
Package ‘graphlayouts’
January 23, 2025

Title Additional Layout Algorithms for Network Visualizations

Version 1.2.2

Description
Several new layout algorithms to visualize networks are provided which are not part of 'igraph'.
Most are based on the concept of stress majorization by Gansner et al. (2004) <doi:10.1007/978-
3-540-31843-9_25>.
Some more specific algorithms allow the user to emphasize hidden group structures in net-
works or focus on specific nodes.

URL https://github.com/schochastics/graphlayouts,

https://schochastics.github.io/graphlayouts/

BugReports https://github.com/schochastics/graphlayouts/issues

Depends R (>= 3.6.0)

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Imports igraph (>= 2.0.0), Rcpp

Suggests testthat, ggplot2, uwot, oaqc

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 7.3.2

NeedsCompilation yes

Author David Schoch [aut, cre] (<https://orcid.org/0000-0003-2952-4812>)

Maintainer David Schoch <david@schochastics.net>

Repository CRAN

Date/Publication 2025-01-23 16:20:06 UTC

Contents
annotate_circle . 2
draw_circle . 3

1

https://doi.org/10.1007/978-3-540-31843-9_25
https://doi.org/10.1007/978-3-540-31843-9_25
https://github.com/schochastics/graphlayouts
https://schochastics.github.io/graphlayouts/
https://github.com/schochastics/graphlayouts/issues
https://orcid.org/0000-0003-2952-4812

2 annotate_circle

graph_manipulate . 4
layout_as_metromap . 5
layout_backbone . 6
layout_centrality . 7
layout_centrality_group . 9
layout_constrained_stress . 10
layout_constrained_stress3D . 11
layout_dynamic . 13
layout_fixed_coords . 14
layout_focus . 15
layout_focus_group . 16
layout_manipulate . 18
layout_multilevel . 19
layout_pmds . 21
layout_sparse_stress . 22
layout_spectral . 23
layout_stress . 24
layout_stress3D . 26
layout_umap . 27
metro_berlin . 28
multilvl_ex . 28

Index 29

annotate_circle annotate concentric circles

Description

annotate concentric circles

Usage

annotate_circle(cent, col = "#00BFFF", format = "", pos = "top", text_size = 3)

Arguments

cent centrality scores used for layout

col color of text

format either empty string or ’scientific’

pos position of text (’top’ or ’bottom’)

text_size font size for annotations

Details

this function is best used with layout_with_centrality together with draw_circle.

draw_circle 3

Value

annotated concentric circles around origin

Examples

library(igraph)

g <- sample_gnp(10, 0.4)
Not run:
library(ggraph)
ggraph(g, layout = "centrality", centrality = closeness(g)) +

draw_circle(use = "cent") +
annotate_circle(closeness(g), pos = "bottom", format = "scientific") +
geom_edge_link() +
geom_node_point(shape = 21, fill = "grey25", size = 5) +
theme_graph() +
coord_fixed()

End(Not run)

draw_circle Draw concentric circles

Description

Draw concentric circles

Usage

draw_circle(col = "#00BFFF", use = "focus", max.circle)

Arguments

col color of circles

use one of ’focus’ or ’cent’

max.circle if use = ’focus’ specifies the number of circles to draw

Details

this function is best used with a concentric layout such as layout_with_focus and layout_with_centrality.

Value

concentric circles around origin

4 graph_manipulate

Examples

library(igraph)
g <- sample_gnp(10, 0.4)

Not run:
library(ggraph)
ggraph(g, layout = "centrality", centrality = degree(g)) +

draw_circle(use = "cent") +
geom_edge_link() +
geom_node_point(shape = 21, fill = "grey25", size = 5) +
theme_graph() +
coord_fixed()

End(Not run)

graph_manipulate Manipulate graph

Description

functions to manipulate a graph

Usage

reorder_edges(g, attr, desc = TRUE)

Arguments

g igraph object

attr edge attribute name used to sort edges

desc logical. sort in descending (default) or ascending order

Details

reorder_edges() allows to reorder edges according to an attribute so that edges are drawn in the
given order.

Value

manipulated graph

Author(s)

David Schoch

layout_as_metromap 5

Examples

library(igraph)

g <- sample_gnp(10, 0.5)
E(g)$attr <- 1:ecount(g)
gn <- reorder_edges(g,"attr")

layout_as_metromap Metro Map Layout

Description

Metro map layout based on multicriteria optimization

Usage

layout_as_metromap(object, xy, l = 2, gr = 0.0025, w = rep(1, 5), bsize = 5)

Arguments

object original graph

xy initial layout of the original graph

l desired multiple of grid point spacing. (l*gr determines desired edge length)

gr grid spacing. (l*gr determines desired edge length)

w weight vector for criteria (see details)

bsize number of grid points a station can move away rom its original position

Details

The function optimizes the following five criteria using a hill climbing algorithm:

• Angular Resolution Criterion: The angles of incident edges at each station should be max-
imized, because if there is only a small angle between any two adjacent edges, then it can
become difficult to distinguish between them

• Edge Length Criterion: The edge lengths across the whole map should be approximately equal
to ensure regular spacing between stations. It is based on the preferred multiple, l, of the grid
spacing, g. The purpose of the criterion is to penalize edges that are longer than or shorter
than lg.

• Balanced Edge Length Criterion: The length of edges incident to a particular station should
be similar

• Line Straightness Criterion: (not yet implemented) Edges that form part of a line should,
where possible, be co-linear either side of each station that the line passes through

• Octilinearity Criterion: Each edge should be drawn horizontally, vertically, or diagonally at
45 degree, so we penalize edges that are not at a desired angle

6 layout_backbone

Value

new coordinates for stations

Author(s)

David Schoch

References

Stott, Jonathan, et al. "Automatic metro map layout using multicriteria optimization." IEEE Trans-
actions on Visualization and Computer Graphics 17.1 (2010): 101-114.

Examples

the algorithm has problems with parallel edges
library(igraph)
g <- simplify(metro_berlin)
xy <- cbind(V(g)$lon, V(g)$lat) * 100

the algorithm is not very stable. try playing with the parameters
Not run:
xy_new <- layout_as_metromap(g, xy, l = 2, gr = 0.5, w = c(100, 100, 1, 1, 100), bsize = 35)

End(Not run)

layout_backbone backbone graph layout

Description

emphasizes a hidden group structure if it exists in the graph. Calculates a layout for a sparsified
network only including the most embedded edges. Deleted edges are added back after the layout is
calculated.

Usage

layout_as_backbone(g, keep = 0.2, backbone = TRUE)

layout_igraph_backbone(g, keep = 0.2, backbone = TRUE, circular)

Arguments

g igraph object

keep fraction of edges to keep during backbone calculation

backbone logical. Return edge ids of the backbone (Default: TRUE)

circular not used

layout_centrality 7

Details

The layout_igraph_* function should not be used directly. It is only used as an argument for plotting
with ’igraph’. ’ggraph’ natively supports the layout.

Value

list of xy coordinates and vector of edge ids included in the backbone

References

Nocaj, A., Ortmann, M., & Brandes, U. (2015). Untangling the hairballs of multi-centered, small-
world online social media networks. Journal of Graph Algorithms and Applications: JGAA, 19(2),
595-618.

Examples

library(igraph)
Not run:
g <- sample_islands(9, 20, 0.4, 9)
g <- simplify(g)
V(g)$grp <- as.character(rep(1:9, each = 20))
bb <- layout_as_backbone(g, keep = 0.4)

add backbone links as edge attribute
E(g)$col <- FALSE
E(g)$col[bb$backbone] <- TRUE

End(Not run)

layout_centrality radial centrality layout

Description

arranges nodes in concentric circles according to a centrality index.

Usage

layout_with_centrality(
g,
cent,
scale = TRUE,
iter = 500,
tol = 1e-04,
tseq = seq(0, 1, 0.2)

)

layout_igraph_centrality(

8 layout_centrality

g,
cent,
scale = TRUE,
iter = 500,
tol = 1e-04,
tseq = seq(0, 1, 0.2),
circular

)

Arguments

g igraph object

cent centrality scores

scale logical. should centrality scores be scaled to [0, 100]? (Default: TRUE)

iter number of iterations during stress optimization

tol stopping criterion for stress optimization

tseq numeric vector. increasing sequence of coefficients to combine regular stress
and constraint stress. See details.

circular not used

Details

The function optimizes a convex combination of regular stress and a constrained stress function
which forces nodes to be arranged on concentric circles. The vector tseq is the sequence of pa-
rameters used for the convex combination. In iteration i of the algorithm tseq[i] is used to combine
regular and constraint stress as (1 − tseq[i]) ∗ stressregular + tseq[i] ∗ stressconstraint. The se-
quence must be increasing, start at zero and end at one. The default setting should be a good choice
for most graphs.

The layout_igraph_* function should not be used directly. It is only used as an argument for plotting
with ’igraph’. ’ggraph’ natively supports the layout.

Value

matrix of xy coordinates

References

Brandes, U., & Pich, C. (2011). More flexible radial layout. Journal of Graph Algorithms and
Applications, 15(1), 157-173.

See Also

layout_centrality_group

layout_centrality_group 9

Examples

library(igraph)

g <- sample_gnp(10, 0.4)
Not run:
library(ggraph)
ggraph(g, layout = "centrality", centrality = closeness(g)) +

draw_circle(use = "cent") +
geom_edge_link0() +
geom_node_point(shape = 21, fill = "grey25", size = 5) +
theme_graph() +
coord_fixed()

End(Not run)

layout_centrality_group

radial centrality group layout

Description

arranges nodes in concentric circles according to a centrality index and keeping groups within a
angle range

Usage

layout_with_centrality_group(g, cent, group, shrink = 10, ...)

layout_igraph_centrality_group(g, cent, group, shrink = 10, circular, ...)

Arguments

g igraph object

cent centrality scores

group vector indicating grouping of nodes

shrink shrink the reserved angle range for a group to increase the gaps between groups

... additional arguments to layout_with_centrality The layout_igraph_* function
should not be used directly. It is only used as an argument for plotting with
’igraph’. ’ggraph’ natively supports the layout.

circular not used

Value

matrix of xy coordinates

10 layout_constrained_stress

See Also

layout_centrality

Examples

library(igraph)

layout_constrained_stress

constrained stress layout

Description

force-directed graph layout based on stress majorization with variable constrained

Usage

layout_with_constrained_stress(
g,
coord,
fixdim = "x",
weights = NA,
iter = 500,
tol = 1e-04,
mds = TRUE,
bbox = 30

)

layout_igraph_constrained_stress(
g,
coord,
fixdim = "x",
weights = NA,
iter = 500,
tol = 1e-04,
mds = TRUE,
bbox = 30,
circular

)

Arguments

g igraph object

coord numeric vector. fixed coordinates for dimension specified in fixdim.

fixdim string. which dimension should be fixed. Either "x" or "y".

layout_constrained_stress3D 11

weights possibly a numeric vector with edge weights. If this is NULL and the graph
has a weight edge attribute, then the attribute is used. If this is NA then no
weights are used (even if the graph has a weight attribute). By default, weights
are ignored. See details for more.

iter number of iterations during stress optimization

tol stopping criterion for stress optimization

mds should an MDS layout be used as initial layout (default: TRUE)

bbox constrain dimension of output. Only relevant to determine the placement of
disconnected graphs

circular not used

Details

Be careful when using weights. In most cases, the inverse of the edge weights should be used to en-
sure that the endpoints of an edges with higher weights are closer together (weights=1/E(g)$weight).

The layout_igraph_* function should not be used directly. It is only used as an argument for plotting
with ’igraph’. ’ggraph’ natively supports the layout.

Value

matrix of xy coordinates

References

Gansner, E. R., Koren, Y., & North, S. (2004). Graph drawing by stress majorization. In Interna-
tional Symposium on Graph Drawing (pp. 239-250). Springer, Berlin, Heidelberg.

See Also

layout_constrained_stress3D

layout_constrained_stress3D

constrained stress layout in 3D

Description

force-directed graph layout based on stress majorization with variable constrained in 3D

12 layout_constrained_stress3D

Usage

layout_with_constrained_stress3D(
g,
coord,
fixdim = "x",
weights = NA,
iter = 500,
tol = 1e-04,
mds = TRUE,
bbox = 30

)

Arguments

g igraph object

coord numeric vector. fixed coordinates for dimension specified in fixdim.

fixdim string. which dimension should be fixed. Either "x", "y" or "z".

weights possibly a numeric vector with edge weights. If this is NULL and the graph
has a weight edge attribute, then the attribute is used. If this is NA then no
weights are used (even if the graph has a weight attribute). By default, weights
are ignored. See details for more.

iter number of iterations during stress optimization

tol stopping criterion for stress optimization

mds should an MDS layout be used as initial layout (default: TRUE)

bbox constrain dimension of output. Only relevant to determine the placement of
disconnected graphs

Details

Be careful when using weights. In most cases, the inverse of the edge weights should be used to en-
sure that the endpoints of an edges with higher weights are closer together (weights=1/E(g)$weight).

This function does not come with direct support for igraph or ggraph.

Value

matrix of xyz coordinates

References

Gansner, E. R., Koren, Y., & North, S. (2004). Graph drawing by stress majorization. In Interna-
tional Symposium on Graph Drawing (pp. 239-250). Springer, Berlin, Heidelberg.

See Also

layout_constrained_stress

layout_dynamic 13

layout_dynamic dynamic graph layout

Description

Create layouts for longitudinal networks.

Usage

layout_as_dynamic(gList, weights = NA, alpha = 0.5, iter = 500, tol = 1e-04)

Arguments

gList list of igraph objects. Each network must contain the same set of nodes.

weights possibly a numeric vector with edge weights. If this is NULL and the graph
has a weight edge attribute, then the attribute is used. If this is NA then no
weights are used (even if the graph has a weight attribute). By default, weights
are ignored. See details for more.

alpha weighting of reference layout. See details.

iter number of iterations during stress optimization

tol stopping criterion for stress optimization

Details

The reference layout is calculated based on the union of all graphs. The parameter alpha controls the
influence of the reference layout. For alpha=1, only the reference layout is used and all graphs have
the same layout. For alpha=0, the stress layout of each individual graph is used. Values in-between
interpolate between the two layouts.

Be careful when using weights. In most cases, the inverse of the edge weights should be used to en-
sure that the endpoints of an edges with higher weights are closer together (weights=1/E(g)$weight).

Value

list of coordinates for each graph

References

Brandes, U. and Indlekofer, N. and Mader, M. (2012). Visualization methods for longitudinal social
networks and stochastic actor-oriented modeling. Social Networks 34 (3) 291-308

14 layout_fixed_coords

Examples

library(igraph)
g1 <- sample_gnp(20, 0.2)
g2 <- sample_gnp(20, 0.2)
g3 <- sample_gnp(20, 0.2)

xy <- layout_as_dynamic(list(g1, g2, g3))

layout for first network
xy[[1]]

layout_fixed_coords Layout with fixed coordinates

Description

force-directed graph layout based on stress majorization with fixed coordinates for some nodes

Usage

layout_with_fixed_coords(
g,
coords,
weights = NA,
iter = 500,
tol = 1e-04,
mds = TRUE,
bbox = 30

)

layout_igraph_fixed_coords(
g,
coords,
weights = NA,
iter = 500,
tol = 1e-04,
mds = TRUE,
bbox = 30,
circular

)

Arguments

g igraph object

coords numeric n x 2 matrix, where n is the number of nodes. values are either NA or
fixed coordinates. coordinates are only calculated for the NA values.

layout_focus 15

weights possibly a numeric vector with edge weights. If this is NULL and the graph
has a weight edge attribute, then the attribute is used. If this is NA then no
weights are used (even if the graph has a weight attribute). By default, weights
are ignored. See details for more.

iter number of iterations during stress optimization

tol stopping criterion for stress optimization

mds should an MDS layout be used as initial layout (default: TRUE)

bbox constrain dimension of output. Only relevant to determine the placement of
disconnected graphs

circular not used

Details

Be careful when using weights. In most cases, the inverse of the edge weights should be used to en-
sure that the endpoints of an edges with higher weights are closer together (weights=1/E(g)$weight).

The layout_igraph_* function should not be used directly. It is only used as an argument for plotting
with ’igraph’. ’ggraph’ natively supports the layout.

Value

matrix of xy coordinates

See Also

layout_constrained_stress

Examples

library(igraph)
set.seed(12)
g <- sample_bipartite(10, 5, "gnp", 0.5)
fxy <- cbind(c(rep(0, 10), rep(1, 5)), NA)
xy <- layout_with_fixed_coords(g, fxy)

layout_focus radial focus layout

Description

arrange nodes in concentric circles around a focal node according to their distance from the focus.

Usage

layout_with_focus(g, v, weights = NA, iter = 500, tol = 1e-04)

layout_igraph_focus(g, v, weights = NA, iter = 500, tol = 1e-04, circular)

16 layout_focus_group

Arguments

g igraph object

v id of focal node to be placed in the center

weights possibly a numeric vector with edge weights. If this is NULL and the graph
has a weight edge attribute, then the attribute is used. If this is NA then no
weights are used (even if the graph has a weight attribute). By default, weights
are ignored. See details for more.

iter number of iterations during stress optimization

tol stopping criterion for stress optimization

circular not used

Details

Be careful when using weights. In most cases, the inverse of the edge weights should be used to en-
sure that the endpoints of an edges with higher weights are closer together (weights=1/E(g)$weight).

Value

a list containing xy coordinates and the distances to the focal node

References

Brandes, U., & Pich, C. (2011). More flexible radial layout. Journal of Graph Algorithms and
Applications, 15(1), 157-173.

See Also

layout_focus_group The layout_igraph_* function should not be used directly. It is only used as an
argument for plotting with ’igraph’. ’ggraph’ natively supports the layout.

Examples

library(igraph)
g <- sample_gnp(10, 0.4)
coords <- layout_with_focus(g, v = 1)
coords

layout_focus_group radial focus group layout

Description

arrange nodes in concentric circles around a focal node according to their distance from the focus
and keep predefined groups in the same angle range.

layout_focus_group 17

Usage

layout_with_focus_group(
g,
v,
group,
shrink = 10,
weights = NA,
iter = 500,
tol = 1e-04

)

layout_igraph_focus_group(
g,
v,
group,
shrink = 10,
weights = NA,
iter = 500,
tol = 1e-04,
circular

)

Arguments

g igraph object

v id of focal node to be placed in the center

group vector indicating grouping of nodes

shrink shrink the reserved angle range for a group to increase the gaps between groups

weights possibly a numeric vector with edge weights. If this is NULL and the graph
has a weight edge attribute, then the attribute is used. If this is NA then no
weights are used (even if the graph has a weight attribute). By default, weights
are ignored. See details for more.

iter number of iterations during stress optimization

tol stopping criterion for stress optimization

circular not used

Details

Be careful when using weights. In most cases, the inverse of the edge weights should be used to en-
sure that the endpoints of an edges with higher weights are closer together (weights=1/E(g)$weight).

Value

matrix of xy coordinates

18 layout_manipulate

See Also

layout_focus The layout_igraph_* function should not be used directly. It is only used as an argu-
ment for plotting with ’igraph’.

Examples

library(igraph)
g <- sample_islands(4, 5, 0.8, 2)
grp <- as.character(rep(1:4, each = 5))
layout_with_focus_group(g, v = 1, group = grp, shrink = 10)

layout_manipulate manipulate layout

Description

functions to manipulate an existing layout

Usage

layout_rotate(xy, angle)

layout_mirror(xy, axis = "vertical")

Arguments

xy graph layout

angle angle for rotation

axis mirror horizontal or vertical

Details

These functions are mostly useful for deterministic layouts such as layout_with_stress

Value

manipulated matrix of xy coordinates

Author(s)

David Schoch

layout_multilevel 19

Examples

library(igraph)
g <- sample_gnp(50, 0.3)

xy <- layout_with_stress(g)

rotate 90 degrees
xy <- layout_rotate(xy, 90)

flip horizontally
xy <- layout_mirror(xy, "horizontal")

layout_multilevel multilevel layout

Description

Layout algorithm to visualize multilevel networks

Usage

layout_as_multilevel(
g,
type = "all",
FUN1,
FUN2,
params1 = NULL,
params2 = NULL,
ignore_iso = TRUE,
project2D = TRUE,
alpha = 35,
beta = 45

)

layout_igraph_multilevel(
g,
type = "all",
FUN1,
FUN2,
params1 = NULL,
params2 = NULL,
ignore_iso = TRUE,
alpha = 35,
beta = 45,
circular

)

20 layout_multilevel

Arguments

g igraph object. Must have a vertex attribute "lvl" which is 1 or 2.

type one of "all", "separate","fix1" or "fix2". see details

FUN1 if type="separate", the layout function to be used for level 1

FUN2 if type="separate", the layout function to be used for level 2

params1 named list of parameters for FUN1

params2 named list of parameters for FUN2

ignore_iso treatment of isolates within levels. see details

project2D logical. Defaults to TRUE (project to 2D).

alpha angle for isometric projection between 0 and 90

beta angle for isometric projection between 0 and 90

circular not used

Details

The algorithm internally computes a 3D layout where each level is in a separate y-plane. The layout
is then projected into 2D via an isometric mapping, controlled by the parameters alpha and beta.
It may take some adjusting to alpha and beta to find a good perspective.

If type="all", the layout is computed at once for the complete network. For type="separate", two
user specified layout algorithms (FUN1 and FUN2) are used for the levels. The named lists param1
and param2 can be used to set parameters for FUN1 and FUN2. This option helpful for situations
where different structural features of the levels should be emphasized.

For type="fix1" and type="fix2" only one of the level layouts is fixed. The other one is calculated
by optimizing the inter level ties, such that they are drawn (almost) vertical.

The ignore_iso parameter controls the handling of isolates. If TRUE, nodes without inter level
edges are ignored during the layout process and added at the end. If FALSE they are left unchanged

The layout_igraph_* function should not be used directly. It is only used as an argument for plotting
with ’igraph’.

Value

matrix of xy coordinates

Examples

library(igraph)
data("multilvl_ex")
Not run:
compute a layout for the whole network
xy <- layout_as_multilevel(multilvl_ex, type = "all", alpha = 25, beta = 45)

compute a layout for each level separately and combine them
xy <- layout_as_multilevel(multilvl_ex,

type = "separate",
FUN1 = layout_as_backbone,

layout_pmds 21

FUN2 = layout_with_stress,
alpha = 25, beta = 45

)

End(Not run)

layout_pmds pivot MDS graph layout

Description

similar to layout_with_mds but uses only a small set of pivots for MDS. Considerably faster than
MDS and thus applicable for larger graphs.

Usage

layout_with_pmds(g, pivots, weights = NA, D = NULL, dim = 2)

layout_igraph_pmds(g, pivots, weights = NA, D = NULL, circular)

Arguments

g igraph object

pivots number of pivots

weights possibly a numeric vector with edge weights. If this is NULL and the graph
has a weight edge attribute, then the attribute is used. If this is NA then no
weights are used (even if the graph has a weight attribute). By default, weights
are ignored. See details for more.

D precomputed distances from pivots to all nodes (if available, default: NULL)

dim dimensionality of layout (defaults to 2)

circular not used

Details

Be careful when using weights. In most cases, the inverse of the edge weights should be used to en-
sure that the endpoints of an edges with higher weights are closer together (weights=1/E(g)$weight)

The layout_igraph_* function should not be used directly. It is only used as an argument for plotting
with ’igraph’. ’ggraph’ natively supports the layout.

Value

matrix of coordinates

Author(s)

David Schoch

22 layout_sparse_stress

References

Brandes, U. and Pich, C. (2006). Eigensolver Methods for Progressive Multidimensional Scaling
of Large Data. In International Symposium on Graph Drawing (pp. 42-53). Springer

Examples

Not run:
library(igraph)
library(ggraph)

g <- sample_gnp(1000, 0.01)

xy <- layout_with_pmds(g, pivots = 100)

End(Not run)

layout_sparse_stress sparse stress graph layout

Description

stress majorization for larger graphs based on a set of pivot nodes.

Usage

layout_with_sparse_stress(g, pivots, weights = NA, iter = 500)

layout_igraph_sparse_stress(g, pivots, weights = NA, iter = 500, circular)

Arguments

g igraph object

pivots number of pivots

weights ignored

iter number of iterations during stress optimization

circular not used

Details

The layout_igraph_* function should not be used directly. It is only used as an argument for plotting
with ’igraph’. ’ggraph’ natively supports the layout.

Value

matrix of xy coordinates

layout_spectral 23

Author(s)

David Schoch

References

Ortmann, M. and Klimenta, M. and Brandes, U. (2016). A Sparse Stress Model. https://arxiv.org/pdf/1608.08909.pdf

Examples

Not run:
library(igraph)
library(ggraph)

g <- sample_gnp(1000, 0.005)

ggraph(g, layout = "sparse_stress", pivots = 100) +
geom_edge_link0(edge_colour = "grey66") +
geom_node_point(shape = 21, fill = "grey25", size = 5) +
theme_graph()

End(Not run)

layout_spectral spectral graph layouts

Description

Using a set of eigenvectors of matrices associated with a graph as coordinates

Usage

layout_with_eigen(g, type = "laplacian", ev = "smallest")

layout_igraph_eigen(g, type = "laplacian", ev = "smallest", circular)

Arguments

g igraph object

type matrix to be used for spectral decomposition. either ’adjacency’ or ’laplacian’

ev eigenvectors to be used. Either ’smallest’ or ’largest’.

circular not used

Details

The layout_igraph_* function should not be used directly. It is only used as an argument for plotting
with ’igraph’. ’ggraph’ natively supports the layout.

24 layout_stress

Value

matrix of xy coordinates

Author(s)

David Schoch

Examples

library(igraph)

g <- sample_gnp(50, 0.2)

xy <- layout_with_eigen(g, type = "adjacency", ev = "largest")

xy <- layout_with_eigen(g, type = "adjacency", ev = "smallest")

xy <- layout_with_eigen(g, type = "laplacian", ev = "largest")

xy <- layout_with_eigen(g, type = "laplacian", ev = "smallest")

layout_stress stress majorization layout

Description

force-directed graph layout based on stress majorization. Similar to Kamada-Kawai, but generally
faster and with better results.

Usage

layout_with_stress(
g,
weights = NA,
iter = 500,
tol = 1e-04,
mds = TRUE,
bbox = 30

)

layout_igraph_stress(
g,
weights = NA,
iter = 500,
tol = 1e-04,
mds = TRUE,
bbox = 30,
circular

)

layout_stress 25

Arguments

g igraph object

weights possibly a numeric vector with edge weights. If this is NULL and the graph
has a weight edge attribute, then the attribute is used. If this is NA then no
weights are used (even if the graph has a weight attribute). By default, weights
are ignored. See details for more.

iter number of iterations during stress optimization

tol stopping criterion for stress optimization

mds should an MDS layout be used as initial layout (default: TRUE)

bbox width of layout. Only relevant to determine the placement of disconnected
graphs

circular not used

Details

Be careful when using weights. In most cases, the inverse of the edge weights should be used to en-
sure that the endpoints of an edges with higher weights are closer together (weights=1/E(g)$weight).

The layout_igraph_* function should not be used directly. It is only used as an argument for plotting
with ’igraph’. ’ggraph’ natively supports the layout.

Value

matrix of xy coordinates

References

Gansner, E. R., Koren, Y., & North, S. (2004). Graph drawing by stress majorization. In Interna-
tional Symposium on Graph Drawing (pp. 239-250). Springer, Berlin, Heidelberg.

See Also

layout_stress3D

Examples

library(igraph)
set.seed(665)

g <- sample_pa(100, 1, 1, directed = FALSE)

calculate layout manually
xy <- layout_with_stress(g)

use it with ggraph
Not run:
library(ggraph)
ggraph(g, layout = "stress") +

geom_edge_link0(edge_width = 0.2, colour = "grey") +

26 layout_stress3D

geom_node_point(col = "black", size = 0.3) +
theme_graph()

End(Not run)

layout_stress3D stress majorization layout in 3D

Description

force-directed graph layout based on stress majorization in 3D.

Usage

layout_with_stress3D(
g,
weights = NA,
iter = 500,
tol = 1e-04,
mds = TRUE,
bbox = 30

)

Arguments

g igraph object

weights possibly a numeric vector with edge weights. If this is NULL and the graph
has a weight edge attribute, then the attribute is used. If this is NA then no
weights are used (even if the graph has a weight attribute). By default, weights
are ignored. See details for more.

iter number of iterations during stress optimization

tol stopping criterion for stress optimization

mds should an MDS layout be used as initial layout (default: TRUE)

bbox width of layout. Only relevant to determine the placement of disconnected
graphs

Details

Be careful when using weights. In most cases, the inverse of the edge weights should be used to en-
sure that the endpoints of an edges with higher weights are closer together (weights=1/E(g)$weight).

Value

matrix of xyz coordinates

layout_umap 27

References

Gansner, E. R., Koren, Y., & North, S. (2004). Graph drawing by stress majorization. In Interna-
tional Symposium on Graph Drawing (pp. 239-250). Springer, Berlin, Heidelberg.

See Also

layout_stress

layout_umap UMAP graph layouts

Description

Using the UMAP dimensionality reduction algorithm as a graph layout

Usage

layout_with_umap(g, pivots = NULL, ...)

layout_igraph_umap(g, circular, ...)

Arguments

g igraph object

pivots if not NULL, number of pivot nodes to use for distance calculation (for large
graphs).

... additional parameters for umap. See the ?uwot::umap for help.

circular not used

Details

The layout_igraph_* function should not be used directly. It is only used as an argument for plotting
with ’igraph’. UMAP can be tuned by many different parameters. Refer to the documentation at
https://github.com/jlmelville/uwot for help

Value

matrix of xy coordinates

Author(s)

David Schoch

References

McInnes, Leland, John Healy, and James Melville. "Umap: Uniform manifold approximation and
projection for dimension reduction." arXiv preprint arXiv:1802.03426 (2018).

28 multilvl_ex

Examples

library(igraph)

g <- sample_islands(10, 20, 0.6, 10)
xy <- layout_with_umap(g, min_dist = 0.5)

metro_berlin Subway network of Berlin

Description

A dataset containing the subway network of Berlin

Usage

metro_berlin

Format

igraph object

References

Kujala, Rainer, et al. "A collection of public transport network data sets for 25 cities." Scientific
data 5 (2018): 180089.

multilvl_ex Multilevel example Network

Description

Multilevel network, where both levels have different structural features

Usage

multilvl_ex

Format

igraph object

Index

∗ datasets
metro_berlin, 28
multilvl_ex, 28

annotate_circle, 2

draw_circle, 2, 3

graph_manipulate, 4

layout_as_backbone (layout_backbone), 6
layout_as_dynamic (layout_dynamic), 13
layout_as_metromap, 5
layout_as_multilevel

(layout_multilevel), 19
layout_backbone, 6
layout_centrality, 7, 10
layout_centrality_group, 8, 9
layout_constrained_stress, 10, 12, 15
layout_constrained_stress3D, 11, 11
layout_dynamic, 13
layout_fixed_coords, 14
layout_focus, 15, 18
layout_focus_group, 16, 16
layout_igraph_backbone

(layout_backbone), 6
layout_igraph_centrality

(layout_centrality), 7
layout_igraph_centrality_group

(layout_centrality_group), 9
layout_igraph_constrained_stress

(layout_constrained_stress), 10
layout_igraph_eigen (layout_spectral),

23
layout_igraph_fixed_coords

(layout_fixed_coords), 14
layout_igraph_focus (layout_focus), 15
layout_igraph_focus_group

(layout_focus_group), 16
layout_igraph_multilevel

(layout_multilevel), 19

layout_igraph_pmds (layout_pmds), 21
layout_igraph_sparse_stress

(layout_sparse_stress), 22
layout_igraph_stress (layout_stress), 24
layout_igraph_umap (layout_umap), 27
layout_manipulate, 18
layout_mirror (layout_manipulate), 18
layout_multilevel, 19
layout_pmds, 21
layout_rotate (layout_manipulate), 18
layout_sparse_stress, 22
layout_spectral, 23
layout_stress, 24, 27
layout_stress3D, 25, 26
layout_umap, 27
layout_with_centrality, 2, 3
layout_with_centrality

(layout_centrality), 7
layout_with_centrality_group

(layout_centrality_group), 9
layout_with_constrained_stress

(layout_constrained_stress), 10
layout_with_constrained_stress3D

(layout_constrained_stress3D),
11

layout_with_eigen (layout_spectral), 23
layout_with_fixed_coords

(layout_fixed_coords), 14
layout_with_focus, 3
layout_with_focus (layout_focus), 15
layout_with_focus_group

(layout_focus_group), 16
layout_with_mds, 21
layout_with_pmds (layout_pmds), 21
layout_with_sparse_stress

(layout_sparse_stress), 22
layout_with_stress, 18
layout_with_stress (layout_stress), 24
layout_with_stress3D (layout_stress3D),

29

30 INDEX

26
layout_with_umap (layout_umap), 27

metro_berlin, 28
multilvl_ex, 28

reorder_edges (graph_manipulate), 4

	annotate_circle
	draw_circle
	graph_manipulate
	layout_as_metromap
	layout_backbone
	layout_centrality
	layout_centrality_group
	layout_constrained_stress
	layout_constrained_stress3D
	layout_dynamic
	layout_fixed_coords
	layout_focus
	layout_focus_group
	layout_manipulate
	layout_multilevel
	layout_pmds
	layout_sparse_stress
	layout_spectral
	layout_stress
	layout_stress3D
	layout_umap
	metro_berlin
	multilvl_ex
	Index

