Package ‘i3pack’

June 4, 2025

Title Incentives for Inter- And Intra-Party Electoral Competition
Version 0.1.0

Description Suite of functions that help simulate elections under different electoral sys-
tems, which are then used to compute incentives generated by these systems in terms of the inter-
and intra-party dimensions of electoral competition.

License GPL (>=2)
Encoding UTF-8
LazyData true
RoxygenNote 7.3.2

Imports dplyr (>=1.1.4), gbm (>= 2.2.2), magrittr (>= 2.0.3), readr
(>=2.1.5), rlang (>=1.1.6), STV (>= 1.0.2), tidyr (>=1.3.1)

Depends R (>=3.5.0)
NeedsCompilation no

Author Santiago Olivella [aut, cre],
Patrick Cunha [aut],
Ayelen Vanegas [aut],
Matias Tarillo [aut],
Guillermo Rosas [ctb],
Brian Crisp [ctb]

Maintainer Santiago Olivella <olivella@unc.edu>
Repository CRAN
Date/Publication 2025-06-04 15:30:05 UTC

Contents
ElecFuns 2
example e e e 6
find_best_candidates e e e 7
ISq . . o e e 7
MAX_ TL . v v v e e e e e e e e e e 8
NOMINALNG o v o bttt e e e e e 8

2 ElecFuns

predict_iil L e e e 9
ranked L L e e 10
simulate_election e, 11
VOLINEZ . . o v o e e e e e e e e e e e e e e e 14
Index 16
ElecFuns Electoral Functions
Description

This file contains details and examples of the electoral functions (electoral formulas) implemented
in the i3pack package.

Usage
a_v(v, ...)
bc(v, m, mod = TRUE, n_cand_bc, ...)

dhondt(v, m, threshold =0, ...)
droop(v, m, threshold =0, ...)

fortified_pr(
v,
m,
threshold = 0,
fpr_cutoff,
pr_formula,
include_first_party,

)

hagenbachbischoff(v, m, threshold = 0, ...)

hare(v, m, threshold =0, ...)
imperiali(v, m, threshold = 0, ...)
lim_nom(v, m, ...)

modsaintelague(v, m, threshold = 0, ...)
plurality(v, m, ...)

saintelague(v, m, threshold =9, ...)

ElecFuns 3

stv(v, m, ...)

Arguments

v Matrix with candidates/parties (the interpretation depends on the function) in the
columns. Each cell has the number of votes cast for each candidate/party. For
AV and STV, the matrix should have ranked votes, with each rank in a separate
row.

Additional optional arguments (currently ignored).
m Number of seats to be awarded.

mod Included in the BC function. If TRUE, makes the sequence run from 1 to the
number of votes and inverses it; if FALSE, the sequence run from the number of
votes to 1). Should be TRUE if the intention is to use the BC system described
in the details.

n_cand_bc Number of candidates in the Borda Count system. This is only used for the
Borda Count system.

threshold Proportion of votes that a party (or candidate) needs to surpass in order to be
eligible to receive seats.

fpr_cutoff Included in the fortified_pr function. It is a percentage of votes that a party
needs to surpass in order to be eligible to receive the "bonus" seats assigned to
the winner of the election.

pr_formula A character vector that specifies the quota implemented. In general, is equal to
"hare". The Hare quota is the number of votes cast in a district divided by M.

include_first_party
A logical value that indicates whether the top-voted list party participate in the
distribution of the remaining seats or not. If TRUE, it does.

Value

For Alternative Vote, the name of the candidate that obtains majority support.
For Borda count and all PR formulas, a vector of seats awarded to each candidate.

For plurality, a matrix with all candidates participating (1 if a seat was awarded, O if not). f m =1,
candidates can be interpreted as parties.

Details

The a_v function is used in single member districts and lets voters rank the candidates competing
in the district from most to least preferred. If a candidate is ranked first by a majority of voters,
he or she wins the single seat available. If no candidate obtains a majority of votes, the candidate
with the fewest first-place votes is eliminated and her votes are distributed to the candidates that her
supporters ranked second. If this redistribution gives another candidate a majority of the votes, that
candidate is elected; if not, the second weakest candidate is eliminated and his votes are redistributed
among the surviving candidates. This process of redistribution and recounting continues until a
candidate obtains majority support.

ElecFuns

The bc function is used in single-member or multi-member districts, though it is typically discussed
in settings that return a single choice. Voters assign candidates a rank, but seats are then awarded
by plurality rather than majority. Each rank is assigned a weight, and a candidate’s vote total is the
sum of the full and fractional votes he or she receives. For example, a first place rank might be
weighted by one, a second place rank by 1/2, a third place rank by 1/3. A candidate ranked first by
one hundred voters, second by twenty voters, and third by ten voters would be awarded a total of
100/1 + 20/2 + 12/3 =114 votes. This, in fact, is the modified bc system used to elect the Parliament
in the country of Nauru (not included in our dataset), an island in Micronesia. To our knowledge,
the bc is not used in national elections elsewhere.

The dhondt function divides parties’ vote totals successively by 1, 2, 3, 4, 5, and so on (until m).
Seats are then awarded sequentially starting with the party that enjoys the largest quotient until no
more seats are available.

The droop function assigns seats by calculating the Droop quota, which is Q = V/(M+1) + 1
(rounded to the nearest integer). The seats are assigned in two stages. First, the number of votes
obtained by each party is divided by Q and rounded down. That integer is the number of seats that
the party will obtain in the first stage. Second, Q is multiplied by the number of seats obtained by
each party (Si) and that number if substracted from the total number of votes obtained by that party.
That would be a residual: Ri = Vi - Q*Si. The remaining seats are assigned to the parties with the
largest residuals.

The fortified_pr function is used for proportional representation with a majority bonus. The seat
allocation formula is different from other list PR systems. Under this set of rules, the list which
receives the largest vote share receives a bonus in seats. Sometimes, that list needs to surpass a cer-
tain percentage of votes (the cutoff) in order to be eligible for that. In this case, the function assigns
half the seats to the party with most votes and assigns the other half of the seats proportionally.

The hagenbachbischoff function works with the same procedure as the droop function, but in this
case Q = V/(M+1).

The hare function works with the same procedure as the droop function, but in this case Q = V/M.

The imperiali function works with the same procedure as the droop function, but in this case Q =
V/(M+2).

The lim_nom function is used to calculate the seats obtained with closed-list plurality with limited
nomination system. Voters only get one vote, which is cast for a closed party list. District magnitude
needs to be 3 (i.e., M=3) and the top vote-getting party is awarded two seats while the third seat
goes to the second-place finisher — even if its level of support is abysmally low.

The modsaintelague function works with the same procedure as the dhondt function, but in this case
the sequence of numbers used for the division is only comprised by odd numbers except for the first
one, which is 1.4 instead of 1. It ends up being: 1.4, 3, 5, 7 and so on. It uses an amount of numbers
equal to m.

The plurality function returns the number of seats according to the seat allocation formula—plurality.
In a single-member district decided by plurality system, voters get a single vote, cast at the party
level, to fill the only contested seat, and that seat goes to the top vote-earner regardless of level of
support. In a multiple non-transferable vote system, the votes are cast at the candidate level and m
is greater than 1. The number of candidates should always be greater or equal to m.

The saintelague function works with the same procedure as the dhondt function, but in this case the
sequence of numbers used for the division is only comprised by odd numbers (1, 3, 5, 7 and so on).
It uses an amount of odd numbers equal to m.

ElecFuns 5

Examples

a_v(v=ranked)

bc(v=ranked, 2, mod=TRUE, n_cand_bc=3)

D'hondt without threshold:

dhondt (v=example, m=3)

D'hondt with 30% threshold:

dhondt (v=example, m=3, threshold=0.3)

Droop without threshold:

droop(v=example, m=3)

Droop with 20% threshold:

droop(v=example, m=3, threshold=0.2)

Fortified PR without cutoff:

fortified_pr(v=example, m=4, fpr_cutoff=0, include_first_party=TRUE, pr_formula="hare")
Fortified PR with a 50% cutoff (including first party):

fortified_pr(v=example, m=4, fpr_cutoff=0.5, include_first_party=TRUE, pr_formula="hare")
Fortified PR with a 50% cutoff (without including first party):
fortified_pr(v=example, m=4, fpr_cutoff=0.5, include_first_party=FALSE, pr_formula="hare")
Hagenbach-Bischoff without threshold:

hagenbachbischoff (v=example, m=3)

Hagenbach-Bischoff with 20% threshold:

hagenbachbischoff (v=example, m=3, threshold=0.2)

Hare without threshold

hare (v=example, m=3)

Hare with 20% threshold

hare (v=example, m=3, threshold=0.2)

Imperiali without threshold:

6 example

imperiali(v=example, m=3)
Imperiali with 20% threshold:

imperiali(v=example, m=3, threshold=0.2)

Lim_nom (only works with m=3)
lim_nom(v=example, m=3)

Modified Sainte-Lague without threshold:
modsaintelague(v=example, m=3)

Modified Sainte-Lague with 20% threshold:
modsaintelague(v=example, m=3, threshold=0.2)

plurality (v=example, m=3)
Sainte-Lague without threshold:

saintelague(v=example, m=3)
Sainte-Lague with 20% threshold:

saintelague(v=example, m=3, threshold=0.2)

stv (v=ranked, m=2)

example Example of total vote count vector

Description
This is an example of a total vote count vector for 5 parties/candidates that can be used to illustrate
different seat allocation formulas.

Usage

example

Format

A vector of integers representing the total votes received by each party/candidate.

A Votes received by party A
B Votes received by party B ...

find_best_candidates

Source

This is a synthetic example created for demonstration purposes.

find_best_candidates Auxiliary Internal Functions

Description

Auxiliary Internal Functions

Usage

find_best_candidates(x, n, rank = TRUE)

Arguments
X Matrix with two columns: candidate ID (candidate) and utility (dist)
n Number of candidates to be nominated
rank Boolean: should nominated candidates be ranked? Defaults to TRUE.
1sq Auxiliary Internal Functions
Description

Auxiliary Internal Functions
Auxiliary Internal Functions

Auxiliary Internal Functions

Usage
1sq(v, s)

max_ninf(x)

stat_mode(x)

Arguments
v vector of vote totals by party
s vector with the seats received by each party.

X Numeric vector

8 nominating

Value
The "least squares" index of disproportionality
The maximum of a vector, after removing non-finite elements

Statistical mode

max_n Auxiliary Internal Functions

Description

Aucxiliary Internal Functions

Usage

max_n(x, n)

Arguments

X Numeric vector

n Number of elements to return
Value

The largest n elements of a vector

nominating Auxiliary Internal Functions

Description

Aucxiliary Internal Functions

Usage

nominating(
parties,
lists_per_party,
rank_cand,
n_cand,
party_1 = TRUE,
party = NULL

predict_iii 9

Arguments

parties See simulate_election().
lists_per_party
See simulate_election().

rank_cand See simulate_election().
n_cand Numeric maximum number of candidates running in a party list; defaults to 0,
which is internally interpreted as the district magnitude.
party_1 Boolean: Are we generating the last (only) party list? Defaults to TRUE.
party Optional numeric party ID.
Value

data.frame with the following variable

rank List rank/position

candidate Candidate ID

pos Candidate’s ideological position
list List ID

party Party ID

predict_iii Predict 1l Score for a given set of electoral rule configurations

Description

Predict II Score for a given set of electoral rule configurations

Usage
predict_iii(
data,
score = c("TDE", "AP"),
district_level = TRUE,

return_avg = TRUE
)

Arguments

data A data.frame containing the following variables: ballot_type (factor), pool_level
(factor), votes_per_voter (factor), M (numeric), threshold (numeric), and
formula (factor). See simulate_election() for more details.

score Character string indicating type of score to predict; one of TDE (default) or AP.

10 ranked

district_level Boolean: Should district level, or country level models be used? If TRUE (de-
fault), the function uses district level models, which are more accurate for district
level electoral systems. If FALSE, the function uses country-level models, which
are more accurate for country-level electoral systems.

return_avg Boolean: Should the average score across imputed models be returned? The
original models were trained on millions of simulated elections, with interme-
diate values for some parameters interpolated using 5 multiple imputations. If
TRUE (default), the function returns the average score across all imputations. If
FALSE, the function returns a list of scores.

Value

Predicted TDE or AP score for given electoral system

Examples

Create example data for PR system with closed party lists,

magnitude 5, and Droop quota

new_system <- data.frame(ballot_type = as.factor("closed”),
pool_level = as.factor("party”),
votes_per_voter = as.factor("One"),
M=5.0,
threshold = 0.05,
formula = as.factor("droop”))

predict_iii(data = new_system, score = "AP", district_level = FALSE)

ranked Example of ranked vote matrix

Description
This is an example of a ranked vote matrix for 4 voters and 3 candidates. It can be used to illustrate
different seat allocation formulas that require ranked votes.

Usage

ranked

Format

A matrix with 3 rows and 4 columns, where each row represents a ranking, each column is a voter,
and each cell is the candidate ID (numeric or character) #’ that the voter ranked in that position.

Voterl Candidates ranked first, second, and third by the first voter
Voter2 Candidates ranked first, second, and third by the second voter ...

Source

Created by the package authors for demonstration purposes.

simulate_election 11

simulate_election Function to simulate a full election in a single district

Description

The function runs a complete election in a single district, using the simulation framework described
in detail in Chapter 4 of Crisp et al. 2024.

Usage

simulate_election(
voters = NULL,
parties = NULL,
cands = NULL,
nominated = NULL,
nvoters = 3000,
nparties = 5,
nvotes = 1,
M =25
rank_cand = TRUE,
strategic = TRUE,
strategic_error = 0.05,
who_ranks = c("parties”, "voters”, "none"),
gamma_val = NULL,
gamma_rank = 1,
elec_fun_name = "dhondt",
ballot_type = "open”,
primary = FALSE,
two_round = FALSE,
pool_level = c("party_list”, "party”, "candidate"),
ranked_vote = FALSE,
free_vote = FALSE,
max_cand = 0,
threshold = 0,
lists_per_party = 1,
seed = 123,
elec_results_only = FALSE,
multiplier = 1,
system_name,

)
Arguments
voters Optional vector of voter positions in 1d ideological space.
parties Optional vector of party positions in 1d ideological space. Maximum of 10

parties allowed.

12

cands

nominated

nvoters
nparties

nvotes

M
rank_cand

strategic

strategic_error

who_ranks

gamma_val

gamma_rank

elec_fun_name

ballot_type

primary
two_round

pool_level

ranked_vote

free_vote

max_cand

threshold

lists_per_party

seed

simulate_election

Optional matrix with three columns: candidate 1d ideological position, unique
numerical candidate ID, and positive numerical candidate valence

Optional data.frame with five variables: rank (candidate ranking in the party
list); candidate (numeric candidate ID); pos (1d ideological position of can-
didate); list (numeric list ID; equal to 1, unless parties are allowed to have
multiple lists); party (numeric party ID).

Number of voters; defaults to 3,000.
Number of parties; defaults to 5; maximum allowable: 10.

Number of votes per voter; defaults to 1. Can also take on special values @
(which then is internally replaced by the district magnitude) and -1 (which is
then internally replaced by 1 fewer vote than the district magnitude).

District magnitude; defaults to 5.
Boolean: should candidates be ranked on the party list? Defaults to TRUE.

Boolean: do parties and voters behave strategically? Defaults to TRUE.

Numeric probability with which strategic actors fail to choose the optimal alter-
native.

Character actor who arranges party lists, one of parties, voters,none; defaults
to parties.

Numeric weight assigned to the valence component of voters’ utility function.

Numeric weight assigned to the candidate ranking on the party list when com-
puting the voter’s utility.

Name of function implementing electoral system formula.

Character string indicating type of ballot, one of open,closed, or flexible;
defaults to open.

Boolean: should a primary election be conducted? Defaults to FALSE.
Boolean: should a second election round be conducted? Defaults to FALSE.

Character level at which votes are pooled, one of party_list (or sub-party
list),party, or candidate. Defaults to party_list

Boolean: Do voters cast a ranked vote? Defaults to FALSE.

Boolean: If voters can cast multiple votes, can the be for candidates in different
parties? Defaults to FALSE.

Numeric maximum number of candidates running in a party list; defaults to 0,
which is internally interpreted as the district magnitude.

Numerical legal electoral threshold; defaults to O (i.e., no threshold).

Integer allowed number of lists per party; defaults to 1.

Random number generator seed; defaults to 123.

elec_results_only

Boolean: Should function return ancillary information on election, or just elec-
tion results? Defaults to FALSE.

simulate_election 13
multiplier Numeric factor by which to multiply the votes cast by voters with the same
ideological position; defaults to 1.

system_name Character name of electoral system used, one of AV’, "BC’, °STV’, '"MNTV”,
’LV’, ’PR’, or ’'SMDP’

Additional arguments passed to elec_fun_name.

Value

data.frame with the following variables (if elec_results_only=FALSE, otherwise, data.frame with
candidate id’s, positions, valences, votes obtained, and whether they won a seat or not):
gamma_val See Usage above

epsilon Maximum acceptable ideological distance used in voters’ utility function
hetero Measure of elected candidate heterogeneity

pers Average valence of elected candidates

Isq Least Squares measure of disproportionality

enp_v Effective number of electoral parties

enp_s Effective number of legislative parties

avg_dist Average distance between elected candidates and voters

var_elect Variance of ideological positions of elected candidates

avg_vote_util Average utility of voters w.r.t. candidates they voted for

avg_elect_util Average utility of voters w.r.t. elected candidates

sample_parties Parties that initially could have entered the election

ran_parties Parties that decided to enter the election

Examples

Simulate a PR (D'Hondt) election with 3 parties, 5 candidates per party,
100 voters, and a district magnitude of 2, allowing for strategic voting

simulate_election(parties = c(-1, 0, 1),
nvoters = 100,

M=2,
strategic = TRUE,
elec_fun_name = "dhondt"”,

system_name = "PR")

14

voting

voting

Function to simulate the voting process

Description

Internal function.

Usage

voting(

voters,
nominated,
n_votes,
gamma_val,
gamma_rank,
epsilon,
free = TRUE,

closed_primary = FALSE,

strategic =

FALSE,

strategic_error = 0.05,

party_pos =

Arguments

voters
nominated
n_votes
gamma_val
gamma_rank

epsilon

free

closed_primary

strategic

strategic_error

party_pos

NULL

See simulate_election().
See simulate_election().
See simulate_election().
See simulate_election().

See simulate_election().

Numeric; maximum acceptable ideological distance used in voters’ utility func-

tion

See simulate_election(). Defaults to TRUE.

Boolean: Are voters required to vote for a candidate in the party closest to them

in the primary? Defaults to FALSE.

See simulate_election().

See simulate_election(). Defaults to 0.05

Locations of parties in the election in 1d space (-2, 2).

voting 15

Value
List with two elements:

votes Matrix with n_votes rows and length(voters) columns, with cells populated with candi-
date IDs

max_utils Vector of maximum utilities received by each voter from among all candidates in the
election

Index

x datasets
example, 6
ranked, 10

a_v (ElecFuns), 2
bc (ElecFuns), 2

dhondt (ElecFuns), 2
droop (ElecFuns), 2

ElecFuns, 2
example, 6

find_best_candidates, 7
fortified_pr (ElecFuns), 2

hagenbachbischoff (ElecFuns), 2
hare (ElecFuns), 2

imperiali (ElecFuns), 2

lim_nom (ElecFuns), 2
1sq,7

max_n, 8
max_ninf (1sq), 7
modsaintelague (ElecFuns), 2

nominating, 8

plurality (ElecFuns), 2
predict_iii, 9

ranked, 10

saintelague (ElecFuns), 2
simulate_election, 11
simulate_election(), 9, 14
stat_mode (1sq), 7

stv (ElecFuns), 2

voting, 14

16

	ElecFuns
	example
	find_best_candidates
	lsq
	max_n
	nominating
	predict_iii
	ranked
	simulate_election
	voting
	Index

