 1:20,
  normalize.data = TRUE,
  scale.data = TRUE,
  normalization.method = "LogNormalize",
  scale.factor = 10000,
  display.progress = TRUE
)
```

Arguments

х	An object of class iCellR.
top.vari.genes	Chose top genes to use for CCA, default = 1000.
cc.number	Choose a number, default = 30.
dims.align	Choose the CCA dimentions to align, default = 1:20.
normalize.data	TRUE or FALSE, default = TRUE.
scale.data	TRUE or FALSE, default = TRUE.
normalization.m	nethod
	Choose a method, default = "LogNormalize".
scale.factor	Scaling factor, default = 10000.
display.progres	S
	Show progress, default = TRUE.

Value

An object of class iCellR.

run.clustering C

Description

This function takes an object of class iCellR and finds optimal number of clusters and clusters the data.

Usage

```
run.clustering(
  x = NULL,
  clust.method = "kmeans",
  dist.method = "euclidean",
  index.method = "silhouette",
  max.clust = 25,
  min.clust = 2,
  dims = 1:10
)
```

Arguments

х	An object of class iCellR.
clust.method	the cluster analysis method to be used. This should be one of: "ward.D", "ward.D2", "single", "complete", "average", "mcquitty", "median", "centroid", "kmeans".
dist.method	the distance measure to be used to compute the dissimilarity matrix. This must be one of: "euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski' or "NULL". By default, distance="euclidean". If the distance is "NULL", the dissimilarity matrix (diss) should be given by the user. If distance is not "NULL", the dissimilarity matrix should be "NULL".
index.method	the index to be calculated. This should be one of : "kl", "ch", "hartigan", "ccc", "scott", "marriot", "trcovw", "tracew", "friedman", "rubin", "cindex", "db", "sil- houette", "duda", "pseudot2", "beale", "ratkowsky", "ball", "ptbiserial", "gap", "frey", "mcclain", "gamma", "gplus", "tau", "dunn", "hubert", "sdindex", "din- dex", "sdbw", "all" (all indices except GAP, Gamma, Gplus and Tau), "alllong" (all indices with Gap, Gamma, Gplus and Tau included).
max.clust	maximal number of clusters, between 2 and (number of objects - 1), greater or equal to min.nc.
min.clust	minimum number of clusters, default = 2.
dims	PCA dimentions to be use for clustering, $default = 1:10$.

Value

An object of class iCellR.

run.diff.exp

Description

This function takes an object of class iCellR and performs differential expression (DE) analysis for clusters and conditions.

Usage

```
run.diff.exp(
  x = NULL,
  data.type = "main",
  pval.test = "t.test",
  p.adjust.method = "hochberg",
  de.by = "clusters",
  cond.1 = "array",
  cond.2 = "array",
  base.cond = 0
)
```

Arguments

Х	An object of class iCellR.	
data.type	Choose from "main" and "imputed", default = "main"	
pval.test	Choose from "t.test", "wilcox.test", default = "t.test".	
p.adjust.method		
	Correction method. Choose from "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none", default = "hochberg".	
de.by	Choose from "clusters", "conditions", "clustBase.condComp" or "condBase.clustComp".	
cond.1	First condition to do DE analysis on.	
cond.2	Second condition to do DE analysis on.	
base.cond	A base condition or cluster if de.by is either cond.clust or clust.cond	

Value

An object of class iCellR

run.diffusion.map

Description

This function takes an object of class iCellR and runs diffusion map on PCA data.

Usage

```
run.diffusion.map(
  x = NULL,
 dims = 1:10,
 method = "destiny",
 ndim = 3,
 k = 5,
  alpha = 40,
  n.landmark = 2000,
  gamma = 1,
  t = "auto",
 knn.dist.method = "euclidean",
  init = NULL,
 mds.method = "metric",
 mds.dist.method = "euclidean",
  t.max = 100,
  npca = 100,
  plot.optimal.t = FALSE,
  verbose = 1,
  n.jobs = 1,
  seed = NULL,
  potential.method = NULL,
 use.alpha = NULL,
 n.svd = NULL,
 pca.method = NULL,
  g.kernel = NULL,
 diff.op = NULL,
 landmark.transitions = NULL,
 diff.op.t = NULL,
 dist.method = NULL
)
```

х	An object of class iCellR.
dims	PC dimentions to be used for UMAP analysis.
method	diffusion map method, default = "phate".

ndim	int, optional, default: 2 number of dimensions in which the data will be embed- ded
k	int, optional, default: 5 number of nearest neighbors on which to build kernel
alpha	int, optional, default: 40 sets decay rate of kernel tails. If NULL, alpha decaying kernel is not used
n.landmark	int, optional, default: 2000 number of landmarks to use in fast PHATE
gamma	float, optional, default: 1 Informational distance constant between -1 and 1. gamma=1 gives the PHATE log potential, gamma=0 gives a square root potential.
t	int, optional, default: 'auto' power to which the diffusion operator is powered sets the level of diffusion
knn.dist.metho	
	string, optional, default: 'euclidean'. recommended values: 'euclidean', 'co- sine', 'precomputed' Any metric from scipy.spatial.distance can be used dis- tance metric for building kNN graph. If 'precomputed', data should be an n_samples x n_samples distance or affinity matrix. Distance matrices are as- sumed to have zeros down the diagonal, while affinity matrices are assumed to have non-zero values down the diagonal. This is detected automatically using data[0,0]. You can override this detection with knn.dist.method='precomputed_distance' or knn.dist.method='precomputed_affinity'.
init	phate object, optional object to use for initialization. Avoids recomputing inter- mediate steps if parameters are the same.
mds.method	string, optional, default: 'metric' choose from 'classic', 'metric', and 'non- metric' which MDS algorithm is used for dimensionality reduction
mds.dist.metho	
	d string, optional, default: 'euclidean' recommended values: 'euclidean' and 'co- sine'
t.max	string, optional, default: 'euclidean' recommended values: 'euclidean' and 'co-
t.max npca	string, optional, default: 'euclidean' recommended values: 'euclidean' and 'co- sine'
npca	 string, optional, default: 'euclidean' recommended values: 'euclidean' and 'co-sine' int, optional, default: 100. Maximum value of t to test for automatic t selection. int, optional, default: 100 Number of principal components to use for calculating neighborhoods. For extremely large datasets, using n_pca < 20 allows
npca	 string, optional, default: 'euclidean' recommended values: 'euclidean' and 'co-sine' int, optional, default: 100. Maximum value of t to test for automatic t selection. int, optional, default: 100 Number of principal components to use for calculating neighborhoods. For extremely large datasets, using n_pca < 20 allows neighborhoods to be calculated in log(n_samples) time. boolean, optional, if TRUE, produce a plot showing the Von Neumann Entropy
npca plot.optimal.t	 string, optional, default: 'euclidean' recommended values: 'euclidean' and 'co-sine' int, optional, default: 100. Maximum value of t to test for automatic t selection. int, optional, default: 100 Number of principal components to use for calculating neighborhoods. For extremely large datasets, using n_pca < 20 allows neighborhoods to be calculated in log(n_samples) time. boolean, optional, if TRUE, produce a plot showing the Von Neumann Entropy curve for automatic t selection.
npca plot.optimal.t verbose	<pre>string, optional, default: 'euclidean' recommended values: 'euclidean' and 'co- sine' int, optional, default: 100. Maximum value of t to test for automatic t selection. int, optional, default: 100 Number of principal components to use for calcu- lating neighborhoods. For extremely large datasets, using n_pca < 20 allows neighborhoods to be calculated in log(n_samples) time. boolean, optional, if TRUE, produce a plot showing the Von Neumann Entropy curve for automatic t selection. int or boolean, optional (default : 1) If TRUE or > 0, message verbose updates. int, optional (default: 1) The number of jobs to use for the computation. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n.cpus + 1 + n.jobs) are used. Thus</pre>
npca plot.optimal.t verbose n.jobs	<pre>string, optional, default: 'euclidean' recommended values: 'euclidean' and 'co- sine' int, optional, default: 100. Maximum value of t to test for automatic t selection. int, optional, default: 100 Number of principal components to use for calcu- lating neighborhoods. For extremely large datasets, using n_pca < 20 allows neighborhoods to be calculated in log(n_samples) time. boolean, optional, if TRUE, produce a plot showing the Von Neumann Entropy curve for automatic t selection. int or boolean, optional (default : 1) If TRUE or > 0, message verbose updates. int, optional (default: 1) The number of jobs to use for the computation. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n.cpus + 1 + n.jobs) are used. Thus for n_jobs = -2, all CPUs but one are used int or NULL, random state (default: NULL) od</pre>
npca plot.optimal.t verbose n.jobs seed potential.meth	<pre>string, optional, default: 'euclidean' recommended values: 'euclidean' and 'co- sine' int, optional, default: 100. Maximum value of t to test for automatic t selection. int, optional, default: 100 Number of principal components to use for calcu- lating neighborhoods. For extremely large datasets, using n_pca < 20 allows neighborhoods to be calculated in log(n_samples) time. boolean, optional, if TRUE, produce a plot showing the Von Neumann Entropy curve for automatic t selection. int or boolean, optional (default : 1) If TRUE or > 0, message verbose updates. int, optional (default: 1) The number of jobs to use for the computation. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n.cpus + 1 + n.jobs) are used. Thus for n_jobs = -2, all CPUs but one are used int or NULL, random state (default: NULL) od Deprecated. For log potential, use gamma=1. For sqrt potential, use gamma=0.</pre>
npca plot.optimal.t verbose n.jobs seed	<pre>string, optional, default: 'euclidean' recommended values: 'euclidean' and 'co- sine' int, optional, default: 100. Maximum value of t to test for automatic t selection. int, optional, default: 100 Number of principal components to use for calcu- lating neighborhoods. For extremely large datasets, using n_pca < 20 allows neighborhoods to be calculated in log(n_samples) time. boolean, optional, if TRUE, produce a plot showing the Von Neumann Entropy curve for automatic t selection. int or boolean, optional (default : 1) If TRUE or > 0, message verbose updates. int, optional (default: 1) The number of jobs to use for the computation. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n.cpus + 1 + n.jobs) are used. Thus for n_jobs = -2, all CPUs but one are used int or NULL, random state (default: NULL) od</pre>

run.impute

pca.method	Deprecated.	
g.kernel	Deprecated.	
diff.op	Deprecated.	
landmark.transitions		
	Deprecated.	
diff.op.t	Deprecated.	
dist.method	Deprecated.	

Value

An object of class iCellR.

run.impute

Impute the main data

Description

This function takes an object of class iCellR and runs imputation on the main data.

Usage

```
run.impute(
 x = NULL,
 imp.method = "iCellR.imp",
 dims = 1:10,
 nn = 10,
 ATAC.data = FALSE,
 rounding.digits = 4,
  round.num = TRUE,
 data.type = "pca",
  genes = "all_genes",
  k = 10,
  alpha = 15,
  t = "auto",
 npca = 100,
  init = NULL,
  t.max = 20,
 knn.dist.method = "euclidean",
 verbose = 1,
 n.jobs = 1,
  seed = NULL
)
```

run.impute

Arguments

х	An object of class iCellR.	
imp.method	Choose between "iCellR.imp" and "magic", defualt = "iCellR.imp".	
dims	PC dimentions to be used for the analysis, $default = 10$.	
nn	Number of neighboring cells to find, $default = 10$.	
ATAC.data	If TURE, it would normalize ATAC-Seq data and not RNA-Seq, default = FALSE.	
rounding.digit		
	integer indicating the number of decimal places (round) or significant digits (sig- nif) to be used.	
round.num	Rounding of Numbers, default = FALSE.	
data.type	Choose between "tsne", "pca", "umap", "diffusion", "knetl", default = "pca".	
genes	character or integer vector, default: NULL vector of column names or column indices for which to return smoothed data If 'all_genes' or NULL, the entire smoothed matrix is returned	
k	if imp.method is magic; int, optional, default: 10 number of nearest neighbors on which to build kernel	
alpha	if imp.method is magic; int, optional, default: 15 sets decay rate of kernel tails. If NULL, alpha decaying kernel is not used	
t	if imp.method is magic; int, optional, default: 'auto' power to which the dif- fusion operator is powered sets the level of diffusion. If 'auto', t is selected according to the Procrustes disparity of the diffused data.'	
npca	number of PCA components that should be used; default: 100.	
init	magic object, optional object to use for initialization. Avoids recomputing inter- mediate steps if parameters are the same.	
t.max	if imp.method is magic; int, optional, default: 20 Maximum value of t to test for automatic t selection.	
knn.dist.method		
	string, optional, default: 'euclidean'. recommended values: 'euclidean', 'co- sine' Any metric from 'scipy.spatial.distance' can be used distance metric for building kNN graph.	
verbose	'int' or 'boolean', optional (default : 1) If 'TRUE' or '> 0', message verbose updates.	
n.jobs	'int', optional (default: 1) The number of jobs to use for the computation. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n.cpus + $1 + n.jobs$) are used. Thus for n_jobs = -2, all CPUs but one are used	
seed	int or 'NULL', random state (default: 'NULL')	

Value

An object of class iCellR.

run.knetl

Description

This function takes an object of class iCellR and and runs kNet for dimensionality reduction.

Usage

```
run.knetl(
 x = NULL,
 dist.method = "euclidean",
 zoom = 300,
 data.type = "pca",
 dims = 1:20,
  joint = FALSE,
 col.by = "clusters",
 my.seed = 1,
 layout.2d = "layout_nicely",
  layout.3d = "layout_with_fr",
  add.3d = FALSE,
 dim.redux = "umap",
 do.redux = TRUE,
 run.iclust = FALSE,
  return.graph = FALSE
)
```

х	An object of class iCellR.
dist.method	the distance measure to be used to compute the dissimilarity matrix. This must be one of: "euclidean", "maximum", "mandatattan", "canberra", "binary", "minkowski" or "NULL". By default, distance="euclidean". If the distance is "NULL", the dissimilarity matrix (diss) should be given by the user. If distance is not "NULL", the dissimilarity matrix should be "NULL".
zoom	Adjusting zoom the higher the number the less sensitivity, default = 400.
data.type	Choose between "tsne", "pca", "umap", default = "pca".
dims	PCA dimentions to be use for clustering, $default = 1:20$.
joint	Run in Combined or joint fashion as in CCCA and CPCA, default = FALSE.
col.by	If return.graph is TRUE the choose the cluster colors. Choose between "clusters", "conditions".
my.seed	seed number, $default = 1$.
layout.2d	Choose your 2D layout, default = "layout_nicely".
layout.3d	Choose your 3D layout, default = "layout_with_fr".

run.mnn

add.3d	Add 3D KNetL as well, default = FALSE.
dim.redux	Choose between "tsne", "pca", "umap" to unpack the nodes, default = "umap".
do.redux	Perform dim reudx for unpaking the nodes, default = TRUE.
run.iclust	Perform clustering as well (nor recomanded), default = FALSE.
return.graph	return igraph object, default = FALSE.

Value

An object of class iCellR.

run.mnn

Run MNN alignment on the main data.

Description

This function takes an object of class iCellR and runs MNN alignment. It's a wrapper for scran.

Usage

```
run.mnn(
  x = NULL,
 method = "base.mean.rank",
  top.rank = 500,
  gene.list = "character",
  data.type = "main",
  k = 20,
  cos.norm = TRUE,
  ndist = 3,
  d = 50,
  approximate = FALSE,
  irlba.args = list(),
  subset.row = NULL,
  auto.order = FALSE,
  pc.input = FALSE,
  compute.variances = FALSE,
  assay.type = "logcounts",
  get.spikes = FALSE,
 BNPARAM = NULL,
  BPPARAM = SerialParam()
)
```

Х	An object of class iCellR.
method	Choose from "base.mean.rank" or "gene.model", default is "base.mean.rank". If
	gene.model is chosen you need to provide gene.list.

top.rank	A number taking the top genes ranked by base mean, default = 500.
gene.list	A charactor vector of genes to be used for PCA. If "clust.method" is set to "gene.model", default = "my_model_genes.txt".
data.type	Choose from "main" and "imputed", default = "main"
k	An integer scalar specifying the number of nearest neighbors to consider when identifying MNNs.
cos.norm	A logical scalar indicating whether cosine normalization should be performed on the input data prior to calculating distances between cells.
ndist	A numeric scalar specifying the threshold beyond which neighbours are to be ignored when computing correction vectors. Each threshold is defined in terms of the number of median distances.
d	Number of dimentions to pass to 'multiBatchPCA'.
approximate	Further arguments to pass to 'multiBatchPCA'. Setting 'approximate=TRUE' is recommended for large data sets with many cells.
irlba.args	Further arguments to pass to 'multiBatchPCA'. Setting 'approximate=TRUE' is recommended for large data sets with many cells.
subset.row	See '?"scran-gene-selection"'.
auto.order	Logical scalar indicating whether re-ordering of batches should be performed to maximize the number of MNN pairs at each step. Alternatively an integer vector containing a permutation of '1:N' where 'N' is the number of batches.
pc.input	Logical scalar indicating whether the values in '' are already low-dimensional, e.g., the output of 'multiBatchPCA'.
compute.varian	ces
	Logical scalar indicating whether the percentage of variance lost due to non- orthogonality should be computed.
assay.type	A string or integer scalar specifying the assay containing the expression values, if SingleCellExperiment objects are present in ''.
get.spikes	See '?"scran-gene-selection"'. Only relevant if '' contains SingleCellExperiment objects.
BNPARAM	A BiocNeighborParam object specifying the nearest neighbor algorithm. De- faults to an exact algorithm if 'NULL', see '?findKNN' for more details.
BPPARAM	A BiocParallelParam object specifying whether the PCA and nearest-neighbor searches should be parallelized.

Value

An object of class iCellR.

run.pc.tsne

Run tSNE on PCA Data. Barnes-Hut implementation of t-Distributed Stochastic Neighbor Embedding

Description

This function takes an object of class iCellR and runs tSNE on PCA data. Wrapper for the C++ implementation of Barnes-Hut t-Distributed Stochastic Neighbor Embedding. t-SNE is a method for constructing a low dimensional embedding of high-dimensional data, distances or similarities. Exact t-SNE can be computed by setting theta=0.0.

Usage

```
run.pc.tsne(
  x = NULL,
  dims = 1:10,
 my.seed = 0,
  add.3d = TRUE,
  initial_dims = 50,
  perplexity = 30,
  theta = 0.5,
  check_duplicates = FALSE,
  pca = TRUE,
 max_iter = 1000,
  verbose = FALSE,
  is_distance = FALSE,
  Y_init = NULL,
  pca_center = TRUE,
  pca_scale = FALSE,
  stop_lying_iter = ifelse(is.null(Y_init), 250L, 0L),
 mom_switch_iter = ifelse(is.null(Y_init), 250L, 0L),
 momentum = 0.5,
  final_momentum = 0.8,
  eta = 200,
  exaggeration_factor = 12
)
```

х	An object of class iCellR.
dims	PC dimentions to be used for tSNE analysis.
my.seed	seed number, default = 0 .
add.3d	Add 3D tSNE as well, default = TRUE.
initial_dims	integer; the number of dimensions that should be retained in the initial PCA step (default: 50)

perplexity	numeric; Perplexity parameter
theta	numeric; Speed/accuracy trade-off (increase for less accuracy), set to 0.0 for exact TSNE (default: 0.5)
check_duplicate	es
	logical; Checks whether duplicates are present. It is best to make sure there are no duplicates present and set this option to FALSE, especially for large datasets (default: TRUE)
рса	logical; Whether an initial PCA step should be performed (default: TRUE)
<pre>max_iter</pre>	integer; Number of iterations (default: 1000)
verbose	logical; Whether progress updates should be messageed (default: FALSE)
is_distance	logical; Indicate whether X is a distance matrix (experimental, default: FALSE)
Y_init	matrix; Initial locations of the objects. If NULL, random initialization will be used (default: NULL). Note that when using this, the initial stage with exagger- ated perplexity values and a larger momentum term will be skipped.
pca_center	logical; Should data be centered before pca is applied? (default: TRUE)
pca_scale	logical; Should data be scaled before pca is applied? (default: FALSE)
<pre>stop_lying_ite</pre>	
	integer; Iteration after which the perplexities are no longer exaggerated (default: 250, except when Y_init is used, then 0)
<pre>mom_switch_ite</pre>	r
	integer; Iteration after which the final momentum is used (default: 250, except when Y_init is used, then 0)
momentum	numeric; Momentum used in the first part of the optimization (default: 0.5)
final_momentum	numeric; Momentum used in the final part of the optimization (default: 0.8)
eta	numeric; Learning rate (default: 200.0)
exaggeration_fa	actor
	numeric; Exaggeration factor used to multiply the P matrix in the first part of the optimization (default: 12.0)

Value

An object of class iCellR.

run.pca

Run PCA on the main data

Description

This function takes an object of class iCellR and runs PCA on the main data.

run.phenograph

Usage

```
run.pca(
  x = NULL,
  data.type = "main",
  method = "base.mean.rank",
  top.rank = 500,
  plus.log.value = 0.1,
  scale.data = TRUE,
  gene.list = "character"
)
```

Arguments

х	An object of class iCellR.
data.type	Choose from "main" and "imputed", default = "main"
method	Choose from "base.mean.rank" or "gene.model", default is "base.mean.rank". If gene.model is chosen you need to provide gene.list.
top.rank	A number. Taking the top genes ranked by base mean, $default = 500$.
plus.log.value	A number to add to each value in the matrix before log transformasion to avoind Inf numbers, default = 0.1 .
scale.data	If TRUE the data will be scaled (log2 + plus.log.value), default = TRUE.
gene.list	A charactor vector of genes to be used for PCA. If "clust.method" is set to "gene.model", default = "my_model_genes.txt".

Value

An object of class iCellR.

run.phenograph Clustering the data

Description

This function takes an object of class iCellR and finds optimal number of clusters and clusters the data.

Usage

```
run.phenograph(x = NULL, k = 100, data.type = "pca", dims = 1:10)
```

х	An object of class iCellR.
k	integer; number of nearest neighbours (default:45)
data.type	Choose between "tsne", "pca", "umap", default = "pca".
dims	PCA dimentions to be use for clustering, default = $1:10$.

Value

An object of class iCellR.

run.tsne

Run tSNE on the Main Data. Barnes-Hut implementation of t-Distributed Stochastic Neighbor Embedding

Description

This function takes an object of class iCellR and runs tSNE on main data. Wrapper for the C++ implementation of Barnes-Hut t-Distributed Stochastic Neighbor Embedding. t-SNE is a method for constructing a low dimensional embedding of high-dimensional data, distances or similarities. Exact t-SNE can be computed by setting theta=0.0.

Usage

```
run.tsne(
  x = NULL,
  clust.method = "base.mean.rank",
  top.rank = 500,
  gene.list = "character",
  add.3d = TRUE,
  initial_dims = 50,
  perplexity = 30,
  theta = 0.5,
  check_duplicates = TRUE,
  pca = TRUE,
 max_iter = 1000,
  verbose = FALSE,
  is_distance = FALSE,
  Y_init = NULL,
  pca_center = TRUE,
  pca_scale = FALSE,
  stop_lying_iter = ifelse(is.null(Y_init), 250L, 0L),
 mom_switch_iter = ifelse(is.null(Y_init), 250L, 0L),
 momentum = 0.5,
  final_momentum = 0.8,
  eta = 200,
  exaggeration_factor = 12
)
```

х	An object of class iCellR.
clust.method	Choose from "base.mean.rank" or "gene.model", defult is "base.mean.rank".
top.rank	A number taking the top genes ranked by base mean, $defult = 500$.

run.tsne

gene.list	A list of genes to be used for tSNE analysis. If "clust.method" is set to "gene.model", defult = "my_model_genes.txt".	
add.3d	Add 3D tSNE as well, default = TRUE.	
initial_dims	integer; the number of dimensions that should be retained in the initial PCA step (default: 50)	
perplexity	numeric; Perplexity parameter	
theta	numeric; Speed/accuracy trade-off (increase for less accuracy), set to 0.0 for exact TSNE (default: 0.5)	
check_duplicate	s	
	logical; Checks whether duplicates are present. It is best to make sure there are no duplicates present and set this option to FALSE, especially for large datasets (default: TRUE)	
рса	logical; Whether an initial PCA step should be performed (default: TRUE)	
max_iter	integer; Number of iterations (default: 1000)	
verbose	logical; Whether progress updates should be messageed (default: FALSE)	
is_distance	logical; Indicate whether X is a distance matrix (experimental, default: FALSE)	
Y_init	matrix; Initial locations of the objects. If NULL, random initialization will be used (default: NULL). Note that when using this, the initial stage with exagger- ated perplexity values and a larger momentum term will be skipped.	
pca_center	logical; Should data be centered before pca is applied? (default: TRUE)	
pca_scale	logical; Should data be scaled before pca is applied? (default: FALSE)	
<pre>stop_lying_iter</pre>		
	integer; Iteration after which the perplexities are no longer exaggerated (default: 250, except when Y_init is used, then 0)	
<pre>mom_switch_iter</pre>		
	integer; Iteration after which the final momentum is used (default: 250, except when Y_init is used, then 0)	
momentum	numeric; Momentum used in the first part of the optimization (default: 0.5)	
final_momentum	numeric; Momentum used in the final part of the optimization (default: 0.8)	
eta	numeric; Learning rate (default: 200.0)	
exaggeration_factor		
	numeric; Exaggeration factor used to multiply the P matrix in the first part of the optimization (default: 12.0)	

Value

An object of class iCellR.

run.umap

Run UMAP on PCA Data (Computes a manifold approximation and projection)

Description

This function takes an object of class iCellR and runs UMAP on PCA data.

Usage

```
run.umap(
  x = NULL,
 my.seed = 0,
 dims = 1:10,
  n_{neighbors} = 15,
  n_{components} = 2,
 metric = "euclidean",
 n_{epochs} = NULL,
  learning_rate = 1,
  scale = FALSE,
  init = "spectral",
  init_sdev = NULL,
  spread = 1,
 min_dist = 0.01,
  set_op_mix_ratio = 1,
  local_connectivity = 1,
  bandwidth = 1,
  repulsion_strength = 1,
  negative_sample_rate = 5,
  a = NULL,
  b = NULL,
 nn_method = NULL,
  n_{trees} = 50,
  search_k = 2 * n_neighbors * n_trees,
  approx_pow = FALSE,
 y = NULL,
  target_n_neighbors = n_neighbors,
  target_metric = "euclidean",
  target_weight = 0.5,
  pca = NULL,
  pca_center = TRUE,
  pcg_rand = TRUE,
  fast_sgd = FALSE,
  ret_model = FALSE,
  ret_nn = FALSE,
  n_{threads} = 1,
  n_sgd_threads = 0,
```

run.umap

```
grain_size = 1,
tmpdir = tempdir(),
verbose = getOption("verbose", TRUE)
)
```

x my.seed dims n_neighbors	An object of class iCellR. seed number, default = 0. PC dimentions to be used for UMAP analysis. The size of local neighborhood (in terms of number of neighboring sample points) used for manifold approximation. Larger values result in more global views of the manifold, while smaller values result in more local data being pre-
n_components	served. In general values should be in the range 2 to 100. The dimension of the space to embed into. This defaults to 2 to provide easy visualization, but can reasonably be set to any integer value in the range 2 to
metric	 100. Type of distance metric to use to find nearest neighbors. One of: "euclidean" (the default) "cosine" "manhattan" "hamming" "categorical" (see below) Only applies if nn_method = "annoy" (for nn_method = "fnn", the distance metric is always "euclidean"). If X is a data frame or matrix, then multiple metrics can be specified, by passing a list to this argument, where the name of each item in the list is one of the metric names above. The value of each list item should be a vector giving the names or integer ids of the columns to be included in a calculation, e.g. metric = list(euclidean = 1:4, manhattan = 5:10). Each metric calculation results in a separate fuzzy simplicial set, which are intersected together to produce the final set. Metric names can be repeated. Because non-numeric columns are removed from the data frame, it is safer to use column names than integer ids. Factor columns can also be used by specifying the metric name "categorical". Factor columns can be specified in a vector, each factor column specified is processed individually. If you specify a non-factor column, it will be coerced to a factor. For a given data block, you may override the pca and pca_center arguments for that block, by providing a list with one unnamed item containing the column names or ids, and then any of the pca or pca_center overrides as named items, e.g. metric = list(euclidean = 1:4, manhattan = list(5:10, pca_center = FALSE)). This exists to allow mixed binary and real-valued data to be included and to have PCA applied to both, but with centering applied only to the real-valued data (it is typical not to apply centering to binary data before PCA is applied).

n_epochs	Number of epochs to use during the optimization of the embedded coordinates. By default, this value is set to 500 for datasets containing 10,000 vertices or less, and 200 otherwise.
learning_rate	Initial learning rate used in optimization of the coordinates.
scale	Scaling to apply to X if it is a data frame or matrix:
	• "none" or FALSE or NULL No scaling.
	 "Z" or "scale" or TRUE Scale each column to zero mean and variance 1. "maxabs" Center each column to mean 0, then divide each element by the maximum absolute value over the entire matrix. "range" Range scale the entire matrix, so the smallest element is 0 and the
	largest is 1.
	• "colrange" Scale each column in the range (0,1).
	For UMAP, the default is "none".
init	Type of initialization for the coordinates. Options are:
	• "spectral" Spectral embedding using the normalized Laplacian of the fuzzy 1-skeleton, with Gaussian noise added.
	• "normlaplacian". Spectral embedding using the normalized Laplacian of the fuzzy 1-skeleton, without noise.
	• "random". Coordinates assigned using a uniform random distribution be- tween -10 and 10.
	• "lvrandom". Coordinates assigned using a Gaussian distribution with stan- dard deviation 1e-4, as used in LargeVis (Tang et al., 2016) and t-SNE.
	• "laplacian". Spectral embedding using the Laplacian Eigenmap (Belkin and Niyogi, 2002).
	• "pca". The first two principal components from PCA of X if X is a data frame, and from a 2-dimensional classical MDS if X is of class "dist".
	 "spca". Like "pca", but each dimension is then scaled so the standard deviation is 1e-4, to give a distribution similar to that used in t-SNE. This is an alias for init = "pca", init_sdev = 1e-4.
	• "agspectral" An "approximate global" modification of "spectral" which all edges in the graph to a value of 1, and then sets a random number of edges (negative_sample_rate edges per vertex) to 0.1, to approximate the effect of non-local affinities.
	• A matrix of initial coordinates.
	For spectral initializations, ("spectral", "normlaplacian", "laplacian"), if more than one connected component is identified, each connected component is initialized separately and the results are merged. If verbose = TRUE the number of connected components are logged to the console. The existence of multiple connected components implies that a global view of the data cannot be attained with this initialization. Either a PCA-based initialization or increasing the value of n_neighbors may be more appropriate.
init_sdev	If non-NULL, scales each dimension of the initialized coordinates (including any user-supplied matrix) to this standard deviation. By default no scaling is carried out, except when init = "spca", in which case the value is 0.0001. Scaling

	the input may help if the unscaled versions result in initial coordinates with large inter-point distances or outliers. This usually results in small gradients during optimization and very little progress being made to the layout. Shrinking the initial embedding by rescaling can help under these circumstances. Scaling the result of init = "pca" is usually recommended and init = "spca" as an alias for init = "pca", init_sdev = 1e-4 but for the spectral initializations the scaled versions usually aren't necessary unless you are using a large value of n_neighbors (e.g. n_neighbors = 150 or higher).
spread	The effective scale of embedded points. In combination with min_dist, this determines how clustered/clumped the embedded points are.
min_dist	The effective minimum distance between embedded points. Smaller values will result in a more clustered/clumped embedding where nearby points on the man- ifold are drawn closer together, while larger values will result on a more even dispersal of points. The value should be set relative to the spread value, which determines the scale at which embedded points will be spread out.
<pre>set_op_mix_rat</pre>	
	Interpolate between (fuzzy) union and intersection as the set operation used to combine local fuzzy simplicial sets to obtain a global fuzzy simplicial sets. Both fuzzy set operations use the product t-norm. The value of this parameter should be between 0.0 and 1.0 ; a value of 1.0 will use a pure fuzzy union, while 0.0 will use a pure fuzzy intersection.
local_connecti	lvity
	The local connectivity required $-$ i.e. the number of nearest neighbors that should be assumed to be connected at a local level. The higher this value the more connected the manifold becomes locally. In practice this should be not more than the local intrinsic dimension of the manifold.
bandwidth	The effective bandwidth of the kernel if we view the algorithm as similar to Laplacian Eigenmaps. Larger values induce more connectivity and a more global view of the data, smaller values concentrate more locally.
repulsion_stre	ength
	Weighting applied to negative samples in low dimensional embedding optimiza- tion. Values higher than one will result in greater weight being given to negative samples.
negative_sampl	le_rate
	The number of negative edge/1-simplex samples to use per positive edge/1-simplex sample in optimizing the low dimensional embedding.
а	More specific parameters controlling the embedding. If NULL these values are set automatically as determined by min_dist and spread.
b	More specific parameters controlling the embedding. If NULL these values are set automatically as determined by min_dist and spread.
nn_method	Method for finding nearest neighbors. Options are:
	 "fnn". Use exact nearest neighbors via the FNN package. "annoy" Use approximate nearest neighbors via the RcppAnnoy package.
	By default, if X has less than 4,096 vertices, the exact nearest neighbors are found. Otherwise, approximate nearest neighbors are used. You may also pass

	precalculated nearest neighbor data to this argument. It must be a list consisting of two elements:
	 "idx". A n_vertices x n_neighbors matrix containing the integer indexes of the nearest neighbors in X. Each vertex is considered to be its own nearest neighbor, i.e. idx[, 1] == 1:n_vertices.
	 "dist". A n_vertices x n_neighbors matrix containing the distances of the nearest neighbors.
	Multiple nearest neighbor data (e.g. from two different precomputed metrics) can be passed by passing a list containing the nearest neighbor data lists as items. The n_neighbors parameter is ignored when using precomputed nearest neighbor data.
n_trees	Number of trees to build when constructing the nearest neighbor index. The more trees specified, the larger the index, but the better the results. With search_k, determines the accuracy of the Annoy nearest neighbor search. Only used if the nn_method is "annoy". Sensible values are between 10 to 100.
search_k	Number of nodes to search during the neighbor retrieval. The larger k, the more the accurate results, but the longer the search takes. With n_trees, determines the accuracy of the Annoy nearest neighbor search. Only used if the nn_method is "annoy".
approx_pow	If TRUE, use an approximation to the power function in the UMAP gradient, from https://martin.ankerl.com/2012/01/25/optimized-approximative-pow-in-c-and-cpp/.
У	Optional target data for supervised dimension reduction. Can be a vector, matrix or data frame. Use the target_metric parameter to specify the metrics to use, using the same syntax as metric. Usually either a single numeric or factor column is used, but more complex formats are possible. The following types are allowed:
	• Factor columns with the same length as X. NA is allowed for any observation with an unknown level, in which case UMAP operates as a form of semi-supervised learning. Each column is treated separately.
	 Numeric data. NA is <i>not</i> allowed in this case. Use the parameter target_n_neighbors to set the number of neighbors used with y. If unset, n_neighbors is used. Unlike factors, numeric columns are grouped into one block unless target_metric specifies otherwise. For example, if you wish columns a and b to be treated separately, specify target_metric = list(euclidean = "a", euclidean = "b"). Otherwise, the data will be effectively treated as a matrix with two columns.
	• Nearest neighbor data, consisting of a list of two matrices, idx and dist. These represent the precalculated nearest neighbor indices and distances, respectively. This is the same format as that expected for precalculated data in nn_method. This format assumes that the underlying data was a numeric vector. Any user-supplied value of the target_n_neighbors parameter is ignored in this case, because the the number of columns in the matrices is used for the value. Multiple nearest neighbor data using different metrics can be supplied by passing a list of these lists.

Unlike X, all factor columns included in y are automatically used.

run.umap

target_n_neighbors		
	Number of nearest neighbors to use to construct the target simplicial set. Default value is n_neighbors. Applies only if y is non-NULL and numeric.	
target_metric	The metric used to measure distance for y if using supervised dimension reduc- tion. Used only if y is numeric.	
target_weight	Weighting factor between data topology and target topology. A value of 0.0 weights entirely on data, a value of 1.0 weights entirely on target. The default of 0.5 balances the weighting equally between data and target. Only applies if y is non-NULL.	
рса	If set to a positive integer value, reduce data to this number of columns using PCA. Doesn't applied if the distance metric is "hamming", or the dimensions of the data is larger than the number specified (i.e. number of rows and columns must be larger than the value of this parameter). If you have > 100 columns in a data frame or matrix, reducing the number of columns in this way may substantially increase the performance of the nearest neighbor search at the cost of a potential decrease in accuracy. In many t-SNE applications, a value of 50 is recommended, although there's no guarantee that this is appropriate for all settings.	
pca_center	If TRUE, center the columns of X before carrying out PCA. For binary data, it's recommended to set this to FALSE.	
pcg_rand	If TRUE, use the PCG random number generator (O'Neill, 2014) during opti- mization. Otherwise, use the faster (but probably less statistically good) Taus- worthe "taus88" generator. The default is TRUE.	
fast_sgd	If TRUE, then the following combination of parameters is set: pcg_rand = TRUE, n_sgd_threads = "auto" and approx_pow = TRUE. The default is FALSE. Setting this to TRUE will speed up the stochastic optimization phase, but give a potentially less accurate embedding, and which will not be exactly reproducible even with a fixed seed. For visualization, fast_sgd = TRUE will give perfectly good results. For more generic dimensionality reduction, it's safer to leave fast_sgd = FALSE. If fast_sgd = TRUE, then user-supplied values of pcg_rand, n_sgd_threads, and approx_pow are ignored.	
ret_model	If TRUE, then return extra data that can be used to add new data to an existing embedding via umap_transform. The embedded coordinates are returned as the list item embedding. If FALSE, just return the coordinates. This parameter can be used in conjunction with ret_nn. Note that some settings are incompatible with the production of a UMAP model: external neighbor data (passed via a list to nn_method), and factor columns that were included via the metric parameter. In the latter case, the model produced is based only on the numeric data. A transformation using new data is possible, but the factor columns in the new data are ignored.	
ret_nn	If TRUE, then in addition to the embedding, also return nearest neighbor data that can be used as input to nn_method to avoid the overhead of repeatedly calculating the nearest neighbors when manipulating unrelated parameters (e.g. min_dist, n_epochs, init). See the "Value" section for the names of the list items. If FALSE, just return the coordinates. Note that the nearest neighbors could be sensitive to data scaling, so be wary of reusing nearest neighbor data	

	if modifying the scale parameter. This parameter can be used in conjunction with ret_model.
n_threads	Number of threads to use.
n_sgd_threads	Number of threads to use during stochastic gradient descent. If set to > 1, then results will not be reproducible, even if 'set.seed' is called with a fixed seed before running. Set to "auto" go use the same value as n_t hreads.
grain_size	Minimum batch size for multithreading. If the number of items to process in a thread falls below this number, then no threads will be used. Used in conjunction with n_threads and n_sgd_threads.
tmpdir	Temporary directory to store nearest neighbor indexes during nearest neighbor search. Default is tempdir. The index is only written to disk if n_threads > 1 and nn_method = "annoy"; otherwise, this parameter is ignored.
verbose	If TRUE, log details to the console.

Value

An object of class iCellR.

s.phase

A dataset of S phase genes

Description

A dataset containing the genes for S phase

Usage

s.phase

Format

A character with 43 genes

Source

https://www.science.org/doi/abs/10.1126/science.aad0501

spatial.plot

Description

This function takes an object of class iCellR and creates spatial plots.

Usage

```
spatial.plot(
 x = NULL,
  cell.size = 1,
 cell.colors = c("gray", "red"),
 back.col = "black",
  col.by = "clusters",
  conds.to.plot = NULL,
  gene = NULL,
 data.type = "main",
  scaleValue = TRUE,
 min.scale = 0,
 max.scale = 2.5,
 anno.clust = FALSE,
  anno.size = 4,
  anno.col = "white",
  cell.transparency = 1,
  interactive = TRUE,
 out.name = "plot"
)
```

х	An object of class iCellR.
cell.size	A numeric value for the size of the cells, $default = 1$.
cell.colors	Colors for heat mapping the points in "scatterplot", default = c("gray", "red").
back.col	A color for the plot background, default = "black".
col.by	Choose between "clusters", "mt", "UMIs", "nGenes", "cc" (cell cycle) or "gene", default = "clusters".
conds.to.plot	Choose the conditions you want to see in the plot, default = NULL (all conditions).
gene	Gene name/names to be plotted, if col.by = "gene".
data.type	Choose from "main" or "imputed", default = "main".
scaleValue	Scale the colors, default = FALSE.
min.scale	If scaleValue = TRUE, set a number for min, default = -2.5 .

<pre>max.scale</pre>	If scaleValue = TRUE, set a number for max, default = 2.5 .	
anno.clust	Annotate cluster names on the plot, default = TRUE.	
anno.size	If anno.clust is TRUE set font size, $default = 3$.	
anno.col	If anno.clust is TRUE set color, default = "white".	
cell.transparency		
	Color transparency for points in "scatterplot" and "boxplot", default = 1.	
interactive	If set to TRUE an interactive HTML file will be created, default = TRUE.	
out.name	If "interactive" is set to TRUE, the out put name for HTML, default = "plot".	

Value

An object of class iCellR.

|--|--|--|

Description

This function takes an object of class iCellR and creates QC plot.

Usage

```
stats.plot(
  x = NULL,
  plot.type = "three.in.one",
  cell.color = "slategray3",
  cell.size = 1,
  cell.transparency = 0.5,
  box.color = "red",
  box.line.col = "green",
  back.col = "white",
  interactive = TRUE,
  out.name = "plot"
)
```

Arguments

Х	An object of class iCellR.
plot.type	Choose from "box.umi", "box.mito", "box.gene", "box.s.phase", "box.g2m.phase", "all.in.one", "three.in.on" "point.mito.umi", "point.gene.umi".
cell.color	Choose a color for points in the plot.
cell.size	A number for the size of the points in the plot, $default = 1$.
cell.transpare	ency
	Color transparency for points in "scatterplot" and "boxplot" default $= 0.5$

Color transparency for points in "scatterplot" and "boxplot", default = 0.5.

top.markers

box.color	A color for the boxes in the "boxplot", default = "red".
box.line.col	A color for the lines around the "boxplot", default = "green".
back.col	Background color, default = "white"
interactive	If set to TRUE an interactive HTML file will be created, default = TRUE.
out.name	If "interactive" is set to TRUE, the out put name for HTML, default = "plot".

Value

An object of class iCellR.

top.markers	Choose top marker genes	
-------------	-------------------------	--

Description

This function takes the marker genes info if chooses marker gene names for plots.

Usage

```
top.markers(
  x = NULL,
  topde = 10,
  min.base.mean = 0.2,
  filt.ambig = TRUE,
  cluster = 0
)
```

Arguments

x	An object of class iCellR.
topde	Number of top differentially expressed genes to be choosen from each cluster, default = 10.
min.base.mean	Minimum base mean of the genes to be chosen, $default = 0.5$.
filt.ambig	Filter markers that are seen for more than one cluster, default = TRUE.
cluster	Choose a cluster to find markers for. If 0, it would find markers for all clusters, , default = 0 .

Value

A set of gene names

vdj.stats

Description

This function takes a data frame of VDJ info per cell and dose QC.

Usage

vdj.stats(my.vdj = "data.frame")

Arguments

my.vdj A data frame containing VDJ data for cells.

Value

An object of class iCellR

volcano.ma.plot Create MA and Volcano plots.

Description

This function takes the result of differential expression (DE) analysis and provides MA and volcano plots.

Usage

```
volcano.ma.plot(
  x = NULL,
  sig.value = "padj",
  sig.line = 0.1,
  plot.type = "volcano",
  x.limit = 2,
  y.limit = 2,
  limit.force = FALSE,
  scale.ax = TRUE,
  dot.size = 1.75,
  dot.transparency = 0.5,
  dot.col = c("#E64B35", "#3182bd", "#636363"),
  interactive = TRUE,
  out.name = "plot"
)
```

volcano.ma.plot

Arguments

x	A data frame containing differential expression (DE) analysis results.	
sig.value	Choose from "pval" or "padj", default = "padj".	
sig.line	A number to draw the line for the significant genes based on sig.value type, $default = 0.1$.	
plot.type	Choose from "ma" or "volcano", default = "volcano".	
x.limit	A number to set a limit for the x axis.	
y.limit	A number to set a limit for the y axis.	
limit.force	If set to TRUE the x.limit and y.limit will be forced, default = FALSE.	
<pre>scale.ax</pre>	If set to TRUE the y axis will be scaled to include all the points, default = TRUE.	
dot.size	A number for the size of the points in the plot, $default = 1.75$.	
dot.transparency		
	Color transparency for points in "scatterplot" and "boxplot", default = 0.5.	
dot.col	A set of three colors for the points in the volcano plot, default = $c("#E64B35", "#3182bd", "#636363")$.	
interactive	If set to TRUE an interactive HTML file will be created, default = TRUE.	
out.name	If "interactive" is set to TRUE, the output name for HTML, default = "plot".	

Value

Plots

Index

* datasets g2m.phase, 21 s.phase, 64 add.10x.image, 3 add.adt,4 add.vdj.5 adt.rna.merge, 5 bubble.gg.plot, 6 capture.image.10x,7 cc, 7 cell.cycle, 8 cell.filter,8 cell.gating, 9 cell.type.pred, 10 change.clust, 11 clono.plot, 11 clust.avg.exp, 12 clust.cond.info, 13 clust.ord, 14 clust.rm, 14 clust.stats.plot, 15 cluster.plot, 16 data.aggregation, 17 data.scale, 18 down.sample, 19 find.dim.genes, 19 find_neighbors, 21 findMarkers, 20 g2m.phase, 21 gate.to.clust, 22 gene.plot, 22 gene.stats, 24 gg.cor, 24 heatmap.gg.plot, 25

hto.anno, 27 i.score, 27 iba, 28 iclust, 29 load.h5, 30 load10x, 30 make.bed, 31make.gene.model, 31 make.obj, 33 myImp, 33 norm.adt, 34norm.data, 34 opt.pcs.plot, 35 prep.vdj, 36 pseudotime, 36 pseudotime.knetl, 37 pseudotime.tree, 38 qc.stats, 39 Rphenograph, 40 run.anchor, 41 run.cca, 43 run.clustering,44 run.diff.exp, 45 run.diffusion.map, 46 run.impute, 48 run.knetl, 50 run.mnn, 51 run.pc.tsne, 53 run.pca, 54 run.phenograph, 55 run.tsne, 56 run.umap, 58

s.phase, 64

INDEX

spatial.plot,65
stats.plot,66

tempdir, <u>64</u> top.markers, <u>67</u>

umap_transform, 63

vdj.stats,68 volcano.ma.plot,68