Package 'guidedPLS'

May 12, 2023

Type Package

Title Supervised Dimensional Reduction by Guided Partial Least Squares

Version 1.0.0

Depends R (>= 3.4.0)

Imports irlba

Suggests fields, knitr, rmarkdown, testthat

Description Guided partial least squares (guided-

PLS) is the combination of partial least squares by singular value decomposition (PLS-

SVD) and guided principal component analysis (guided-

PCA). For the details of the methods, see the reference section of GitHub README.md <https://github.com/rikenbit/guidedPLS>.

License MIT + file LICENSE

URL https://github.com/rikenbit/guidedPLS

VignetteBuilder knitr

NeedsCompilation no

Author Koki Tsuyuzaki [aut, cre]

Maintainer Koki Tsuyuzaki <k.t.the-answer@hotmail.co.jp>

Repository CRAN

Date/Publication 2023-05-12 03:30:02 UTC

R topics documented:

idedPLS-package	. 2
mmyMatrix	. 3
idedPLS	. 4
SSVD	. 5
ftThr	. 6
LSDA	. 7
/Model	. 8
	9

Index

guidedPLS-package

Description

Guided partial least squares (guided-PLS) is the combination of partial least squares by singular value decomposition (PLS-SVD) and guided principal component analysis (guided-PCA). For the details of the methods, see the reference section of GitHub README.md https://github.com/rikenbit/guidedPLS>.

Details

The DESCRIPTION file:

Package:	guidedPLS
Type:	Package
Title:	Supervised Dimensional Reduction by Guided Partial Least Squares
Version:	1.0.0
Authors@R:	c(person("Koki", "Tsuyuzaki", role = c("aut", "cre"), email = "k.t.the-answer@hotmail.co.jp"))
Depends:	R (>= 3.4.0)
Imports:	irlba
Suggests:	fields, knitr, rmarkdown, testthat
Description:	Guided partial least squares (guided-PLS) is the combination of partial least squares by singular value deco
License:	MIT + file LICENSE
URL:	https://github.com/rikenbit/guidedPLS
VignetteBuilder:	knitr
Author:	Koki Tsuyuzaki [aut, cre]
Maintainer:	Koki Tsuyuzaki <k.t.the-answer@hotmail.co.jp></k.t.the-answer@hotmail.co.jp>

Index of help topics:

dummyMatrix	Toy model data for using dNMF, dSVD, dsiNMF,
	djNMF, dPLS, dNTF, and dNTD
guidedPLS	Guided Partial Least Squares (guied-PLS)
guidedPLS-package	Supervised Dimensional Reduction by Guided
	Partial Least Squares
PLSSVD	Partial Least Squares by Singular Value
	Decomposition (PLS-SVD)
softThr	Soft-thresholding to make a sparse vector
	sparse
sPLSDA	Sparse Partial Least Squares Discriminant
	Analysis (sPLS-DA)
toyModel	Toy model data for using PLSSVD, sPLSDA, and
	guidedPLS

dummyMatrix

Author(s)

NA Maintainer: NA

References

Le Cao, et al. (2008). A Sparse PLS for Variable Selection when Integrating Omics Data. *Statistical Applications in Genetics and Molecular Biology*, 7(1)

Reese S E, et al. (2013). A new statistic for identifying batch effects in high-throughput genomic data that uses guided principal component analysis. *Bioinformatics*, 29(22), 2877-2883

See Also

toyModel,PLSSVD,sPLSDA,guidedPLS

Examples

```
ls("package:guidedPLS")
```

dummyMatrix	Toy model data for using dNMF, dSVD, dsiNMF, djNMF, dPLS, dNTF,
	and dNTD

Description

A label vector is converted to a dummy matrix.

Usage

dummyMatrix(y, center=TRUE)

Arguments

У	A label vector to specify the group of data.
center	An option to center the rows of matrix (Default: TRUE).

Value

A matrix is generated. The number of row is equal to the length of y and the number of columns is the number of unique elements of y.

Author(s)

Koki Tsuyuzaki

Examples

y <- c(1, 3, 2, 1, 4, 2) dummyMatrix(y) guidedPLS

Description

Four matrices X1, X2, Y1, and Y2 are required. X1 and Y1 are supposed to share the rows, X2 and Y2 are supposed to share the rows, and Y1 and Y2 are supposed to share the columns.

Usage

Arguments

X1	The input matrix which has N-rows and M-columns.
Y1	The input matrix which has N-rows and L-columns.
X2	The input matrix which has O-rows and P-columns.
Y2	The input matrix which has O-rows and L-columns.
k	The number of low-dimension (k < N, M, L, O, Default: .minDim(X1, X2, Y1, Y2))
cortest	If cortest is set as TRUE, t-test of correlation coefficient is performed (Default: FALSE)
fullrank	If fullrank is set as TRUE, irlba is used, otherwise fullrank SVD is used (Default: TRUE)
verbose	Verbose option (Default: FALSE)

Value

res: object of svd() loadingYX1: Loading vector to project X1 to lower dimension via Y1 (M times k). loadingYX2: Loading vector to project X2 to lower dimension via Y2 (P times k). scoreX1: Projected X1 (N times k) scoreX2: Projected X2 (O times k) scoreYX1: Projected YX1 (L times k) scoreYX2: Projected YX2 (L times k) corYX1: Correlation Coefficient (Default: NULL) corYX2: Correlation Coefficient (Default: NULL) pvalYX1: P-value vector of corYX1 (Default: NULL) pvalYX2: P-value vector of corYX2 (Default: NULL) qvalYX1: Q-value vector of BH method against pvalYX1 (Default: NULL) qvalYX2: Q-value vector of BH method against pvalYX2 (Default: NULL)

Author(s)

Koki Tsuyuzaki

PLSSVD

References

Le Cao, et al. (2008). A Sparse PLS for Variable Selection when Integrating Omics Data. *Statistical Applications in Genetics and Molecular Biology*, 7(1)

Reese S E, et al. (2013). A new statistic for identifying batch effects in high-throughput genomic data that uses guided principal component analysis. *Bioinformatics*, 29(22), 2877-2883

Examples

```
# Test data
data <- toyModel()
# Simple usage
out <- guidedPLS(X1=data$X1, X2=data$X2, Y1=data$Y1, Y2=data$Y2, k=4)</pre>
```

PLSSVD

Partial Least Squares by Singular Value Decomposition (PLS-SVD)

Description

Two matrices X and Y sharing a row are required

Usage

```
PLSSVD(X, Y, k=.minDim(X, Y), cortest=FALSE,
    deflation=FALSE, fullrank=TRUE, verbose=FALSE)
```

Arguments

Х	The input matrix which has N-rows and M-columns.
Y	The input matrix which has N-rows and L-columns.
k	The number of low-dimension ($k < N, M, L$, Default: .minDim(X, Y))
cortest	If cortest is set as TRUE, t-test of correlation coefficient is performed (Default: FALSE)
deflation	If deflation is set as TRUE, the score vectors are made orthogonal, otherwise the loading vectors are made orthogonal (Default: FALSE)
fullrank	If fullrank is set as TRUE, irlba is used, otherwise fullrank SVD is used (Default: TRUE)
verbose	Verbose option (Default: FALSE)

Value

scoreX : Score matrix which has M-rows and K-columns. loadingX : Loading matrix which has N-rows and K-columns. scoreY : Score matrix which has L-rows and K-columns. loadingY : Loading matrix which has N-rows and K-columns. d : K-length singular value vector of the cross-product matrix X'Y. corX: Correlation Coefficient (Default: NULL) corY: Correlation Coefficient (Default: NULL) pvalX: P-value vector of corX (Default: NULL) pvalY: P-value vector of corY (Default: NULL) qvalX: Q-value vector of BH method against pvalX (Default: NULL) qvalY: Q-value vector of BH method against pvalX (Default: NULL) qvalY: Q-value vector of BH method against pvalX (Default: NULL) qvalY: Q-value vector of BH method against pvalY (Default: NULL)

Author(s)

Koki Tsuyuzaki

References

Le Cao, et al. (2008). A Sparse PLS for Variable Selection when Integrating Omics Data. *Statistical Applications in Genetics and Molecular Biology*, 7(1)

Examples

```
# Test data
data <- toyModel()
# Simple usage
out <- PLSSVD(X=data$X1, Y=data$Y1, k=4)</pre>
```

```
softThr
```

Soft-thresholding to make a sparse vector sparse

Description

The degree of the sparseness of vector is controlled by the lambda parameter.

Usage

softThr(y, lambda=1)

Arguments

У	A numerical vector.
lambda	Threshold value to convert a value 0. If the absolute value of an element of vector is less than lambda, the value is converted to 0 (Default: 1).
	vector is less than lambda, the value is converted to 0 (Default: 1).

Value

A numerical vector, whose length is the same as that of y.

Author(s)

Koki Tsuyuzaki

Examples

y <- seq(-2, 2, 0.1)
softThr(y)</pre>

sPLSDA

Description

Two matrices X and Y sharing a row are required

Usage

```
sPLSDA(X, Y, k=.minDim(X, Y), cortest=FALSE, lambda=1, thr=1e-10, fullrank=TRUE,
num.iter=10, verbose=FALSE)
```

Arguments

Х	The input matrix which has N-rows and M-columns.
Y	The input matrix which has N-rows and L-columns.
k	The number of low-dimension ($k < N, M, L$, Default: .minDim(X, Y))
cortest	If cortest is set as TRUE, t-test of correlation coefficient is performed (Default: FALSE)
lambda	Penalty parameter to control the sparseness of u and v. The larger the value, the sparser the solution (Default: 1).
thr	Threshold to stop the iteration (Default: 1e-10).
fullrank	If fullrank is set as TRUE, irlba is used, otherwise fullrank SVD is used (Default: TRUE)
num.iter	The number of iterations in each rank (Default: 10)
verbose	Verbose option (Default: FALSE)

Value

scoreX : Score matrix which has M-rows and K-columns. loadingX : Loading matrix which has N-rows and K-columns. scoreY : Score matrix which has L-rows and K-columns. loadingY : Loading matrix which has N-rows and K-columns. d : K-length singular value vector of the cross-product matrix X'Y. corX: Correlation Coefficient (Default: NULL) corY: Correlation Coefficient (Default: NULL) pvalX: P-value vector of corX (Default: NULL) pvalY: P-value vector of corY (Default: NULL) qvalX: Q-value vector of BH method against pvalX (Default: NULL) qvalY: Q-value vector of BH method against pvalX (Default: NULL) qvalY: Q-value vector of BH method against pvalX (Default: NULL) qvalY: Q-value vector of BH method against pvalY (Default: NULL)

Author(s)

Koki Tsuyuzaki

References

Le Cao, et al. (2008). A Sparse PLS for Variable Selection when Integrating Omics Data. *Statistical Applications in Genetics and Molecular Biology*, 7(1)

Examples

```
# Test data
data <- toyModel()
# Simple usage
out <- sPLSDA(X=data$X1, Y=data$Y1, k=4)</pre>
```

```
toyModel
```

Toy model data for using PLSSVD, sPLSDA, and guidedPLS

Description

The data is used for confirming the algorithm are properly working.

Usage

```
toyModel(model="Easy", seeds=123)
```

Arguments

model	"Easy" and "Hard" are available (Default: "Easy").
seeds	Random number for setting set.seeds in the function (Default: 123)

Value

A list object containing a set of matrices X1, X2, Y1, Y1_dummy, Y2, Y1_dummy.

Author(s)

Koki Tsuyuzaki

See Also

PLSSVD,sPLSDA,guidedPLS

Examples

data <- toyModel(seeds=123)</pre>

8

Index

* methods dummyMatrix, 3 guidedPLS, 4 PLSSVD, 5 softThr, 6 sPLSDA, 7 toyModel, 8 * package guidedPLS-package, 2 dummyMatrix, 3 guidedPLS, 3, 4, 8 guidedPLS-package, 2 PLSSVD, 3, 5, 8 softThr, 6

sPLSDA, 3, 7, 8

toyModel, 3, 8