--- title: "get_data" author: "Xiaohao Yang" vignette: > %\VignetteIndexEntry{get data} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- # Donwload multi-band data from Greenspace Seasonality Data Cube with specified area/point of inerest Downloading data may take more than 5 minutes. ### By bounding box ```{r eval=FALSE} gs <- greenSD::get_gsdc(bbox = c(-83.272828,42.343950,-83.218926,42.379719), year = 2022, mask = TRUE) ``` ### By place name ```{r eval=FALSE} gs <- greenSD::get_gsdc(place = 'Detroit', year = 2022) ``` ### By coordinates (point) ```{r eval=FALSE} gs <- greenSD::get_gsdc(location = c(-83.10215 42.38342), year = 2022) ``` ### By UID and time range ```{r eval=FALSE} # check UID greenSD::check_available_cities() gs <- greenSD::get_gsdc(UID = 1825, year = 2022, time = c("03-01", "09-01")) ``` # Download ESA WorldCover 10m Annual Dataset ### Get NDVI data by place name ```{r eval=FALSE} ndvi <- greenSD::get_esa_wc(place = 'Detroit', datatype = "ndvi") ``` ### Get land cover data from ESA WorldCover 10m dataset ```{r eval=FALSE} lc <- greenSD::get_esa_wc(place = 'Detroit', datatype = "landcover") ``` # Retrieve Sentinel-2-l2a images and compute NDVI ```{r eval=FALSE} ndvi <- greenSD::get_s2a_ndvi(bbox = c(-83.087174,42.333373,-83.042542,42.358748), datetime = c("2022-08-01", "2022-09-01"), cloud_cover = 5, output_bands = NULL) ``` # Get the greenspace segmentation from map tiles ```{r eval=FALSE} # from Esri.WorldImagery map tiles green <- greenSD::get_tile_green(bbox = c(-83.087174,42.333373,-83.042542,42.358748), provider = "esri", zoom = 16) # from Sentinel-2 cloudless mosaic tiles greenspace2 <- greenSD::get_tile_green(bbox = c(-83.087174,42.333373,-83.042542,42.358748), zoom = 17, provider = "eox", year = 2022) ``` # Extract values from Greenspace Seasonality Data Cube with samples You can extract seasonal greenspace values at multiple point locations within a city boundary. ```{r eval=FALSE} boundary <- greenSD::check_urban_boundary(uid = 1825, plot = FALSE) samples <- sf::st_sample(boundary, size = 50) gs_samples <- greenSD::sample_values(samples, year = 2022) ``` # Visualize Seasonal Greenspace Dynamics as an Animated GIF The `to_gif()` function converts a multi-band raster (e.g., greenspace bands across the growing season) into an animated GIF for quick visual exploration. ```{r eval=FALSE} # Load example data (or use `gs` from previous step) sample_data <- terra::rast(system.file("extdata", "detroit_gs.tif", package = "greenSD")) # Generate GIF gif <- greenSD::to_gif( r = sample_data, fps = 5, width = 600, height = 600, axes = FALSE, title_prefix = paste("greenspace - Day", 1:terra::nlyr(sample_data) * 10) ) # Display in RStudio Viewer or save print(gif) # To save the GIF manually: magick::image_write(gif, "greenspace_animation.gif") ```