Package 'hierfstat'

October 13, 2022

Date 2022-05-03 Title Estimation and Tests of Hierarchical F-Statistics Author Jerome Goudet [aut, cre], Thibaut Jombart [aut], Zhian N. Kamvar [ctb], Eric Archer [ctb], Olivier Hardy [ctb] Maintainer Jerome Goudet < jerome.goudet@unil.ch> **Imports** ade4,adegenet,gaston,gtools,methods Suggests ape, pegas, knitr, rmarkdown, testthat Description Estimates hierarchical F-statistics from haploid or diploid genetic data with any numbers of levels in the hierarchy, following the algorithm of Yang (Evolution(1998), 52:950). Tests via randomisations the significance of each F and variance components, using the likelihood-ratio statistics G (Goudet et al. (1996) <https: //academic.oup.com/genetics/article/144/4/1933/6017091>). Estimates genetic diversity statistics for haploid and diploid genetic datasets in various formats, including inbreeding and coancestry coefficients, and population specific F-statistics following Weir and Goudet (2017) <https:// //academic.oup.com/genetics/article/206/4/2085/6072590>. **Depends** R (>= 2.10) **License** GPL (≥ 2) URL https://www.r-project.org, https://github.com/jgx65/hierfstat BugReports https://github.com/jgx65/hierfstat/issues VignetteBuilder knitr RoxygenNote 7.1.1 NeedsCompilation no

Repository CRAN

Version 0.5-11

Date/Publication 2022-05-05 23:40:02 UTC

R topics documented:

Alc	3
allele.count	4
allelic.richness	5
basic.stats	6
beta.dosage	8
betas	9
biall2dos	11
boot.ppbetas	12
boot.ppfis	13
boot.ppfst	14
boot.vc	15
cont.isl	16
cont.is199	17
crocrussula	17
diploid	18
exhier	19
fs.dosage	19
fstat2dos	21
g.stats	22
g.stats.glob	23
genet.dist	24
genind2hierfstat	26
genot2al	27
getal	28
getal.b	28
grm2kinship	29
gtrunchier	30
hierfstat	31
ind.count	32
indpca	32
kinship2dist	33
kinship2grm	34
kinshipShift	35
mat2vec	35
matching	36
ms2bed	37
ms2dos	37
nb.alleles	38
pairwise.betas	38
pairwise.neifst	39
pairwise.WCfst	40
pcoa	41
pi.dosage	42
pop.freq	42
pp.fst	43
pp.sigma.loc	44

print.pp.fst	44
qn2.read.fstat	45
read.fstat	46
read.fstat.data	47
read.ms	48
read.VCF	49
samp.between	50
samp.between.within	51
samp.within	51
sexbias.test	52
sim.freq	53
sim.genot	53
sim.genot.metapop.t	54
sim.genot.t	56
subsampind	58
TajimaD.dosage	59
test.between	59
test.between.within	60
test.g	61
test.within	62
theta.Watt.dosage	63
varcomp	63
varcomp.glob	65
vec2mat	66
wc	67
write.bayescan	68
write.fstat	68
write.ped	69
write.struct	70
yangex	71
	72

Index

AIc

Calculates corrected Assignment Index

Description

Calculates corrected Assignment Index as described in Goudet etal. (2002)

Usage

AIc(dat)

Arguments dat

a data frane with nlocs+1 columns,

aic The corrected assignment index of each individual

Author(s)

Jerome Goudet < jerome.goudet@unil.ch>

References

Goudet J, Perrin N, Waser P (2002) Tests for sex-biased dispersal using bi-parentally inherited genetic markers 11, 1103:1114

allele.count Allelic counts

Description

Counts the number of copies of the different alleles at each locus and population

Usage

allele.count(data,diploid=TRUE)

Arguments

data	A data frame containing the population of origin in the first column and the
	genotypes in the following ones
diploid	Whether the data are from diploid individuals

Value

A list of tables, –each with np (number of populations) columns and nl (number of loci) rows– of the count of each allele

Author(s)

Jerome Goudet < jerome.goudet@unil.ch>

Examples

```
data(gtrunchier)
allele.count(gtrunchier[,-2])
```

Description

Estimates allelic richness, the rarefied allelic counts, per locus and population

Usage

allelic.richness(data,min.n=NULL,diploid=TRUE)

Arguments

data	A data frame, with as many rows as individuals. The first column contains the population to which the individual belongs, the following to the different loci
min.n	The number of alleles down to which the number of alleles should be rar- efied. The default is the minimum number of individuals genotyped (times 2 for diploids)
diploid	a boolean specifying wether individuals are diploid (default) or haploid
alue	

Value

min.all	The number of alleles used for rarefaction
Ar	A table with as many rows as loci and columns as populations containing the
	rarefied allele counts

Author(s)

Jerome Goudet < jerome.goudet@unil.ch>

References

El Mousadik A. and Petit R.J. (1996) High level of genetic differentiation for allelic richness among populations of the argan tree argania spinosa skeels endemic to Morocco. Theoretical and Applied Genetics, 92:832-839

Hurlbert S.H. (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology, 52:577-586

Petit R.J., El Mousadik A. and Pons O. (1998) Identifying populations for conservation on the basis of genetic markers. Conservation Biology, 12:844-855

Examples

```
data(gtrunchier)
allelic.richness(gtrunchier[,-1])
```

basic.stats

Description

Estimates individual counts, allelic frequencies, observed heterozygosities and genetic diversities per locus and population. Also Estimates mean observed heterozygosities, mean gene diversities within population Hs, Gene diversities overall Ht and corrected Htp, and Dst, Dstp. Finally, estimates Fst and Fstp as well as Fis following Nei (1987) per locus and overall loci

Usage

```
basic.stats(data,diploid=TRUE,digits=4)
## S3 method for class 'basic.stats'
print(x,...)
```

Hs(data,...)

Ho(data,...)

Arguments

data	a data frame where the first column contains the population to which the differ- ent individuals belong, and the following columns contain the genotype of the individuals -one locus per column-
diploid	Whether individuals are diploids (default) or haploids
digits	how many digits to print out in the output (default is 4)
х	an object of class basic.stats
	further arguments to pass to print.bas.stats

Value

n.ind.samp	A table –with np (number of populations) columns and nl (number of loci) rows– of genotype counts
pop.freq	A list containing allele frequencies. Each element of the list is one locus. For each locus, Populations are in columns and alleles in rows
Но	A table –with np (number of populations) columns and nl (number of loci) rows– of observed heterozygosities
Hs	A table –with np (number of populations) columns and nl (number of loci) rows– of observed gene diversities
Fis	A table –with np (number of populations) columns and nl (number of loci) rows– of observed Fis
perloc	A table –with as many rows as loci– containing basic statistics Ho, Hs, Ht, Dst, Ht', Dst', Fst, Fst', Fis, Dest
overall	Basic statistics averaged over loci

basic.stats

Note

For the perloc and overall tables (see value section), the following statistics, defined in eq.7.38–7.43 pp.164–5 of Nei (1987) are estimated:

The observed heterozygosity

$$Ho = 1 - \sum_{k} \sum_{i} Pkii/np,$$

where Pkii represents the proportion of homozygote i in sample k and np the number of samples. The within population gene diversity (sometimes misleadingly called expected heterozygosity):

$$Hs = \tilde{n}/(\tilde{n}-1)[1-\sum_{i}\bar{p_{i}^{2}}-Ho/2\tilde{n}],$$

where $\tilde{n} = np / \sum_k 1/n_k$ and $\bar{p_i^2} = \sum_k p_{ki}^2 / np$ The overall gene diversity

$$Ht = 1 - \sum_{i} \bar{p_i}^2 + Hs/(\tilde{n}np) - Ho/(2\tilde{n}np),$$

where $\bar{p_i} = \sum_k p_{ki}/np$.

The amount of gene diversity among samples Dst = Ht - Hs

$$Dst' = np/(np-1)Dst$$

$$Ht' = Hs + Dst'$$

Fst = Dst/Ht.(This is not the same as Nei's Gst, Nei's Gst is an estimator of Fst based on allele frequencies only)

$$Fst' = Dst'/Ht'$$

$$Fis = 1 - Ho/Hs$$

Last, Dest = np/(np-1)(Ht'-Hs)/(1-Hs) a measure of population differentiation as defined by Jost (2008) is also given

Here, the p_{ki} are unweighted by sample size. These statistics are estimated for each locus and an overall loci estimates is also given, as the unweighted average of the per locus estimates. In this way, monomorphic loci are accounted for (with estimated value of 0) in the overall estimates.

Note that the equations used here all rely on genotypic rather than allelic number and are corrected for heterozygosity.

Author(s)

Jerome Goudet < jerome.goudet@unil.ch>

References

Nei M. (1987) Molecular Evolutionary Genetics. Columbia University Press

Jost L (2008) GST and its relatives do not measure differentiation. Molecular Ecology, 17, 4015-4026.

Nei M, Chesser R (1983) Estimation of fixation indexes and gene diversities. Annals of Human Genetics, 47, 253-259.

See Also

ind.count,pop.freq.

Examples

```
data(gtrunchier)
basic.stats(gtrunchier[,-1])
Hs(gtrunchier[,-2])
Ho(gtrunchier[,-2])
```

beta.dosage	Estimates pairwise	kinships and	d individual	inbreeding	coefficients
	from dosage data				

Description

Estimates pairwise kinships (coancestries) and individual inbreeding coefficient using Weir and Goudet (2017) beta estimator.

Usage

beta.dosage(dos,inb=TRUE,Mb=FALSE,MATCHING=FALSE)

Arguments

dos	A matrix of 0, 1 and 2s with loci (SNPs) in columns and individuals in rows. Missing values are allowed
inb	whether individual inbreeding coefficient should be estimated (rather than self-coancestries)
Mb	whether to output the mean matching
MATCHING	if MATCHING=FALSE, dos is a (ni x nl) dosage matrix; if MATCHING=TRUE, dos is a (ni x ni) matrix of matching proportions, as obtained from a call to the matching function

Details

This function is written for dosage data, i.e., how many doses of an allele (0, 1 or 2) an individual carries. It should be use for bi-allelic markers only (e.g. SNPs), although you might "force" a k multiallelic locus to k biallelic loci (see fstat2dos).

Matching proportions can be obtained by the following equation: $M = \beta * (1 - Mb) + Mb$

By default (inb=TRUE) the inbreeding coefficient is returned on the main diagonal. With inb=FALSE, self coancestries are reported.

Twice the betas with self-coancestries on the diagonal gives the Genomic Relationship Matrix (GRM)

Following a suggestion from Olivier Hardy, missing data are removed from the estimation procedure, rather than imputed (this is taken care off automatically)

8

betas

Value

if Mb=FALSE, a matrix of pairwise kinships and inbreeding coefficients (if inb=TRUE) or selfcoancestries (inb=FALSE); if Mb=TRUE, a list with elements inb (whether inbreeding coefficients rather than kinships should be returned on the main diagonal), MB (the average off-diagonal matching) and betas the kinships or inbreeding coefficients.

Author(s)

Jerome Goudet < jerome.goudet@unil.ch>

References

Weir, BS and Goudet J. 2017 A Unified Characterization of Population Structure and Relatedness. Genetics (2017) 206:2085

Goudet, J., Kay, T. and Weir BS. 2018 How to estimate kinship. Molecular Ecology 27:4121.

Examples

```
## Not run:
dos<-matrix(sample(0:2,size=10000,replace=TRUE),ncol=100)
beta.dosage(dos,inb=TRUE)
#matrix of kinship/inbreeding coeff
data(gtrunchier)
beta.dosage(fstat2dos(gtrunchier[,-c(1:2)]))
#individual inbreeding coefficients
dat<-sim.genot(size=100,nbloc=100,nbal=20,mig=0.01,f=c(0,0.3,0.7))
hist(diag(beta.dosage(fstat2dos(dat[,-1]))),breaks=-10:100/100,main="",xlab="",ylab="")
abline(v=c(0.0,0.3,0.7),col="red")
#only 20 loci
hist(diag(beta.dosage(fstat2dos(dat[,2:21]))),breaks=-5:20/20,main="",xlab="",ylab="")
abline(v=c(0.0,0.3,0.7),col="red")
```

End(Not run)

betas

Estimates β *s per population and a bootstrap confidence interval*

Description

Estimate populations (Population specific FST) or individual coancestries and a bootstrap confidence interval, assuming random mating

Usage

```
betas(dat,nboot=0,lim=c(0.025,0.975),diploid=TRUE,betaijT=FALSE)
```

```
## S3 method for class 'betas'
print(x, digits = 4, ...)
```

Arguments

dat	data frame with genetic data and pop identifier
nboot	number of bootstrap samples.
lim	width of the bootstrap confidence interval
diploid	whether the data comes from a diploid organism
betaijT	whether to estimate individual coancestries
х	a betas object
digits	number of digits to print
	further arguments to pass to print

Details

If betaijT=TRUE, and the first column contains a unique identifier for each individual, the function returns the matrix of individual coancestries/kinships. Individual inbreeding coefficients can be obtained by multiplying by 2 the diagonal and substracting 1.

Value

Hi Within population gene diversities (complement to 1 of matching probabilities)

Hb Between populations gene diversities

betaiovl Average $\beta_{WT}^{\hat{i}}$ over loci (Population specific FSTs), Table 3 of Weir and Goudet, 2017 (Genetics)

betaW Average of the betaiovl $\hat{\beta}_{WT}$ over loci (overall population FST)

ci The bootstrap confidence interval of population specific FSTs (only if more than 100 bootstraps requested AND if more than 10 loci are present)

if betaijT=TRUE, return the matrix of pairwise kinships only.

Methods (by generic)

• print: print function for betas class

Author(s)

Jerome Goudet < jerome.goudet@unil.ch>

References

Weir and Goudet, 2017 (Genetics) A unified characterization of population structure and relatedness.

biall2dos

See Also

fs.dosage, beta.dosage for Fst estimates (not assuming Random Mating) and kinship estimates from dosage data, respectively

Examples

```
## Not run:
#3 different population sizes lead to 3 different betais
dat<-sim.genot(size=40,N=c(50,200,1000),nbloc=50,nbal=10)
betas(dat,nboot=100)
#individual coancestries from the smallest population are large
ind.coan<-betas(cbind(1:120,dat[,-1]),betaij=T)
diag(ind.coan$betaij)<-NA
graphics::image(1:120,1:120,ind.coan$betaij,xlab="Inds",ylab="Inds")
```

End(Not run)

biall2dos

Converts bi-allelic SNPs from hierfstat format to dosage format

Description

Converts bi-allelic SNPs hierfstat format to dosage format, the number of alternate allele copies at a locus for an individual, i.e. $11 \rightarrow 0$; 12 or $21 \ge 1$ and $22 \ge 2$

Usage

```
biall2dos(dat,diploid=TRUE)
```

Arguments

dat	a hierfstat data frame without the first column (the population identifier), indi-
	viduals in rows, columns with individual genotypes encoded as 11, 12, 21 and
	22
diploid	whether the data set is from a diploid organism

Value

a matrix containing allelic dosages

Examples

```
## Not run:
biall2dos(sim.genot(nbal=2,nbloc=10)[,-1]) # a 10 column matrix
```

boot.ppbetas

Description

Estimates bootstrap confidence intervals for pairwise betas FST estimates.

Usage

```
boot.ppbetas(dat=dat,nboot=100,quant=c(0.025,0.975),diploid=TRUE,digits=4)
```

Arguments

dat	A data frame containing population of origin as the first column and multi-locus genotypes in following columns
nboot	the number of bootstrap samples to draw
quant	the limit of the confidence intervals
diploid	whether the data is from a diploid (default) or haploid organism
digits	how many digits to print out

Value

a matrix with upper limit of the bootstrap CI above the diagonal and lower limit below the diagonal

See Also

betas pairwise.betas

Examples

Not run: data(gtrunchier) boot.ppbetas(gtrunchier[,-2])

End(Not run)

boot.ppfis

Description

Performs bootstrapping over loci of population's Fis

Usage

```
boot.ppfis(dat=dat,nboot=100,quant=c(0.025,0.975),diploid=TRUE,dig=4,...)
```

Arguments

dat	a genetic data frame
nboot	number of bootstraps
quant	quantiles
diploid	whether diploid data
dig	digits to print
	further arguments to pass to the function

Value

call	function call
fis.ci	Bootstrap ci of Fis per population

Author(s)

Jerome Goudet <jerome.goudet@unil.ch>

Examples

```
dat<-sim.genot(nbpop=4,nbloc=20,nbal=10,f=c(0,0.2,0.4,0.6))
boot.ppfis(dat)</pre>
```

boot.ppfst

Description

Performs bootstrapping over loci of pairwise Fst

Usage

```
boot.ppfst(dat=dat,nboot=100,quant=c(0.025,0.975),diploid=TRUE,...)
```

Arguments

dat	a genetic data frame
nboot	number of bootstraps
quant	the quantiles for bootstrapped ci
diploid	whether data are from diploid organisms
	further arguments to pass to the function

Value

call	call to the function
11	lower limit ci
ul	upper limit ci
vc.per.loc	for each pair of population, the variance components per locus

Author(s)

Jerome Goudet < jerome.goudet@unil.ch>

Examples

```
data(gtrunchier)
x<-boot.ppfst(gtrunchier[,-2])
x$11
x$u1</pre>
```

boot.vc

Description

Provides a bootstrap confidence interval (over loci) for sums of the different variance components (equivalent to gene diversity estimates at the different levels), and the derived F-statistics, as suggested by Weir and Cockerham (1984). Will not run with less than 5 loci. Raymond and Rousset (199X) points out shortcomings of this method.

Usage

```
boot.vc(levels=levels,loci=loci,diploid=TRUE,nboot=1000,quant=c(0.025,0.5,0.975))
```

Arguments

levels	a data frame containing the different levels (factors) from the outermost (e.g. region) to the innermost before the individual
loci	a data frame containing the different loci
diploid	Specify whether the data are coming from diploid or haploid organisms (diploid is the default)
nboot	Specify the number of bootstrap to carry out. Default is 1000
quant	Specify which quantile to produce. Default is $c(0.025, 0.5, 0.975)$ giving the percentile 95% CI and the median

Value

boot	a data frame with the bootstrapped variance components. Could be used for obtaining bootstrap ci of statistics not listed here.
res	a data frame with the bootstrap derived statistics. H stands for gene diversity, F for F-statistics
ci	Confidence interval for each statistic.

References

Raymond M and Rousset F, 1995. An exact test for population differentiation. Evolution. 49:1280-1283

Weir, B.S. (1996) Genetic Data Analysis II. Sinauer Associates.

Weir BS and Cockerham CC, 1984. Estimating F-statistics for the analysis of population structure. Evolution 38:1358-1370.

See Also

varcomp.glob.

Examples

```
#load data set
data(gtrunchier)
boot.vc(gtrunchier[,c(1:2)],gtrunchier[,-c(1:2)],nboot=100)
```

cont.isl

A genetic dataset from a diploid organism in a continent-island model

Description

A simple diploid dataset, with allele encoded as one digit number. Up to 4 alleles per locus

Usage

data(cont.isl)

Format

A data frame with 150 rows and 6 columns:

Pop Population identifier, from 1 to 3

loc.1 genotype at loc.1

loc.2 genotype at loc.2

loc.3 genotype at loc.3

loc.4 genotype at loc.4

loc.5 genotype at loc.5

•••

Source

generated with function sim.genot()

Examples

```
data(cont.isl)
allele.count(cont.isl)
```

16

cont.isl99

Description

A simple diploid dataset, with alleles encoded as two digits numbers. Up to 99 alleles per locus

Usage

```
data(cont.isl99)
```

Format

A data frame with 150 rows and 6 columns:

Pop Population identifier, from 1 to 3

loc.1 genotype at loc.1

- **loc.2** genotype at loc.2
- loc.3 genotype at loc.3
- loc.4 genotype at loc.4
- loc.5 genotype at loc.5

...

Source

generated with function sim.genot(nbal=99)

Examples

```
data(cont.isl99)
allele.count(cont.isl99)
```

crocrussula

Description

A dataset containing microsatellite genotypes, population and sex of 140 Crocidura russula individuals

Usage

data(crocrussula)

References

Favre et al. (1997) Female-biased dispersal in the monogamous mammal Crocidura russula: evidence from field data and microsatellite patterns. Proceedings of the Royal Society, B (264): 127-132

Goudet J, Perrin N, Waser P (2002) Tests for sex-biased dispersal using bi-parentally inherited genetic markers 11, 1103:1114

Examples

```
data(crocrussula)
aic<-AIc(crocrussula$genot)
boxplot(aic~crocrussula$sex)
sexbias.test(crocrussula$genot,crocrussula$sex)</pre>
```

diploid

A genetic dataset from a diploid organism

Description

A simple diploid dataset, with allele encoded as one digit number

Usage

data(diploid)

Format

A data frame with 44 rows and 6 columns:

Pop Population identifier, from 1 to 6

loc-1 genotype at loc-1 (only allele 4 present)

loc-2 genotype at loc-1 (alleles 3 and 4)

loc-3 genotype at loc-1 (alleles 2, 3 and 4)

loc-4 genotype at loc-1 (alleles 1, 2, 3 and 4)

loc-5 genotype at loc-1 (only allele 4)

Source

...

Given in Weir, B.S. Genetic Data Analysis. Sinauer

Examples

```
data(diploid)
basic.stats(diploid)
```

exhier

Description

Example data set with 4 levels, one diploid and one haploid locus

Usage

data(exhier)

Value

outermost level
level 2
Level 3
Level 4
Diploid locus
Haploid locus

Examples

data(exhier)
varcomp(exhier[,1:5])
varcomp(exhier[,c(1:4,6)],diploid=FALSE)

fs.dosage

Estimates F-statistics from dosage data

Description

Reports individual inbreeding coefficients, Population specific and pairwise Fsts, and Fiss from dosage data

Usage

```
fs.dosage(dos, pop, matching = FALSE)
## S3 method for class 'fs.dosage'
plot(x, ...)
## S3 method for class 'fs.dosage'
print(x, digits = 4, ...)
```

```
fst.dosage(dos, pop, matching = FALSE)
```

fis.dosage(dos, pop, matching = FALSE)

```
pairwise.fst.dosage(dos, pop, matching = FALSE)
```

Arguments

dos	either a matrix with snps columns and individuals in rows containing allelic dosage (number [0,1 or 2] of alternate alleles); or a square matrix with as many rows and columns as the number of individuals and containing the proportion of matching alleles
рор	a vector containing the identifier of the population to which the individual in the corresponding row belongs
matching	logical:TRUE if dos is a square matrix of allelic matching; FALSE otherwise
x	a fs.dosage object
	further arguments to pass
digits	number of digits to print

Value

Fi list of individual inbreeding coefficients, estimated with the reference being the population to which the individual belongs.

FsM matrix containing population specific FSTs on the diagonal. The off diagonal elements contains the average of the kinships for pairs of individuals, one from each population, relative to the mean kinship for pairs of individuals between populations.

Fst2x2 matrix containing pairwise FSTs

Fs The first row contains population specific and overall Fis, the second row population specific (average β_{ST}^{i} over loci) FSTs and overall Fst β_{ST} (see Table 3 of Weir and Goudet, 2017 (Genetics))

Methods (by generic)

- plot: Plot function for fs.dosage class
- print: Print function for fs.dosage class

Author(s)

Jerome Goudet <jerome.goudet@unil.ch>

Weir, BS and Goudet J. 2017 A Unified Characterization of Population Structure and Relatedness. Genetics (2017) 206:2085

See Also

betas

fstat2dos

Examples

```
## Not run:
dos<-matrix(sample(0:2,size=10000,replace=TRUE),ncol=100)
fs.dosage(dos,pop=rep(1:5,each=20))
plot(fs.dosage(dos,pop=rep(1:5,each=20)))
```

End(Not run)

fstat2dos

Converts a hierfstat genetic data frame to dosage data

Description

Converts a hierfstat genetic data frame to dosage. For each allele at each locus, allelic dosage (number of copies of the allele) is reported. The column name is the allele identifier

Usage

fstat2dos(dat,diploid=TRUE)

Arguments

dat	data frame with genetic data without the first column (population identifier)
diploid	whether the data set is from a diploid organism

Value

a matrix with $\sum_{l} n_{l}^{a}$ columns (where n_{l}^{a} is the number of alleles at locus l), as many rows as individuals, and containing the number of copies (dosage) of the corresponding allele

Examples

```
## Not run:
dat<-sim.genot(nbal=5,nbloc=10)
dos<-fstat2dos(dat[,-1])
dim(dos)
wc(dat)
fst.dosage(dos,pop=dat[,1])
```

End(Not run)

g.stats

Description

Calculates the likelihood ratio G-statistic on a contingency table of alleles at one locus X sampling unit. The sampling unit could be any hierarchical level

Usage

g.stats(data,diploid=TRUE)

Arguments

data	a two-column data frame. The first column contains the sampling unit, the sec-
	ond the genotypes
diploid	Whether the data are from diploid (default) organisms

Value

obs	Observed contingency table
exp	Expected number of allelic observations
X.squared	The chi-squared statistics, $\sum \frac{(O-E)^2}{E}$
g.stats	The likelihood ratio statistics, $2\sum(O\log(\frac{O}{E}))$

Author(s)

Jerome Goudet, DEE, UNIL, CH-1015 Lausanne Switzerland

<jerome.goudet@unil.ch>

References

Goudet J., Raymond, M., DeMeeus, T. and Rousset F. (1996) Testing differentiation in diploid populations. Genetics. 144: 1933-1940

Goudet J. (2005). Hierfstat, a package for R to compute and test variance components and F-statistics. Molecular Ecology Notes. 5:184-186

Petit E., Balloux F. and Goudet J.(2001) Sex-biased dispersal in a migratory bat: A characterization using sex-specific demographic parameters. Evolution 55: 635-640.

See Also

g.stats.glob.

g.stats.glob

Examples

```
data(gtrunchier)
attach(gtrunchier)
g.stats(data.frame(Patch,L21.V))
```

g.stats.glob

Likelihood ratio G-statistic over loci

Description

Calculates the likelihood ratio G-statistic on a contingency table of alleles at one locus X sampling unit, and sums this statistic over the loci provided. The sampling unit could be any hierarchical level (patch, locality, region,...). By default, diploid data are assumed

Usage

g.stats.glob(data,diploid=TRUE)

Arguments

data	a data frame made of nl+1 column, nl being the number of loci. The first
	column contains the sampling unit, the others the multi-locus genotype. Only
	complete multi-locus genotypes are kept for calculation
diploid	Whether the data are from diploid (default) organisms

Value

g.stats.l	Per locus likelihood ratio statistic
g.stats	Overall loci likelihood ratio statistic

Author(s)

Jerome Goudet, DEE, UNIL, CH-1015 Lausanne Switzerland

<jerome.goudet@unil.ch>

References

Goudet J. (2005). Hierfstat, a package for R to compute and test variance components and F-statistics. Molecular Ecology Notes. 5:184-186

Goudet J., Raymond, M., DeMeeus, T. and Rousset F. (1996) Testing differentiation in diploid populations. Genetics. 144: 1933-1940

Petit E., Balloux F. and Goudet J.(2001) Sex-biased dispersal in a migratory bat: A characterization using sex-specific demographic parameters. Evolution 55: 635-640.

See Also

g.stats, samp.within, samp.between.

Examples

```
## Not run:
data(gtrunchier)
attach(gtrunchier)
nperm<-99
nobs<-length(Patch)</pre>
gglobs.o<-vector(length=(nperm+1))</pre>
gglobs.p<-vector(length=(nperm+1))</pre>
gglobs.l<-vector(length=(nperm+1))</pre>
gglobs.o[nperm+1]<-g.stats.glob(data.frame(Patch,gtrunchier[,-c(1,2)]))$g.stats
gglobs.p[nperm+1]<-g.stats.glob(data.frame(Patch,gtrunchier[,-c(1,2)]))$g.stats</pre>
gglobs.l[nperm+1]<-g.stats.glob(data.frame(Locality,gtrunchier[,-c(1,2)]))$g.stats</pre>
for (i in 1:nperm) #careful, might take a while
{
 gglobs.o[i]<-g.stats.glob(data.frame(Patch,gtrunchier[sample(Patch),-c(1,2)]))$g.stats</pre>
 gglobs.p[i]<-g.stats.glob(data.frame(Patch,gtrunchier[samp.within(Locality),-c(1,2)]))$g.stats
 gglobs.l[i]<-g.stats.glob(data.frame(Locality,gtrunchier[samp.between(Patch),-c(1,2)]))$g.stats
}
#p-value of first test (among patches)
p.globs.o<-sum(gglobs.o>=gglobs.o[nperm+1])/(nperm+1)
#p-value of second test (among patches within localities)
p.globs.p<-sum(gglobs.p>=gglobs.p[nperm+1])/(nperm+1)
#p-value of third test (among localities)
p.globs.l<-sum(gglobs.l>=gglobs.l[nperm+1])/(nperm+1)
#Are alleles associated at random among patches
p.globs.o
#Are alleles associated at random among patches within localities?
#Tests differentiation among patches within localities
p.globs.p
#Are alleles associated at random among localities, keeping patches as one unit?
#Tests differentiation among localities
p.globs.l
## End(Not run)
```

```
genet.dist
```

Classical genetic distances estimation

Description

Estimates one of several genetic distances among all pairs of populations.

24

genet.dist

Usage

genet.dist(dat,diploid=TRUE,method="Dch")

Arguments

dat	A data frame containing population of origin as the first column and multi-locus genotypes in following columns
diploid	whether the data is from a diploid (default) or haploid organism.
method	One of "Dch", "Da", "Ds", "Fst", "Dm", "Dr", "Cp" or "X2", all described in Takezaki and Nei (1996). Additionally "Nei87" and "WC84" return pairwise FSTs es- timated following Nei (1987) pairwise.neifst and Weir & Cockerham (1984) pp.fst respectively

Details

the method argument specify which genetic distance to use, among eight, all briefly described in Takezaki and Nei (1996)

"Dch" By default, Cavalli-Sforza and Edwards Chord distance (eqn 6 in the reference) is returned. This distance is used as default since Takezaki & Nei (1996) found that it was the best to retrieve the relation among samples.

"Da" This is Nei's et al genetic distance (eqn 7), performing nearly as well as "Dch"

"Ds" Nei's standard genetic distance (eqn 1). Increases linearly with diverence time but has larger variance

"Fst" Latter's and also approximately Reynolds et al Genetic distance (eqn 3)

"Dm" Nei's minimum distance (eqn 2)

"Dr" Rogers's distance (eqn 4)

"Cp" Prevosti et al's distance (eqn 5)

"X2" Sanghvi's distance (eqn 8)

"Nei87" see pairwise.neifst

"WC84" see pairwise.WCfst

Value

A matrix of pairwise genetic distance

Author(s)

Jerome Goudet < jerome.goudet@unil.ch>

References

Takezaki & Nei (1996) Genetic distances and reconstruction of Phylogenetic trees from microsatellite DNA. Genetics 144:389-399

Nei, M. (1987) Molecular Evolutionary Genetics. Columbia University Press

Weir B.S. and Cockerham C.C. (1984) Estimating F-Statistics for the Analysis of Population Structure. Evolution 38:1358

See Also

pairwise.WCfst pairwise.neifst

Examples

```
data(gtrunchier)
genet.dist(gtrunchier[,-1])
genet.dist(gtrunchier[,-1],method="Dr")
```

genind2hierfstat Converts genind objects from adegenet into a hierfstat data frame

Description

Converts genind objects from adegenet into a hierfstat data frame

Usage

```
genind2hierfstat(dat,pop=NULL)
```

Arguments

dat	a genind object
рор	a vector containing the population to which each individual belongs. If pop=NULL, pop taken from slot pop of the genind object

Value

a data frame with nloci+1 columns and ninds rows. The first column contains the population identifier, the following the genotypes at each locus

Examples

```
## Not run:
library(adegenet)
data(nancycats)
genind2hierfstat(nancycats)
basic.stats(nancycats)
genet.dist(nancycats)
data(H3N2)
basic.stats(genind2hierfstat(H3N2,pop=rep(1,dim(H3N2@tab)[1])),diploid=FALSE)
```

End(Not run)

26

genot2al

Description

Separates the input vector of diploid genotypes in two vectors each containing one allele, and returns a vector of length 2*length(y) with the second part being the second allele

Usage

genot2al(y)

Arguments

y the diploid genotypes at one locus

Value

returns a vector of length 2*length(y), with the second half of the vector containing the second alleles

Author(s)

Jerome Goudet, DEE, UNIL, CH-1015 Lausanne Switzerland

<jerome.goudet@unil.ch>

References

Goudet J. (2004). A library for R to compute and test variance components and F-statistics. In Prep

See Also

varcomp.

Examples

```
data(gtrunchier)
genot2al(gtrunchier[,4])
```

getal

Description

Converts diploid genotypic data into allelic data

Usage

getal(data)

Arguments

data a data frame where the first column contains the population to which the different individuals belong, and the following columns contain the genotype of the individuals -one locus per column-

Value

data.al	a new data frame, with twice as many row as the input data frame and one extra
	column. each row of the first half of the data frame contains the first allele
	for each locus, and each row of the second half of the data frame contains the
	second allel at the locus. The extra column in second position corresponds to
	the identifier of the individual to which the allele belongs

Author(s)

Jerome Goudet < jerome.goudet@unil.ch>

Examples

```
data(gtrunchier)
getal(data.frame(gtrunchier[,-2]))
```

getal.b

Converts diploid genotypic data into allelic data

Description

Converts a data frame of genotypic diploid data with as many lines as individuals (ni) and as many columns as loci (nl) into an array [ni,nl,2] of allelic data

Usage

getal.b(data)

grm2kinship

Arguments

data	a data frame with ni rows and nl columns. Each line encodes one individual,
	each column contains the genotype at one locus of the individual

Value

an array [ni,nl,2] of alleles. The two alleles are stored in the third dimension of the array

Author(s)

Jerome Goudet <jerome.goudet@unil.ch>

Examples

```
data(gtrunchier)
#multilocus diploid genotype of the first individual
gtrunchier[1,-c(1:2)]
#the diploid genotype splitted in its two constituent alleles
getal.b(gtrunchier[,-c(1:2)])[1,,]
```

grm2kinship

Converts a Genetic Relationship Matrix (GRM) to a kinship matrix

Description

Converts a Genetic Relationship Matrix (GRM) to a kinship matrix

Usage

grm2kinship(x)

Arguments

х

a square (GRM) matrix

Details

k[ii] = x[ii] - 1; k[ij] = x[ij]/2

Value

a kinship matrix

Author(s)

Jerome Goudet < jerome.goudet@unil.ch>

gtrunchier

Description

Data set consisting of the microsatellite genotypes of 370 Galba truncatula, a tiny freshwater snail, collecting from different localities and several patches within localities in Western Switzerland.

Usage

data(gtrunchier)

Value

Locality	Identifier of the locality of origin
Patch	Identifier of the patch of origin
L21.V	Genotype at locus L21.V. For instance the first individual carries allele 2 and 2 at this locus
	gtrunchier\\$L21.V[1]
L37.J	Genotype at locus L37.J
L20.B	Genotype at locus L20.B
L29.V	Genotype at locus L29.V
L36.B	Genotype at locus L36.B
L16.J	Genotype at locus L16.J

References

Trouve S., L. Degen et al. (2000) Microsatellites in the hermaphroditic snail, Lymnaea truncatula, intermediate host of the liver fluke, Fasciola hepatica.Molecular Ecology 9: 1662-1664.

Trouve S., Degen L. and Goudet J. (2005) Ecological components and evolution of selfing in the freshwater snail Galba truncatula. Journal of Evolutionary Biology. 18, 358-370

Description

This package contains functions to estimate hierarchical F-statistics for any number of hierarchical levels using the method described in Yang (1998). It also contains functions allowing to test the significance of population differentiation at any given level using the likelihood ratio G-statistic, showed previoulsly to be the most powerful statistic to test for differentiation (Goudet et al., 1996). The difficulty in a hierarchical design is to identify which units should be permutted. Functions samp.within and samp.between give permutations of a sequence that allows reordering of the observations in the original data frame. An exemple of application is given in the help page for function g.stats.glob.

Hierfstat includes now all the capabilities of Fstat, and many others. A new serie of functions implementing the statistics described in Weir and Goudet (2017) and Goudet et al. (2018) (beta.dosage, fs.dosage) have been written to deal with large genomic data sets and take as input a matrix of allelic dosages, the number of alternate alleles an individual carries at a locus.

Several functions have been written to simulate genetic data, or to import them from existing sofwares such as quantiNemo or Hudson's ms

Hierfstat links easily with the gaston, SNPRelate and adegenet packages, among others.

Author(s)

Jerome Goudet < jerome.goudet@unil.ch>

References

Goudet J. (2005) Hierfstat, a package for R to compute and test variance components and F-statistics. Molecular Ecology Notes. 5:184-186

Goudet J., Raymond, M., DeMeeus, T. and Rousset F. (1996) Testing differentiation in diploid populations. Genetics. 144: 1933-1940

Weir B.S. and Goudet J. (2017) A Unified Characterization of Population Structure and Relatedness. Genetics. 206: 2085-2103

Goudet J., Kay T. and Weir B.S. (2018) How to estimate kinship. Molecular Ecology. 27: 4121:4135

Weir, B.S. (1996) Genetic Data Analysis II. Sinauer Associates.

Yang, R.C. (1998) Estimating hierarchical F-statistics. Evolution 52(4):950-956

ind.count

Description

Counts the number of individual genotyped per locus and population

Usage

ind.count(data)

Arguments

data

a data frame containing the population of origin in the first column and the genotypes in the following ones

Value

A table -with np (number of populations) columns and nl (number of loci) rows- of genotype counts

Author(s)

Jerome Goudet <jerome.goudet@unil.ch>

Examples

```
data(gtrunchier)
ind.count(gtrunchier[,-2])
```

indpca

PCA on a matrix of individuals genotypes frequencies

Description

Carry out a PCA on the centered, unscaled matrix of individual's allele frequencies.

Usage

```
indpca(dat,ind.labels=NULL,scale=FALSE)
```

```
## S3 method for class 'indpca'
print(x,...)
## S3 method for class 'indpca'
plot(x,eigen=FALSE,ax1=1,ax2=2,...)
```

kinship2dist

Arguments

dat	A data frame with population of origin as first column, and genotypes in follow- ing columns.
ind.labels	a vector of labels for the different individuals
scale	whether to standardize each column to variance 1 or to leave it as is (default)
х	an indpca object
eigen	whether to plot in an additional windows screeplot of the inertias for the different axes
ax1	which PCA coordinates to plot on the x axis
ax2	which PCA coordinates to plot on the y axis
	further arguments to pass to print or plot

Value

An object of class indpca with components

call	The function call
ipca	an object of class pca and dudi (see dudi.pca) in package ade4
mati	the original non centered matrice of individuals X alleles frequencies

Author(s)

Jerome Goudet < jerome.goudet@unil.ch>

Examples

```
##not run
data(gtrunchier)
x<-indpca(gtrunchier[,-2],ind.labels=gtrunchier[,2])
plot(x,col=gtrunchier[,1],cex=0.7)</pre>
```

kinship2dist Conve

Converts a kinship matrix to a distance matrix

Description

Converts a kinship matrix to a distance matrix

Usage

kinship2dist(x)

Arguments

Х

A square matrix containg kinship coefficients

Details

$$D_{ii} = 0, D_{ij} = \frac{1 - (x - min(x))}{(1 - min(x))}$$

Value

A distance matrix

Author(s)

Jerome Goudet < jerome.goudet@unil.ch>

kinship2grm Converts a kinship matrix to a Genetic Relation Matrix (GRM)

Description

Converts a kinship matrix to a Genetic Relation Matrix (GRM)

Usage

kinship2grm(x)

Arguments

х

a square matrix containing kinship coefficients

Details

for off-diagonal elements, $GRM = 2 \times x_{ij}$; for diagonal elements, $GRM = 1 + x_{ii}$

Value

a GRM matrix

Author(s)

Jerome Goudet < jerome.goudet@unil.ch>

Examples

```
## Not run:
dos<-matrix(sample(0:2,replace=TRUE,size=1000),nrow=10) #dosage matrix for 10 inds at 100 loci
ks<-beta.dosage(dos) # kinship matrix
kinship2grm(ks)
```

End(Not run)

34

kinshipShift

Description

Shifts a kinship matrix

Usage

kinshipShift(x,shift=NULL)

Arguments

Х	a square matrix
shift	the amount by which the elements of x should be shifted. if $shift==NULL$, the
	average of the off-diagonal elements is substracted

Details

The kinship matrix produced by beta.dosage is relative to the average kinship of the set of individuals analysed $(1/(n(n-1)/2)\sum_{i}\sum_{j>i}x_{ij}=0)$. Another reference point might be useful, for instance to avoid negative kinship values, one might want to shift the matrix by $min(x_{ij}), i \neq j$.

Value

the shifted kinship matrix $\frac{x-shift}{1-shift}$

Author(s)

Jerome Goudet < jerome.goudet@unil.ch>

mat2vec

Creates a vector from a matrix

Description

creates a vector from a matrix

Usage

```
mat2vec(mat,upper=FALSE)
```

Arguments

mat	a symmetric matrix
upper	whether the upper triangular matrix is to be copied to the vector

matching

Value

a vector

Examples

```
{
  mat2vec(matrix(1:16,nrow=4))
  mat2vec(matrix(1:16,nrow=4),upper=TRUE)
}
```

matching

Estimates matching between pairs of individuals

Description

Estimates matching between pairs of individuals (for each locus, gives 1 if the two individuals are homozygous for the same allele, 0 if they are homozygous for a different allele, and 1/2 if at least one individual is heterozygous. Matching is the average of these 0, 1/2 and 1s)

Usage

matching(dos)

Arguments

dos

A matrix of 0, 1 and 2s with loci (SNPs) in columns and individuals in rows. missing values are allowed

Details

This function is written for dosage data, i.e., how many doses of an allele (0, 1 or 2) an individual carries. It should be use for bi-allelic markers only (e.g. SNPs), although you might "force" a k multiallelic locus to k biallelic loci (see fstat2dos).

Value

a matrix of pairwise matching

36
ms2bed

Description

Import the output of the ms program into a BED object, as defined in the gaston package

Usage

ms2bed(fname)

Arguments

fname

the name of the text file containing ms output

Value

a bed object

ms2dos

Import ms output

Description

Import the output of the ms program into suitable format for further manipulation

Usage

ms2dos(fname)

Arguments

fname a text file containing the output of the ms program

Value

alldat a matrix with as many row as (haploid) individuals and as many columns as SNPs

bim a data frame with two components chr contains the chromosome (replicate) id; pos contains the SNPs posoition on the chromosome

nb.alleles

Description

Counts the number of different alleles at each locus and population

Usage

```
nb.alleles(data,diploid=TRUE)
```

Arguments

data	A data frame containing the population of origin in the first column and the
	genotypes in the following ones
diploid	whether individuals are diploid

Value

A table, –with np (number of populations) columns and nl (number of loci) rows– of the number of different alleles

Author(s)

Jerome Goudet <jerome.goudet@unil.ch>

Examples

```
data(gtrunchier)
nb.alleles(gtrunchier[,-2])
```

pairwise.betas Estimates pairwise betas according to Weir and Goudet (2017)

Description

Estimates pairwise betas according to Weir and Goudet (2017)

Usage

pairwise.betas(dat,diploid=TRUE)

Arguments

dat	A data frame containing population of origin as the first column and multi-locus
	genotypes in following columns
diploid	whether the data is from a diploid (default) or haploid organism

pairwise.neifst

Value

a matrix of pairwise betas

Author(s)

Jerome Goudet < jerome.goudet@unil.ch>

Weir, BS and Goudet J. 2017 A Unified Characterization of Population Structure and Relatedness. Genetics (2017) 206:2085

Examples

```
data(gtrunchier)
pairwise.betas(gtrunchier[,-2],diploid=TRUE)
```

pairwise.neifst *Estimates pairwise FSTs according to Nei* (1987)

Description

Estimate pairwise FSTs according to Nei (1987)

Usage

```
pairwise.neifst(dat,diploid=TRUE)
```

Arguments

dat	A data frame containing population of origin as the first column and multi-locus
	genotypes in following columns
diploid	whether the data is from a diploid (default) or haploid organism

Details

FST are calculated using Nei (87) equations for FST', as described in the note section of basic.stats

Value

```
A matrix of pairwise FSTs
```

Author(s)

Jerome Goudet < jerome.goudet@unil.ch>

References

Nei, M. (1987) Molecular Evolutionary Genetics. Columbia University Press

See Also

pairwise.WCfst genet.dist basic.stats

Examples

```
data(gtrunchier)
pairwise.neifst(gtrunchier[,-2],diploid=TRUE)
```

pairwise.WCfst Estimates pairwise FSTs according to Weir and Cockerham (1984)

Description

Estimates pairwise FSTs according to Weir and Cockerham (1984)

Usage

```
pairwise.WCfst(dat,diploid=TRUE)
```

Arguments

dat	A data frame containing population of origin as the first column and multi-locus
	genotypes in following columns
diploid	whether the data is from a diploid (default) or haploid organism

Details

FST are calculated using Weir & Cockerham (1984) equations for FST', as described in the note section of wc

Value

A matrix of pairwise FSTs

Author(s)

Jerome Goudet < jerome.goudet@unil.ch>

References

Weir, B.S. (1996) Genetic Data Analysis II. Sinauer Associates.

Weir B.S. and Cockerham C.C. (1984) Estimating F-Statistics for the Analysis of Population Structure. Evolution 38:1358

40

рсоа

See Also

pairwise.neifst genet.dist

Examples

```
data(gtrunchier)
pairwise.WCfst(gtrunchier[,-2],diploid=TRUE)
```

рсоа

Principal coordinate analysis

Description

principal coordinates analysis as described in Legendre & Legendre Numerical Ecology

Usage

pcoa(mat,plotit=TRUE,...)

Arguments

mat	a distance matrix
plotit	Whether to produce a plot of the pcoa
	further arguments (graphical for instance) to pass to the function

Value

valp	the eigen values of the pcoa
vecp	the eigen vectors of the pcoa (the coordinates of observations)
eucl	The cumulative euclidian distances among observations,

Author(s)

Jerome Goudet < jerome.goudet@unil.ch>

```
data(gtrunchier)
colo<-c("black","red","blue","yellow","orange","green")
pcoa(as.matrix(genet.dist(gtrunchier[,-1])),col=rep(colo,c(5,5,4,5,5,5)))</pre>
```

pi.dosage

Description

Estimates nucleotide diversity $\pi = \sum_l 2p_l(1-p_l)2n/(2n-1)$ from a dosage matrix

Usage

pi.dosage(dos,L=NULL)

Arguments

dos	a ni X nl dosage matrix containing the number of derived/alternate alleles each individual carries at each SNP
L	the length of the sequence

Value

if L=NULL (default), returns the sum over SNPs of nucleotide diversity; otherwise return the average nucleotide diversity per nucleotide given the length L of the sequence

|--|

Description

Estimates allelic frequencies for each population and locus

Usage

```
pop.freq(dat,diploid=TRUE)
```

Arguments

dat a data frame where the first column contains the population to which	
	ent individuals belong, and the following columns contain the genotype of the
	individuals -one locus per column-
diploid	specify whether the data set consists of diploid (default) or haploid data

Value

A list containing allele frequencies. Each element of the list is one locus. For each locus, Populations are in columns and alleles in rows

pp.fst

Author(s)

Jerome Goudet < jerome.goudet@unil.ch>

Examples

```
data(gtrunchier)
pop.freq(gtrunchier[,-2])
```

pp.fst

fst per pair

Description

fst per pair following Weir and Cockerham (1984)

Usage

pp.fst(dat=dat,diploid=TRUE,...)

Arguments

dat	a genetic data frame
diploid	whether data from diploid organism
	further arguments to pass to the function

Value

call	function call
fst.pp	pairwise Fsts
vc.per.loc	for each pair of population, the variance components per locus

Author(s)

Jerome Goudet < jerome.goudet@unil.ch>

References

Weir B.S. and Cockerham C.C. (1984) Estimating F-Statistics for the Analysis of Population Structure. Evolution 38:1358

Weir, B.S. (1996) Genetic Data Analysis II. Sinauer Associates.

pp.sigma.loc

Description

wrapper to return per locus variance components between pairs of samples x & y

Usage

```
pp.sigma.loc(x,y,dat=dat,diploid=TRUE,...)
```

Arguments

х,у	samples 1 and 2
dat	a genetic data set
diploid	whether dats are diploid
	further arguments to pass to the function

Value

sigma.lo	components	

Author(s)

Jerome Goudet <jerome.goudet@unil.ch>

print.pp.fst print function for pp.fst

Description

print function for pp.fst

Usage

```
## S3 method for class 'pp.fst'
print(x,...)
```

Arguments

х	an object of class pp.fst
	further arguments to pass to the function

Author(s)

Jerome Goudet < jerome.goudet@unil.ch>

qn2.read.fstat

Read QuantiNemo extended format for genotype files Read QuantiNemo (http://www2.unil.ch/popgen/softwares/quantinemo/) genotype files extended format (option 2)

Description

Read QuantiNemo extended format for genotype files

Read QuantiNemo (http://www2.unil.ch/popgen/softwares/quantinemo/) genotype files extended format (option 2)

Usage

qn2.read.fstat(fname, na.s = c("NA","NaN"))

Arguments

fname	quantinemo file name
na.s	na string used

Value

dat a data frame with nloc+1 columns, the first being the population to which the individual belongs and the next being the genotypes, one column per locus; and ninds rows

sex the sex of the individuals

Author(s)

Jerome Goudet < jerome.goudet@unil.ch>

References

Neuenschwander S, Michaud F, Goudet J (2019) QuantiNemo 2: a Swiss knife to simulate complex demographic and genetic scenarios, forward and backward in time. Bioinformatics 35:886

Neuenschwander S, Hospital F, Guillaume F, Goudet J (2008) quantiNEMO: an individual-based program to simulate quantitative traits with explicit genetic architecture in a dynamic metapopulation. Bioinformatics 24:1552

See Also

```
read.fstat
```

```
dat<-qn2.read.fstat(system.file("extdata","qn2_sex.dat",package="hierfstat"))
sexbias.test(dat[[1]],sex=dat[[2]])</pre>
```

```
read.fstat
```

Description

Imports a *FSTAT* data file into R. The data frame created is made of nl+1 columns, nl being the number of loci. The first column corresponds to the Population identifier, the following columns contains the genotypes of the individuals.

Usage

```
read.fstat(fname, na.s = c("0","00","000","0000","00000","NA"))
```

Arguments

fname	 a file in the FSTAT format (http://www.unil.ch/popgen/softwares/fstat. htm): The file must have the following format: The first line contains 4 numbers: the number of samples, np, the number of loci, nl, the highest number used to label an allele, nu, and a 1 if the code for alleles is a one digit number (1-9), a 2 if code for alleles is a 2 digit number (01-99) or a 3 if code for alleles is a 3 digit number (001-999). These 4 numbers need to be separated by any number of spaces. The first line is immediately followed by nl lines, each containing the name of a locus, in the order they will appear in the rest of the file. On line nl+2, a series of numbers as follow:
	1 0102 0103 0101 0203 0 0303
na s	The first number identifies the sample to which the individual belongs, the sec- ond is the genotype of the individual at the first locus, coded with a 2 digits number for each allele, the third is the genotype at the second locus, until locus nl is entered (in the example above, $n1=6$). Missing genotypes are encoded with 0, 00, 0000, 000000 or NA. Note that 0001 or 0100 are not a valid format, as both alleles at a locus have to be known, otherwise, the genotype is considered as missing. No empty lines are needed between samples.
na.s	The strings that correspond to the missing value. You should note have to change this

Value

a data frame containing the desired data, in a format adequate to pass to varcomp

References

Goudet J. (1995). FSTAT (Version 1.2): A computer program to calculate F- statistics. Journal of Heredity 86:485-486

Goudet J. (2005). Hierfstat, a package for R to compute and test variance components and F-statistics. Molecular Ecology Notes. 5:184-186

read.fstat.data

Examples

read.fstat(paste(path.package("hierfstat"),"/extdata/diploid.dat",sep="",collapse=""))

read.fstat.data Reads data from a FSTAT file

Description

Imports a *FSTAT* data file into R. The data frame created is made of nl+1 columns, nl being the number of loci. The first column corresponds to the Population identifier, the following columns contains the genotypes of the individuals.

Usage

read.fstat.data(fname, na.s = c("0","00","0000","00000","000000","NA"))

Arguments

fname	a file in the FSTAT format (http://www.unil.ch/popgen/softwares/fstat. htm): The file must have the following format:
	The first line contains 4 numbers: the number of samples, np, the number of loci, n1, the highest number used to label an allele, nu, and a 1 if the code for alleles is a one digit number (1-9), a 2 if code for alleles is a 2 digit number (01-99) or a 3 if code for alleles is a 3 digit number (001-999). These 4 numbers need to be separated by any number of spaces.
	The first line is immediately followed by nl lines, each containing the name of a locus, in the order they will appear in the rest of the file.
	On line n1+2, a series of numbers as follow:
	1 0102 0103 0101 0203 0 0303
	The first number identifies the sample to which the individual belongs, the sec- ond is the genotype of the individual at the first locus, coded with a 2 digits number for each allele, the third is the genotype at the second locus, until locus nl is entered (in the example above, n1=6). Missing genotypes are encoded with 0, 00, 00000, 000000 or NA. Note that 0001 or 0100 are not a valid format, as both alleles at a locus have to be known, otherwise, the genotype is considered as missing. No empty lines are needed between samples.
na.s	The strings that correspond to the missing value. <i>You should note have to change this</i>

Value

a data frame containing the desired data, in a format adequate to pass to varcomp

References

Goudet J. (1995). FSTAT (Version 1.2): A computer program to calculate F- statistics. Journal of Heredity 86:485-486

Goudet J. (2005). Hierfstat, a package for R to compute and test variance components and F-statistics. Molecular Ecology Notes. 5:184-186

Examples

read.fstat.data(paste(path.package("hierfstat"),"/extdata/diploid.dat",sep="",collapse=""))

read.ms	Read data generated by Hudson ms program Read data generated by
	Rhrefhttp://home.uchicago.edu/rhudson1/source/mksamples.htmlHudson
	ms program, either as Haplotypes or as SNPs.

Description

With argument what="SNP", each site is read as a SNP, with the ancestral allele encoded as 0 and the alternate allele encoded as 1. If the ms output file contains several replicates, the different replicates will be collated together. Hence, the number of loci is the sum of all sites from all replicates.

Usage

read.ms(fname,what=c("SNP","Haplotype"))

Arguments

fname	file name containing ms output
what	whether to read ms output as SNPs or haplotypes

Details

With argument what="Haplotype", each different sequence from a replicate is read as a haplotype, by converting it first to a factor, and then to an integer. There will be as many loci as there are replicates, and the number of alleles per locus will be the number of different haplotypes in the corresponding replicate.

Value

alldat a data frame with nloc+1 columns, the first being the population to which the individual belongs and the next being the genotypes, one column per locus; and one row per (haploid) individual.

Author(s)

Jerome Goudet < jerome.goudet@unil.ch>

read.VCF

References

Hudson, R. R. (2002) Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics 18 : 337-338.

Examples

```
## Not run:
datH<-read.ms(system.file("extdata","2pops_asspop.txt",package="hierfstat"),what="Haplotype")
dim(datH)
head(datH[,1:10]
datS<-read.ms(system.file("extdata","2pops_asspop.txt",package="hierfstat"),what="SNP")
dim(datS)
head(datS[,1:10])
```

End(Not run)

read.VCF

Reads a VCF file into a BED object

Description

Reads a https://samtools.github.io/hts-specs/Variant Call Format (VCF) file into a BED object, retaining bi-allelic SNPs only

Usage

```
read.VCF(fname,BiAllelic=TRUE,...)
```

Arguments

fname	VCF file name. The VCF file can be compressed (VCF.gz)
BiAllelic	Logical. If TRUE, only bi-allelic SNPs are retained, otherwise, all variant are
	kept
	other arguments to pass to the function

Value

A bed.matrix-class object

See Also

read.vcf

```
filepath <-system.file("extdata", "LCT.vcf.gz", package="gaston")
x1 <- read.VCF( filepath )
x1</pre>
```

samp.between

Description

Used to generate a permutation of a sequence 1:length(lev). blocks of observations are permutted, according to the vector lev passed to the function.

Usage

samp.between(lev)

Arguments

lev a vector containing the groups to be permuted.

Value

a vector 1:length(lev) (with blocks defined by data) randomly permuted. Usually, one passes the result to reorder observations in a data set in order to carry out permutation-based tests

Author(s)

Jerome Goudet, DEE, UNIL, CH-1015 Lausanne Switzerland

<jerome.goudet@unil.ch>

References

Goudet J. (2005). Hierfstat, a package for R to compute and test variance components and F-statistics. Molecular Ecology Notes. 5:184-186

See Also

samp.within,g.stats.glob.

```
samp.between(rep(1:4,each=4))
#for an application see example in g.stats.glob
```

Description

Used to generate a permutation of a sequence 1:length(inner.lev). blocks of observations defined by inner.lev are permutted within blocks defined by outer.lev

Usage

samp.between.within(inner.lev, outer.lev)

Arguments

inner.lev	a vector containing the groups to be permuted.
outer.lev	a vector containing teh blocks within which observations are to be kept.

Value

a vector 1:length(lev) (with blocks defined by data) randomly permuted. Usually, one passes the result to reorder observations in a data set in order to carry out permutation-based tests

See Also

test.between.within.

samp.within

Shuffles a sequence within groups defined by the input vector

Description

Used to generate a permutation of a sequence 1:length(lev). observations are permutted within blocks, according to the vector lev passed to the function.

Usage

```
samp.within(lev)
```

Arguments

```
lev
```

a vector containing the group to which belongs the observations to be permuted.

Value

a vector 1:length(lev) (with blocks defined by

lev

) randomly permuted. Usually, one passes the result to reorder observations in a data set in order to carry out permutation-based tests.

Author(s)

Jerome Goudet, DEE, UNIL, CH-1015 Lausanne Switzerland <jerome.goudet@unil.ch>

References

Goudet J. (2005). Hierfstat, a package for R to compute and test variance components and F-statistics. Molecular Ecology Notes. 5:184-186

See Also

samp.between,g.stats.glob.

Examples

```
samp.within(rep(1:4,each=4))
#for an application see example in g.stats.glob
```

sexbias.test Test for sex biased dispersal

Description

Test whether one sex disperses more than the other using the method described in Goudet etal. (2002)

Usage

```
sexbias.test(dat,sex,nperm=NULL,test="mAIc",alternative="two.sided")
```

Arguments

dat	a data frame with n.locs+1 columns and n.inds rows
sex	a vector containing the individual's sex
nperm	the number of permutation to carry out
test	one of "mAIc" (default), "vAIc", "FIS" or "FST"
alternative	one of "two.sided" (default), "less" or "greater"

sim.freq

Value

call the function call res the observation for each sex statistic the observed statistic for the chosen test p.value the p-value of the hypothesis

Author(s)

Jerome Goudet < jerome.goudet@unil.ch>

References

Goudet J, Perrin N, Waser P (2002) Tests for sex-biased dispersal using bi-parentally inherited genetic markers 11, 1103:1114

Examples

```
data(crocrussula)
sexbias.test(crocrussula$genot,crocrussula$sex)
dat<-qn2.read.fstat(system.file("extdata","qn2_sex.dat",package="hierfstat"))
sexbias.test(dat[[1]],sex=dat[[2]])
## Not run:
sexbias.test(crocrussula$genot,crocrussula$sex,nperm=1000)
sexbias.test(dat[[1]],sex=dat[[2]],nperm=100,test="FST",alternative="greater")</pre>
```

End(Not run)

sim.freq

Simulates frequencies, for internal use only

Description

Simulates frequencies, for internal use only

sim.genot

Simulates genotypes in an island model at equilibrium

Description

Simulates genotypes from several individuals in several populations at several loci in an island model at equilibrium. The islands may differ in size and inbreeding coefficients.

Usage

sim.genot(size=50,nbal=4,nbloc=5,nbpop=3,N=1000,mig=0.001,mut=0.0001,f=0)

Arguments

size	The number of individuals to sample per population
nbal	The maximum number of alleles present at a locus
nbloc	The number of loci to simulate
nbpop	The number of populations to simulate
Ν	The population sizes for each island
mig	the proportion of migration among islands
mut	The loci mutation rate
f	the inbreeding coefficient for each island

Value

a data frame with nbpop*size lines and nbloc+1 columns. Individuals are in rows and genotypes in columns, the first column being the population identifier

Author(s)

Jerome Goudet < jerome.goudet@unil.ch>

Examples

```
## Not run:
dat<-sim.genot(nbpop=4,nbal=20,nbloc=10,mig=0.001,mut=0.0001,N=c(100,100,1000,1000),f=0)
betas(dat)$betaiovl
```

End(Not run)

sim.genot.metapop.t Simulate genetic data from a metapopulation model

Description

This function allows to simulate genetic data from a metapopulation model, where each population can have a different size and a different inbreeding coefficient, and migration between each population is given in a migration matrix.

This function simulates genetic data under a migration matrix model. Each population i sends a proportion of migrant alleles m_{ij} to population j and receives a proportion of migrant alleles m_{ji} from population j.

Usage

```
sim.genot.metapop.t(size=50,nbal=4,nbloc=5,nbpop=3,N=1000,
mig=diag(3),mut=0.0001,f=0,t=100)
```

Arguments

size	the number of sampled individuals per population
nbal	the number of alleles per locus (maximum of 99)
nbloc	the number of loci to simulate
nbpop	the number of populations to simulate
Ν	the effective population sizes of each population. If only one number, all populations are assumed to be of the same size
mig	a matrix with nbpop rows and columns giving the migration rate from population i (in row) to population j (in column). Each row must sum to 1.
mut	the mutation rate of the loci
f	the inbreeding coefficient for each population
t	the number of generation since the islands were created

Details

In this model, θ_t can be written as a function of population size N_i , migration rate m_{ij} , mutation rate μ and $\theta_{(t-1)}$.

The rational is as follows:

With probability $\frac{1}{N_i}$, 2 alleles from 2 different individuals in the current generation are sampled from the same individual of the previous generation:

-Half the time, the same allele is drawn from the parent;

-The other half, two different alleles are drawn, but they are identical in proportion $\theta_{(t-1)}$.

-With probability $1 - \frac{1}{N_i}$, the 2 alleles are drawn from different individuals in the previous generation, in which case they are identical in proportion $\theta_{(t-1)}$.

This holds providing that neither alleles have mutated or migrated. This is the case with probability $m_{ii}^2 \times (1-\mu)^2$. If an allele is a mutant, then its coancestry with another allele is 0.

Note also that the mutation scheme assumed is the infinite allele (or site) model. If the number of alleles is finite (as will be the case in what follows), the corresponding mutation model is the K-allele model and the mutation rate has to be adjusted to $\mu' = \frac{K-1}{K}\mu$.

Continue derivation

Value

A data frame with size*nbpop rows and nbloc+1 columns. Each row is an individual, the first column contains the identifier of the population to which the individual belongs, the following nbloc columns contain the genotype for each locus.

Author(s)

Jerome Goudet < jerome.goudet@unil.ch>

Examples

```
#2 populations
psize<-c(10,1000)
mig.mat<-matrix(c(0.99,0.01,0.1,0.9),nrow=2,byrow=TRUE)</pre>
dat<-sim.genot.metapop.t(nbal=10,nbloc=100,nbpop=2,N=psize,mig=mig.mat,mut=0.00001,t=100)
betas(dat)$betaiovl # Population specific estimator of FST
#1D stepping stone
## Not run:
np<-10
m<-0.2
mig.mat<-diag(np)*(1-m)</pre>
diag(mig.mat[-1,-np])<-m/2</pre>
diag(mig.mat[-np,-1])<-m/2</pre>
mig.mat[1,1:2]<-c(1-m/2,m/2)
mig.mat[np,(np-1):np]<-c(m/2,1-m/2)</pre>
dat<-sim.genot.metapop.t(nbal=10,nbloc=50,nbpop=np,mig=mig.mat,t=400)</pre>
pcoa(as.matrix(genet.dist(dat))) # principal coordinates plot
## End(Not run)
```

sim.genot.t

```
Simulate data from a non equilibrium continent-island model
```

Description

This function allows to simulate genetic data from a non-equilibrium continent-island model, where each island can have a different size and a different inbreeding coefficient.

This function simulates genetic data under the continent-islands model (IIM=TRUE) or the finite island model (IIM=FALSE). In the IIM, a continent of infinite size sends migrants to islands of finite sizes N_i at a rate m. Alleles can also mutate to a new state at a rate μ . Under this model, the expected F_{STi} , θ_i , can be calculated and compared to empirical estimates.

Usage

sim.genot.t(size=50,nbal=4,nbloc=5,nbpop=3,N=1000, mig=0.001,mut=0.0001,f=0,t=100,IIM=TRUE)

Arguments

size	the number of sampled individuals per island
nbal	the number of alleles per locus (maximum of 99)
nbloc	the number of loci to simulate
nbpop	the number of islands to simulate

56

Ν	the effective population sizes of each island. If only one number, all islands are assumed to be of the same size
mig	the migration rate from the continent to the islands
mut	the mutation rate of the loci
f	the inbreeding coefficient for each island
t	the number of generation since the islands were created
IIM	whether to simulate a continent island Model (default) or a migrant pool island Model

Details

In this model, θ_t can be written as a function of population size N_i , migration rate m, mutation rate μ and $\theta_{(t-1)}$.

The rational is as follows:

With probability $\frac{1}{N}$, 2 alleles from 2 different individuals in the current generation are sampled from the same individual of the previous generation:

-Half the time, the same allele is drawn from the parent;

-The other half, two different alleles are drawn, but they are identical in proportion $\theta_{(t-1)}$.

-With probability $1-\frac{1}{N}$, the 2 alleles are drawn from different individuals in the previous generation, in which case they are identical in proportion $\theta_{(t-1)}$.

This holds providing that neither alleles have mutated or migrated. This is the case with probability $(1-m)^2 \times (1-\mu)^2$. If an allele is a mutant or a migrant, then its coancestry with another allele is 0 in the infinite continent-islands model (it is not the case in the finite island model).

Note also that the mutation scheme assumed is the infinite allele (or site) model. If the number of alleles is finite (as will be the case in what follows), the corresponding mutation model is the K-allele model and the mutation rate has to be adjusted to $\mu' = \frac{K-1}{K}\mu$.

Lets substitute α for $(1-m)^2(1-\mu)^2$ and x for $\frac{1}{2N}$.

The expectation of F_{ST} , θ can be written as:

$$\theta_t = (\alpha(1-x))^t \theta_0 + \frac{x}{1-x} \sum_{i=1}^t (\alpha(1-x))^i$$

which reduces to $\theta_t = \frac{x}{1-x} \sum_{i=1}^t (\alpha(1-x))^i$ if $\theta_0 = 0$.

Transition equations for *theta* in the migrant-pool island model (IIM=FALSE) are given in Rouseet (1996). Currently, the migrant pool is made of equal contribution from each island, irrespective of their size.

Value

A data frame with size*nbpop rows and nbloc+1 columns. Each row is an individual, the first column contains the island to which the individual belongs, the following nbloc columns contain the genotype for each locus.

Author(s)

Jerome Goudet < jerome.goudet@unil.ch>

References

Rousset, F. (1996) Equilibrium values of measures of population subdivision for stepwise mutation processes. Genetics 142:1357

Examples

```
psize<-c(100,1000,10000,100000)
dat<-sim.genot.t(nbal=4,nbloc=20,nbpop=5,N=psize,mig=0.001,mut=0.0001,t=100)
summary(wc(dat)) #Weir and cockerham overall estimators of FST & FIS
betas(dat) # Population specific estimator of FST</pre>
```

```
subsampind
```

Subsample a FSTAT data frame

Description

Subsample a given number of individuals from a FSTAT data frame

Usage

```
subsampind(dat,sampsize = 10)
```

Arguments

dat	A data frame with population of origin as first column, and genotypes in follow-
	ing columns.
sampsize	the number of individuals to sample in each population.

Value

A data frame with population of origin as first column, and genotypes in following columns. Each population is made of at most sampsize individuals

Author(s)

Jerome Goudet < jerome.goudet@unil.ch>

Examples

```
data(gtrunchier)
subsampind(gtrunchier[,-1],6) # check the warning
```

58

TajimaD.dosage Estimates Tajima's D

Description

Estimates Tajima's D from dosage data

Usage

TajimaD.dosage(dos)

Arguments

dos

a ni X nl dosage matrix containing the number of derived/alternate alleles each individual carries at each SNP

Value

Tajima's D (eqn 38 of Tajima, 1989)

References

Tajima F. 1989 Statistical Method for Testing the Neutral Mutation Hypothesis by DNA Polymorphism. Genetics 123:585-595.

test.between	Tests the significance	of the effect o	f test.lev on	genetic differentiation

Description

Tests the significance of the effect of test.lev on genetic differentiation

Usage

```
test.between(data, test.lev, rand.unit, nperm, ...)
```

Arguments

data	a data frame containing the genotypes for the different loci
test.lev	A vector containing the units from which to construct the contingency tables
rand.unit	A vector containing the assignment of each observation to the units to be per- mutted
nperm	The number of permutations to carry out for the test
	Mainly here to allow passing diploid=FALSE if necessary

Value

g.star	A vector containing all the generated g-statistics, the last one beeing the observed
p.val	The p-value associated with the test

Author(s)

Jerome Goudet < jerome.goudet@unil.ch>

Examples

```
data(gtrunchier)
attach(gtrunchier)
#test whether the locality level has a significant effect on genetic structuring
test.between(gtrunchier[,-c(1,2)],test.lev=Locality,rand.unit=Patch)
```

test.between.within Tests the significance of the effect of test.lev on genetic differentiation

Description

Tests, using permutations of rand.unit within units defined by the vector within the significance of the contingency tables allele X (levels of test.lev)

Usage

```
test.between.within(data, within, test.lev, rand.unit, nperm, ...)
```

Arguments

data	a data frame containing the genotypes for the different loci
within	A vector containing the units in which to keep the observations
test.lev	A vector containing the units from which to construct the contingency tables
rand.unit	A vector containing the assignment of each observation to the units to be per- mutted
nperm	The number of permutations to carry out for the test
	Mainly here to allow passing diploid=FALSE if necessary

Value

g.star	A vector containing all the generated g-statistics, the last one beeing the observed
p.val	The p-value associated with the test

test.g

Author(s)

Jerome Goudet < jerome.goudet@unil.ch>

Examples

```
data(yangex)
attach(yangex)
#tests for the effect of spop on genetic structure
test.between.within(data.frame(genot),within=pop,test=spop,rand=sspop)
```

test.g

Tests the significance of the effect of level on genetic differentiation

Description

Tests the significance of the effect of level on genetic differentiation

Usage

test.g(data = data, level, nperm = 100,...)

Arguments

data	a data frame containing the genotypes for the different loci
level	A vector containing the assignment of each observation to its level
nperm	The number of permutations to carry out for the test
	Mainly here to allow passing diploid=FALSE if necessary

Value

g.star	A vector containing all the generated g-statistics, the last one beeing the ob- served
p.val	The p-value associated with the test

Author(s)

Jerome Goudet < jerome.goudet@unil.ch>

```
data(gtrunchier)
attach(gtrunchier)
test.g(gtrunchier[,-c(1,2)],Locality)
```

test.within

Description

Tests the significance of the effect of inner.level on genetic differentiation within blocks defined by outer.level

Usage

```
test.within(data, within, test.lev, nperm, ...)
```

Arguments

data	a data frame containing the genotypes for the different loci
within	A vector containing the units in which to keep the observations
test.lev	A vector containing the units from which to construct the contingency tables
nperm	The number of permutations to carry out for the test
	Mainly here to allow passing diploid=FALSE if necessary

Value

g.star	A vector containing all the generated g-statistics, the last one beeing the observed
p.val	The p-value associated with the test

Author(s)

Jerome Goudet <jerome.goudet@unil.ch>

```
data(gtrunchier)
attach(gtrunchier)
#tests whether the patch level has a significant effect on genetic structure
test.within(gtrunchier[,-c(1,2)],within=Locality,test.lev=Patch)
```

theta.Watt.dosage Estimates θ _Watterson from dosage data

Description

Estimates $\theta_{Watterson} = S/a$, where S is the number of segregating sites in a set of sequences and $a = 1/\sum_{i=1}^{n-1} i$.

Usage

theta.Watt.dosage(dos,L=NULL)

Arguments

dos	a ni X nl dosage matrix containing the number of derived/alternate alleles each individual carries at each SNP
L	the length of the sequence

Value

if L=NULL (default), returns $\theta_{Watterson}$, else return $\theta_{Watterson}/L$

Estimates variance components for each allele of a locus

Description

Estimates variance components for each allele for a (fully) hierarchical random design defined by all but the last column of the data frame data, the last column containing the genetic data to analyse. Columns for the hierarchical design should be given from the outermost to the innermost before the individual (e.g. continent, region, population, patch,...)

Usage

```
varcomp(data,diploid=TRUE)
```

Arguments

data	a data frame that contains the different factors from the outermost (e.g. region) to the innermost before the individual. the last column of the data frame 'data' contains the locus to analyse, which can be multiallelic. Missing data are allowed.
diploid	a boolean stating whether the data come from diploid (TRUE=default) or hap- loid (FALSE) organisms

Details

The format for genotypes is simply the code for the 2 alleles put one behind the other, without space in between. For instance if allele 1 at the locus has code 23 and allele 2 39, the genotype format is 2339.

Value

df	the degrees of freedom for each level
k	the k matrix, the coefficients associated with the variance components
res	the variance components for each allele
overall	the variance components summed over alleles
F	a matrix of hierarchical F-statistics type-coefficients with the first line corresponding to $F_{(n-1)/n}$, $F_{(n-2)/n}$ $F_{i/n}$ and the diagonal corresponding to $F_{(n-1)/n}$, $F_{(n-2)/(n-1)}$, $F_{i/2}$

Author(s)

Jerome Goudet, DEE, UNIL, CH-1015 Lausanne Switzerland

<jerome.goudet@unil.ch>

http://www.unil.ch/popgen/people/jerome.htm

References

Goudet J. (2005). Hierfstat, a package for R to compute and test variance components and F-statistics. Molecular Ecology Notes. 5:184-186

Weir, B.S. (1996) Genetic Data Analysis II. Sinauer Associates.

Yang, R.C. (1998). Estimating hierarchical F-statistics. Evolution 52(4):950-956

See Also

varcomp.glob.

```
#load data set
data(gtrunchier)
attach(gtrunchier)
#
varcomp(data.frame(Locality,Patch,L21.V))
```

varcomp.glob

Description

Return multilocus estimators of variance components and F-statistics

Usage

```
varcomp.glob(levels=levels,loci=loci,diploid=TRUE)
```

Arguments

levels	a data frame containing the different levels (factors) from the outermost (e.g. region) to the innermost before the individual
loci	a data frame containing the different loci
diploid	Specify whether the data are coming from diploid or haploid organisms (diploid is the default)

Value

loc	The variance components for each locus
overall	The variance components summed over all loci
F	a matrix of hierarchical F-statistics type-coefficients with the first line corresponding to $F_{(n-1)/n}$, $F_{(n-2)/n}$ $F_{i/n}$ and the diagonal corresponding to $F_{(n-1)/n}$, $F_{(n-2)/(n-1)}$, $F_{i/2}$

Author(s)

Jerome Goudet DEE, UNIL, CH-1015 Lausanne Switzerland <jerome.goudet@unil.ch>

References

Weir, B.S. (1996) Genetic Data Analysis II. Sinauer Associates.

Yang, R.C. (1998). Estimating hierarchical F-statistics. Evolution 52(4):950-956

Goudet J. (2005). Hierfstat, a package for R to compute and test variance components and F-statistics. Molecular Ecology Notes. 5:184-186

See Also

varcomp.

vec2mat

Examples

```
#load data set
data(gtrunchier)
attach(gtrunchier)
varcomp.glob(data.frame(Locality,Patch),gtrunchier[,-c(1,2)])
```

vec2mat

Fills a triangular matrix from the inputed vector

Description

Fills a triangular matrix from the inputed vector

Usage

vec2mat(x,diag=FALSE,upper=FALSE)

Arguments

х	a vector
diag	whether the vector contains the diagonal elements
upper	whether the vector contains the upper trinagular matrix elements

Value

a matrix

Examples

```
{
  vec2mat(1:10)
  vec2mat(1:10,diag=TRUE)
  vec2mat(1:10,upper=TRUE)
}
```

66

67

WC

Description

Computes Weir and Cockerham estimates of Fstatistics

Usage

```
wc(ndat,diploid=TRUE,pol=0.0)
```

S3 method for class 'wc'
print(x,...)

Arguments

ndat	data frame with first column indicating population of origin and following rep- resenting loci
diploid	Whether data are diploid
pol	level of polymorphism reqesuted for inclusion. Note used for now
x	an object of class we
	further arguments to pass to print.wc

Value

sigma	variance components of allele frequencies for each allele, in the order among populations, among individuals within populations and within individuals
sigma.loc	variance components per locus
per.al	FST and FIS per allele
per.loc	FST and FIS per locus
FST	FST overall loci
FIS	FIS overall loci

Author(s)

Jerome Goudet < jerome.goudet@unil.ch>

```
data(gtrunchier)
wc(gtrunchier[,-1])
```

write.bayescan

Description

write the genotypes in a format suitable for analysis with bayescan

Usage

```
write.bayescan(dat=dat,diploid=TRUE,fn="dat.bsc")
```

Arguments

dat	a genotype data frame
diploid	whether the dataset is diploid or haploid
fn	file name for output

Value

a text file fn is written in the current directory

Author(s)

Jerome Goudet <jerome.goudet@unil.ch>

References

Foll M and OE Gaggiotti (2008) Genetics 180: 977-993 http://cmpg.unibe.ch/software/BayeScan/

write.fstat Write an Fstat data file

Description

Write a data frame to a text file in the fstat data format, see read.fstat

Usage

```
write.fstat(dat,fname="genotypes.dat")
```

Arguments

dat	A data frame with first column containing the population identifier and remain-
	ing columns containing genotypes
fname	The name of teh text file to which the data frame should be written

write.ped

Value

None

Author(s)

Jerome Goudet

References

Goudet J. (1995). FSTAT (Version 1.2): A computer program to calculate F- statistics. Journal of Heredity 86:485-486

Examples

```
## Not run: data(gtrunchier)
write.fstat(gtrunchier[,-1],"galba.dat")
```

End(Not run)

write.ped

Write ped file for analyses with PLINK

Description

write a ped and a map file suitable for analysis with PLINK

Usage

Arguments

dat	a hierfstat data frame. if pop=NULL, the first column should contain the popu- lation identifier, otherwise it contains genotypes at the first locus
ilab	individual labels
рор	population id
fname	filename for ped file
na.str	character string to use for missing values
f.id	father id. default to unknown
m.id	mother id. default to unknown
loc.pos	the loci position default to unknown
sex	the individual sex. default to unknown

Value

a map file containing the loci positions a ped file containing genotypes etc...

References

Chang et al. (2015) Second-generation PLINK: rising to the challenge of larger and richer datasets

write.struct Write structure file

Description

Write a genotype data set to a file in the structure format

Usage

```
write.struct(dat,ilab=NULL,pop=NULL,MARKERNAMES=FALSE,MISSING=-9,fname="dat.str")
```

Arguments

dat	a genotype dataframe
ilab	an (optional) column with individual labels
рор	an (optional) column with population identifiers
MARKERNAMES	whether to add a row with marker names. If TRUE, takes the loci names from dat
MISSING	The code for missing alleles
fname	a string containing the file name (default to "dat.str")

Value

a text file in the structure format

Author(s)

Jerome Goudet < jerome.goudet@unil.ch>

References

Pritchard JK etal. 2000. Inference of population structure using multilocus genotype data. Genetics 155:945-959

yangex

Description

Reproduce the example data set used in Yang's paper appendix. The genotype (column genot) is invented

Usage

data(exhier)

Value

рор	outermost level
spop	sub pop level
sspop	sub sub pop level
genot	dummy diploid genotype

References

Yang, R.C. (1998). Estimating hierarchical F-statistics. Evolution 52(4):950-956

Examples

data(yangex)
varcomp(yangex)
#the k matrix should be the same as matrix (A2) in Yang's appendix, p. 956

Index

* **IO** write.fstat,68 * datasets cont.isl, 16 cont.is199,17 crocrussula, 17 diploid, 18 exhier, 19 gtrunchier, 30yangex, 71 * distance genet.dist, 24 * manip genot2al, 27 getal, 28 getal.b, 28 read.fstat,46 read.fstat.data,47 samp.between, 50 samp.between.within, 51 samp.within, 51 * miscellaneous write.struct, 70 * misc hierfstat, 31 * multivariate indpca, 32 * nonparametric test.between, 59 test.between.within, 60 test.g, 61 test.within, 62 * univar allele.count,4 allelic.richness, 5 basic.stats, 6 boot.ppfis, 13 boot.vc, 15 g.stats, 22

g.stats.glob, 23 ind.count, 32 nb.alleles, 38 pop.freq, 42 pp.fst,43 pp.sigma.loc,44 print.pp.fst,44 varcomp, 63 varcomp.glob, 65 wc. 67 * utilities subsampind, 58 AIc, 3 allele.count, 4 allelic.richness, 5 basic.stats, 6, 39, 40 beta.dosage, 8, 11 betas, 9, 12, 20 biall2dos, 11 boot.ppbetas, 12 boot.ppfis, 13 boot.ppfst, 14 boot.vc, 15cont.isl, 16 cont.is199,17 crocrussula, 17 diploid, 18 exhier, 19 fis.dosage(fs.dosage), 19 fs.dosage, 11, 19 fst.dosage(fs.dosage), 19 fstat2dos, 8, 21, 36 g.stats, 22, 23 g.stats.glob, 22, 23, 50, 52

INDEX

genet.dist, 24, 40, 41 genind2hierfstat, 26 genot2al, 27 getal, 28 getal.b, 28 grm2kinship, 29 gtrunchier, 30 hierfstat, 31 Ho (basic.stats), 6 Hs (basic.stats), 6 ind.count, 8, 32 indpca, 32kinship2dist, 33 kinship2grm, 34 kinshipShift, 35 mat2vec, 35 matching, 8, 36 ms2bed, 37ms2dos, 37 nb.alleles, 38 pairwise.betas, 12, 38 pairwise.fst.dosage(fs.dosage), 19 pairwise.neifst, 25, 26, 39, 41 pairwise.WCfst, 25, 26, 40, 40 pcoa, 41 pi.dosage, 42 plot.fs.dosage(fs.dosage), 19 plot.indpca(indpca), 32 pop.freq, 8, 42 pp.fst, 25, 43 pp.sigma.loc, 44 print.basic.stats(basic.stats), 6 print.betas (betas), 9 print.boot.ppfst(boot.ppfst), 14 print.fs.dosage(fs.dosage), 19 print.indpca(indpca), 32 print.pp.fst,44 print.wc(wc), 67 qn2.read.fstat, 45 read.fstat.45.46

read.fstat.data,47 read.ms, 48

read.vcf, 49 samp.between, 23, 50, 52 samp.between.within, 51 samp.within, 23, 50, 51 sexbias.test, 52 sim.freq, 53 sim.genot, 53 sim.genot.metapop.t, 54 sim.genot.t, 56 subsampind, 58

read.VCF, 49

TajimaD.dosage, 59 test.between, 59 test.between.within, 51, 60 test.g, 61 test.within, 62 theta.Watt.dosage, 63

varcomp, 27, 63, 65 varcomp.glob, 15, 64, 65 vec2mat, 66

wc, 40, 67 write.bayescan, 68 write.fstat, 68 write.ped, 69 write.struct, 70

yangex, 71