Package 'hosm'

July 18, 2023

Type Package

Title High Order Spatial Matrix

Version 0.1.0

Author Fadhlul Mubarak [aut, cre], Sukru Acitas [aut], Atilla Aslanargun [aut], Ilyas Siklar [aut], Vinny Yuliani Sundara [aut]

Maintainer Fadhlul Mubarak <mubarakfadhlul@gmail.com>

Description Automatically displays the order and spatial weighting matrix of the distance between locations. This concept was derived from the research of Mubarak, Aslanargun, and Siklar (2021) <doi:10.52403/ijrr.20211150> and Mubarak, Aslanargun, and Siklar (2022) <doi:10.17654/0972361722052>. Distance data between locations can be imported from 'Ms. Excel', 'maps' package or created in 'R' programming directly. This package also provides 5 simulations of distances between locations derived from fictitious data, the 'maps' package, and from research by Mubarak, Aslanargun, and Siklar (2022) <doi:10.29244/ijsa.v6i1p90-100>.

License GPL-3

URL https://github.com/mubarakfadhlul/hosm

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Depends R (>= 2.10)

Imports maps, sf, tidyverse, units, tibble, readxl

NeedsCompilation no

Repository CRAN

Date/Publication 2023-07-18 09:20:05 UTC

R topics documented:

hosm	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
simulation1																																	
simulation2																																	3
simulation3																																	4
simulation4																																	4
simulation5										•														•								•	5
																																	6

Index

hosm

Creates high order spatial matrix of the distance between locations

Description

Creates high order spatial matrix of the distance between locations

Usage

hosm(data)

Arguments

data

dataframes from distances between locations

Value

A list the order and spatial weighting matrix of the distance between locations

References

Mubarak, F., Aslanargun, A., & Sıklar, I. (2022). GSTARIMA Model with Missing Value for Forecasting Gold Price. Indonesian Journal of Statistics and Its Applications, 6(1), 90–100. https://doi.org/10.29244/ijsa.v6i1p90-100

Mubarak, F., Aslanargun, A., & Sıklar, I. (2021). High order spatial weighting matrix using Google Trends. Int J Res Rev, 8(11), 388–396. https://doi.org/10.52403/ijrr.20211150

Mubarak, F., Aslanargun, A., & Sıklar, İ. (2022). Higher-order spatial classification using Google trends data during covid-19. Adv. Appl. Stat., 78, 93–103. https://doi.org/10.17654/0972361722052

Examples

```
hosm(simulation1)
hosm(simulation2)
hosm(simulation3)
hosm(simulation4)
hosm(simulation5)
```

simulation1

Description

Simulation 1 for High Order Spatial Matrix

Usage

simulation1

Format

A data frame with 4 locations:

- X Name of LocationX1 1st Location
- X2 2nd Location
- X3 3rd Location
- X4 4th Location

Examples

data(simulation1)

simulation2 Simulation 2 for High Order Spatial Matrix

Description

Simulation 2 for High Order Spatial Matrix

Usage

simulation2

Format

A data frame with 5 locations:

Location Name of Location
'Amman (Jordan) 'Amman City in Jordan
Abu Dhabi (United Arab Emirates) Abu Dhabi City in United Arab Emirates
Abuja (Nigeria) Abuja City in Nigeria
Accra (Ghana) Accra City in Ghana
Adamstown (Pitcairn) Adamstown City in Pitcairn

Examples

data(simulation2)

simulation3

Simulation 3 for High Order Spatial Matrix

Description

Simulation 3 for High Order Spatial Matrix

Usage

simulation3

Format

A data frame with 5 locations:

Location Name of Location
Yaren (Nauru) Yaren City in Nauru
Yerevan (Armenia) Yerevan City in Armenia
Zagreb (Croatia) Zagreb City in Croatia
al-'Ayun (Western Sahara) al-'Ayun City in Western Sahara
al-Kuwayt (Kuwait) al-Kuwayt in (Kuwait)

Examples

data(simulation3)

simulation4

Simulation 4 for High Order Spatial Matrix

Description

Simulation 4 for High Order Spatial Matrix

Usage

simulation4

simulation5

Format

A data frame with 4 locations:

Location Name of Location Ankara (Turkey) Ankara City in Turkey Jakarta (Indonesia) Jakarta City in Indonesia London (UK) London City in UK Washington (USA) Washington in USA

Examples

data(simulation4)

simulation5

Simulation 5 for High Order Spatial Matrix

Description

Simulation 5 for High Order Spatial Matrix

Usage

simulation5

Format

A data frame with 4 locations:

Location Name of Location
Banda Aceh (Indonesia) Banda Aceh City in Indonesia
Edison (USA) Edison City in USA
Hakkari (Turkey) Hakkari City in Turkey
London (UK) London City in UK

Examples

data(simulation5)

Index

* datasets
 simulation1, 3
 simulation2, 3
 simulation3, 4
 simulation4, 4
 simulation5, 5

hosm, 2

simulation1, 3
simulation2, 3
simulation3, 4
simulation4, 4
simulation5, 5