Package ‘goffda’

October 14, 2023

Type Package

Title Goodness-of-Fit Tests for Functional Data
Version 0.1.2

Date 2023-10-14

Description Implementation of several goodness-of-fit tests for functional
data. Currently, mostly related with the functional linear model with
functional/scalar response and functional/scalar predictor. The package
allows for the replication of the data applications considered in
Garcia-Portugués, Alvarez—Liébana, Alvarez-Pérez and Gonzdlez-Manteiga
(2021) <doi:10.1111/sj0s.12486>.

License GPL-3

LazyData true

Depends R (>=3.6.0), Rcpp

Imports fda.usc, glmnet, ks

Suggests microbenchmark, knitr, viridisLite, rmarkdown

LinkingTo Rcpp, ReppArmadillo
URL https://github.com/egarpor/goffda

BugReports https://github.com/egarpor/goffda
Encoding UTF-8

RoxygenNote 7.2.3

NeedsCompilation yes

Author Eduardo Garcia-Portugués [aut, cre]
(<https://orcid.org/0000-0002-9224-4111>),
Javier Alvarez-Liébana [aut] (<https://orcid.org/0000-0003-0671-3856>),
Gonzalo Alvarez-Pérez [ctb],
Manuel Febrero-Bande [ctb]

Maintainer Eduardo Garcia-Portugués <edgarcia@est-econ.uc3m.es>
Repository CRAN
Date/Publication 2023-10-14 15:50:02 UTC

https://doi.org/10.1111/sjos.12486
https://github.com/egarpor/goffda
https://github.com/egarpor/goffda
https://orcid.org/0000-0002-9224-4111
https://orcid.org/0000-0003-0671-3856

2 goffda-package

R topics documented:

goffda-package 2
ABMEL_LBIND . .« . v v v v e 3
cv_glmnet 5
elem-fimfr 10
iIm_est. e e e e e e 13
flmostat e e 18
flm_term s 21
fiIm_test e e e e e e e e e 22
e . o e 29
fpec_utils L 31
10331721 5 [2 34
T OU o v v v e e e e e e e e s 36
sim-frmfr L 37

Index 41

goffda-package goffda — Goodness-of-Fit Tests for Functional Data
Description

Implementation of several goodness-of-fit tests for functional data. Currently, mostly related with
the functional linear model with functional/scalar response and functional/scalar predictor. The
package allows for the replication of the data applications considered in Garcia-Portugués, Alvarez-
Liébana, Alvarez-Pérez and Gonzéilez-Manteiga (2021) <doi:10.1111/sjos.12486>.

Author(s)

Eduardo Garcia-Portugués and Javier Alvarez-Liébana.

References

Garcia-Portugués, E., Alvarez—Liébana, 1., Alvarez-Pérez, G. and Gonzalez-Manteiga, W. (2021). A
goodness-of-fit test for the functional linear model with functional response. Scandinavian Journal
of Statistics, 48(2):502-528. doi:10.1111/sjos.12486

Garcia-Portugués, E., Gonzilez-Manteiga, W. and Febrero-Bande, M. (2014). A goodness-of-fit
test for the functional linear model with scalar response. Journal of Computational and Graphical
Statistics, 23(3):761-778. doi:10.1080/10618600.2013.812519

https://doi.org/10.1111/sjos.12486
https://doi.org/10.1080/10618600.2013.812519

aemet_temp 3

aemet_temp AEMET daily temperatures during 1974-2013

Description

Series of daily temperatures of 73 Spanish weather stations during the 40-year period 1974-2013.

Usage

aemet_temp

Format

A list with the following entries:

temp an fdata with 2892 temperature (in Celsius degrees) curves, discretized on 365 equispaced
grid points (days) on [0.5,364.5]. Each curve corresponds to the yearly records of a weather
station.

df a dataframe with metadata for each curve:

¢ ind: identifier of the weather station.
¢ name: name of the weather station.
e year: year of the observation.

Details

For consistency with the fda.usc-package’s aemet dataset, the names and identifiers of the 73
weather stations are the same as in that dataset. Only a minor fix has been applied to the "A
CORUNA/ALVEDRO" station, whose identifier was the same as the "A CORUNA" station, "1387".
The former was set to "1387A".

Information about the province, altitude, longitude, and latitude of each weather station can be
retrieved in df from the fda.usc-package’s aemet dataset.

The dataset is a curated version of a larger database of 115 stations. It excludes stations with
inconsistent records or that were relocated, closed, or opened during the 40-year period. There are
9 stations with missing years. The total of missing years is 28.

In leap years, the daily-average temperature is computed as the average of February 28th and 29th.

Author(s)
Original data processing scripts by Manuel Febrero-Bande and Manuel Oviedo de la Fuente. Adap-
tations by Eduardo Garcia-Portugués.

Source

The data was retrieved from the FTP of the Meteorological State Agency of Spain (AEMET) in
2014 using a processing script by the authors of the fda.usc-package.

https://www.aemet.es/es/portada/

4 aemet_temp

References

Febrero-Bande, M. and Oviedo de la Fuente, M. (2012). Statistical Computing in Functional Data
Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4):1-28. doi:10.18637/
jss.v051.104

Examples

Data splitting

Load raw data
data("aemet_temp")

Partition the dataset in the first and last 20 years
with(aemet_temp, {
ind_pred <- which((1974 <= df$year) & (df$year <= 1993))
ind_resp <- which((1994 <= df$year) & (df$year <= 2013))
aemet_temp_pred <<- list("df"” = df[ind_pred,], "temp"” = temp[ind_pred])
aemet_temp_resp <<- list("df" = df[ind_resp, 1, "temp” = temp[ind_resp]l)
»

Average the temperature on each period
mean_aemet <- function(x) {
m <- tapply(X = 1:nrow(x$temp$data), INDEX = xdfind,
FUN = function(i) colMeans(x$temp$datali, , drop = FALSE],
na.rm = TRUE))
x$temp$data <- do.call(rbind, m)
return(x$temp)

}

Build predictor and response fdatas
aemet_temp_pred <- mean_aemet(aemet_temp_pred)
aemet_temp_resp <- mean_aemet(aemet_temp_resp)

Plot

old_par <- par(mfrow = c(1, 2))
plot(aemet_temp_pred)
plot(aemet_temp_resp)
par(old_par)

Average daily temperatures
day_avg_pred <- func_mean(aemet_temp_pred)
day_avg_resp <- func_mean(aemet_temp_resp)

Average yearly temperatures
avg_year_pred <- rowMeans(aemet_temp_pred$data)
avg_year_resp <- rowMeans(aemet_temp_resp$data)

Test the linear model with functional response and predictor
(comp_flmfr <- flm_test(X = aemet_temp_pred, Y = aemet_temp_resp,

est_method = "fpcr_11s"))
betad <- diag(rep(1, length(aemet_temp_pred$argvals)))

https://doi.org/10.18637/jss.v051.i04
https://doi.org/10.18637/jss.v051.i04

cv_glmnet 5

(simp_flmfr <- flm_test(X = aemet_temp_pred, Y = aemet_temp_resp,
betad = betad, est_method = "fpcr_11s"))

Visualize estimation

filled.contour(x = aemet_temp_pred$argvals, y = aemet_temp_resp$argvals,
z = comp_flmfrfit_flmBeta_hat,
color.palette = viridisLite::viridis, nlevels = 20)

Test the linear model with scalar response and functional predictor

(comp_flmsr <- flm_test(X = aemet_temp_pred, Y = avg_year_resp,
est_method = "fpcr_11s"))

(simp_flmsr <- flm_test(X = aemet_temp_pred, Y = avg_year_resp,
beta®@ = 1 / 365, est_method = "fpcr_11s"))

Visualize estimation

plot(aemet_temp_pred$argvals, comp_flmsr$fit_flm$Beta_hat, type = "1",
ylim = c(@, 30 / 365))

abline(h = 1 / 365, col = 2)

Test the linear model with functional response and scalar predictor

(comp_frsp <- flm_test(X = avg_year_pred, Y = aemet_temp_resp))
(simp_frsp <- flm_test(X = avg_year_pred, Y = aemet_temp_resp, betad = 1))

Test the linear model with scalar response and predictor

(comp_srsp <- flm_test(X = avg_year_pred, Y = avg_year_resp))
(simp_srsp <- flm_test(X = avg_year_pred, Y = avg_year_resp, betad = 1))

cv_glmnet Fitting of regularized linear models

Description

Convenience function for fitting multivariate linear models with multivariate response by relying on
cv.glmnet from the glmnet-package. The function fits the multivariate linear model

Y =XB +E,

where X is a p-dimensional vector, Y and E are two ¢g-dimensional vectors, and B is a p X ¢ matrix.

If X and Y are centered (i.e., have zero-mean columns), the function estimates B by solving, for
the sample (X1,Y1),...,(X,,Y,), the elastic-net optimization problem

1§ -
min > [[Y, = X;B|P + A | (1 - a)|Bl#/2+a) |Bjl|
BERx? 2N p pet
where ||B||r stands for the Frobenious norm of the matrix B and ||B||2 for the Euclidean norm of
the j-th row of B. The choice oo = 0 in the elastic-net penalization corresponds to ridge regression,

cv_glmnet

whereas a = 1 yields a lasso-type estimator. The unpenalized least-squares estimator is obtained

with A = 0.

Usage

cv_glmnet(x, y, alpha = c("lasso”, "ridge”)[1], lambda = NULL,
intercept = TRUE, thresh = 1e-10, cv_1se = TRUE, cv_nlambda = 50,
cv_folds = NULL, cv_grouped = FALSE, cv_lambda = 10*seq(2, -3,
length.out = cv_nlambda), cv_second = TRUE, cv_tol_second = 0.025,
cv_logl@d_exp = c(-0.5, 3), cv_thresh = 1e-05, cv_parallel = FALSE,

cv_verbose

Arguments
X

y
alpha

lambda

intercept

thresh

cv_1se

cv_nlambda

cv_folds

cv_grouped

cv_lambda

cv_second

cv_tol_second

FALSE, ...)

input matrix of size c(n, p), or a vector of length n.
response matrix of size c(n, q), or a vector of length n.

elastic net mixing argument in glmnet, with 0 < a < 1. Alternatively, a char-
acter string indicating whether the "ridge"” (v = 0) or "lasso” (o = 1) fitis
to be performed.

scalar giving the regularization parameter A. If NULL (default), the optimal A
is searched by cross-validation. If 1ambda is provided, then cross-validation is
skipped and the fit is performed for the given lambda.

flag passed to the intercept argument in glmnet to indicate if the intercept
should be fitted (default; does not assume that the data is centered) or set to zero
(the optimization problem above is solved as-is). Defaults to TRUE.

convergence threshold of the coordinate descending algorithm, passed to the
thresh argument in glmnet. Defaults to 1e-10.

shall the optimal lambda be the 1ambda. 1se, as returned by cv.glmnet? This
favors sparser fits. If FALSE, then the optimal lambda is 1ambda.min, the mini-
mizer of the cross-validation loss. Defaults to TRUE.

the length of the sequence of A\ values, passed to the nlambda argument in
cv.glmnet for the cross-validation search. Defaults to 50.

number of folds to perform cross-validation. If NULL (the default), then
cv_folds <- n internally, that is, leave-one-out cross-validation is performed.
Passed to the nfolds argument in cv.glmnet.

passed to the grouped argument in cv.glmnet. Defaults to FALSE.

passed to the 1lambda argument in cv.glmnet. Defaults to
10*seq(2, -3, length.out = cv_nlambda).

flag to perform a second cross-validation search if the optimal A was found at
the extremes of the first A sequence (indicating that the minimum may not be
reliable). Defaults to TRUE.

tolerance for performing a second search if second = TRUE. If the minimum is
found at the 100 * cv_tol_second lower/upper percentile of search interval,
then the search interval is expanded for a second search. Defaults to @.025.

cv_glmnet 7

cv_logl@_exp expansion of the A sequence if the minimum is found close to its upper extreme.
If that is the case, the sequence for the is set as 10" (log10(lambda_min) +
cv_logl@_exp), where lambda_min is the minimum obtained in the first se-
quence. If the minimum is found close to the lower extreme of the sequence,
then -rev(cv_logl1@_exp) is considered. Defaults to c(-0.5, 5).

cv_thresh convergence threshold used during cross-validation in cv.glmnet. Defaults to
le-5.

cv_parallel passed to the parallel argument in cv.glmnet. Defaults to FALSE.

cv_verbose flag to display information about the cross-validation search with plots and mes-
sages. More useful if second = TRUE. Defaults to FALSE.

further parameters to be passed to glmnet to perform the final model fit.

Details

If @ = 1, then the lasso-type fit shrinks to zero, simultaneously, all the elements of certain rows of
B, thus helping the selection of the p most influential variables in X for explaining/predicting Y.

The function first performs a cross-validation search for the optimal A if lambda = NULL (using
cv_thresh to control the convergence threshold). After the optimal penalization parameter is de-
termined, a second fit (now with convergence threshold thresh) using the default A sequence in
glmnet is performed. The final estimate is obtained via predict.glmnet from the optimal A deter-
mined in the first step.

Due to its cross-validatory nature, cv_glmnet can be computationally demanding. Approaches
for reducing the computation time include: considering a smaller number of folds than n, such
as cv_folds = 10 (but will lead to random partitions of the data); decrease the tolerance of the
coordinate descending algorithm by increasing cv_thresh; reducing the number of candidate A
values with nlambda; setting second = FALSE to avoid a second cross-validation; or considering
cv_parallel = TRUE to use a parallel backend (must be registered before hand; see examples).

By default, the A sequence is used with standardized X and Y (both divided by their columnwise
variances); see glmnet and the standardized argument. Therefore, the optimal selected \ value
assumes standardization and must be used with care if the variables are not standardized. For
example, when using the ridge analytical solution, a prior change of scale that depends on ¢ needs
to be done. See the examples for the details.

Value

A list with the following entries:

beta_hat the estimated B, a matrix of size c(p, q).

lambda the optimal A obtained by cross-validation and according to cv_1se.

cv if lambda = NULL, the result of the cross-validation search for the optimal .
Otherwise, NULL.

fit the glmnet fit, computed with thresh threshold and with an automatically cho-

sen A\ sequence.

Author(s)

Eduardo Garcia-Portugués. Initial contributions by Gonzalo Alvarez-Pérez.

8 cv_glmnet

References

Friedman, J., Hastie, T. and Tibshirani, R. (2010). Regularization paths for generalized linear mod-
els via coordinate descent. Journal of Statistical Software, 33(1):1-22. doi:10.18637/jss.v033.101

Examples

Quick example for multivariate linear model with multivariate response

Simulate data

n <- 100

p<-10; q<-5

set.seed(123456)

x <= matrix(rnorm(n * p, sd = rep(1:p, each = n)), nrow = n, ncol = p)
e <- matrix(rnorm(n * q, sd = rep(q:1, each = n)), nrow = n, ncol = q)
beta <- matrix(((1:p - 1) / p)*2, nrow = p, ncol = q)

y <= X %*% beta + e

Fit lasso (model with intercept, the default)
cv_glmnet(x = x, y =y, alpha = "lasso”, cv_verbose = TRUE)$beta_hat

Multivariate linear model with multivariate response

Simulate data

n <- 100

p<-10; g<-5

set.seed(123456)

x <= matrix(rnorm(n * p, sd = rep(1:p, each = n)), nrow = n, ncol = p)
e <- matrix(rnorm(n * q, sd = rep(q:1, each = n)), nrow = n, ncol = q)
beta <- matrix(((1:p - 1) / p)*2, nrow = p, ncol = q)

y <= x %*% beta + e

Fit ridge

cv@ <- cv_glmnet(x = x, y =y, alpha = "ridge"”, intercept = FALSE,
cv_verbose = TRUE)

cv@s$beta_hat

Same fit for the chosen lambda
cv_glmnet(x = x, y =y, alpha = "ridge”, lambda = cv@$lambda,
intercept = FALSE)$beta_hat

Fit lasso (model with intercept, the default)
cvl <- cv_glmnet(x = x, y =y, alpha = "lasso”, cv_verbose = TRUE)
cvi$beta_hat

Use cv_1se = FALSE
cvl_min <- cv_glmnet(x = x, y
cv_1se =

=y, alpha = "lasso"”, cv_verbose = TRUE,
FALSE)

Compare it with ridge analytical solution. Observe the factor in lambda,
necessary since lambda is searched for the standardized data. Note also

that, differently to the case q = 1, no standardarization with respect to
y happens

https://doi.org/10.18637/jss.v033.i01

cv_glmnet

sd_x <- apply(x, 2, function(x) sd(x)) * sqrt((n - 1) / n)

cv_glmnet(x = x, y =y, alpha = "ridge"”, lambda = cv@$lambda,
thresh = 1e-20, intercept = FALSE)$beta_hat

solve(crossprod(x) + diag(cv@$lambda * sd_x*2 *x n)) %*% t(x) %*% y

If x is standardized, the match between glmnet and usual ridge

analytical expression does not require scaling of lambda

x_std <- scale(x, scale = sd_x, center = TRUE)

cv_glmnet(x = x_std, y =y, alpha = "ridge"”, lambda = cv@$lambda,
intercept = FALSE, thresh = 1e-20)$beta_hat

solve(crossprod(x_std) + diag(rep(cv@$lambda * n, p))) %*% t(x_std) %x% y

Simple linear model

Simulate data

n <- 100

p<-1, g<-1
set.seed(123456)

x <= matrix(rnorm(n * p), nrow
e <- matrix(rnorm(n * q), nrow
beta <- 2

y <- x * beta + e

n, ncol = p)
n, ncol = q)

Fit by ridge (model with intercept, the default)

cv0 <- cv_glmnet(x = x, y =y, alpha = "ridge", cv_verbose = TRUE)
cv@s$beta_hat

cv@$intercept

Comparison with linear model with intercept
Im(y ~ 1 + x)$coefficients

Fit by ridge (model without intercept)

cv@d <- cv_glmnet(x = x, y =y, alpha = "ridge"”, cv_verbose = TRUE,
intercept = FALSE)

cv@$beta_hat

Comparison with linear model without intercept
Im(y ~ @ + x)$coefficients

Same fit for the chosen lambda (and without intercept)
cv_glmnet(x = x, y =y, alpha = "ridge", lambda = cv@$lambda,
intercept = FALSE)$beta_hat

Same for lasso (model with intercept, the default)
cvl <- cv_glmnet(x = x, y =y, alpha = "lasso")
cvisbeta_hat

Multivariate linear model (p = 3, g = 1)

Simulate data

n <- 50

p<-10; g<-1

set.seed(123456)

10

elem-Aimfr

x <= matrix(rnorm(n * p, mean = 1, sd = rep(1:p, each = n)),
nrow = n, ncol = p)

e <- matrix(rnorm(n * q), nrow = n, ncol = q)

beta <- ((1:p - 1) / p)*2

y <= x %*% beta + e

Fit ridge (model without intercept)

cv@ <- cv_glmnet(x = x, y =y, alpha = "ridge"”, intercept = FALSE,
cv_verbose = TRUE)

cv@sbeta_hat

Same fit for the chosen lambda
cv_glmnet(x = x, y =y, alpha = "ridge”, lambda = cv@$lambda,
intercept = FALSE)$beta_hat

Compare it with ridge analytical solution. Observe the factor in lambda,
necessary since lambda is searched for the standardized data
sd_x <- apply(x, 2, function(x) sd(x)) * sqrt((n - 1) / n)
sd_y <- sd(y) * sqgrt((n - 1) / n)
cv_glmnet(x = x, y =y, alpha = "ridge", lambda = cv@$lambda,
intercept = FALSE, thresh = 1e-20)$beta_hat
solve(crossprod(x) + diag(cv@$lambda * sd_x*2 / sd_y * n)) %*% t(x) %x% y

If x and y are standardized, the match between glmnet and usual ridge

analytical expression does not require scaling of lambda

x_std <- scale(x, scale = sd_x, center = TRUE)

y_std <- scale(y, scale = sd_y, center = TRUE)

cv_glmnet(x = x_std, y = y_std, alpha = "ridge"”, lambda = cv@$lambda,
intercept = FALSE, thresh = 1e-20)$beta_hat

solve(crossprod(x_std) + diag(rep(cv@$lambda * n, p))) %*% t(x_std) %*% y_std

Fit lasso (model with intercept, the default)
cvl <- cv_glmnet(x = x, y =y, alpha = "lasso"”, cv_verbose = TRUE)
cvisbeta_hat

Parallelization
#
Parallel
doMC: :registerDoMC(cores = 2)
microbenchmark: :microbenchmark(
cv_glmnet(x = x, y =y, nlambda = 100, cv_parallel = TRUE),
cv_glmnet(x = x, y =y, nlambda = 100, cv_parallel = FALSE),
times = 10)
elem-flmfr Covariate, error, and kernel of a functional linear model with func-

tional response

elem-Amfr 11

Description

Simulation of X, a random variable in the Hilbert space of square-integrable functions in [a, b],
L?([a, b)), and ¢, a random variable in L?([c, d]). Together with the bivariate kernel /3, they are the
necessary elements for sampling a Functional Linear Model with Functional Response (FLMFR):

b
Y(t) = / X(s)B(s, t)ds + (t).

The next functions sample X and ¢, and construct 3, using different proposals in the literature:

* r_cm20@13_f1lmfr is based on the numerical example given in Section 3 of Crambes and Mas
(2013). Termed as S1 in Section 2 of Garcia-Portugués et al. (2021).

* r_ik2018_f1mfr is based on the numerical example given in Section 4 of Imaizumi and Kato
(2018), but zeroing the first Functional Principal Components (FPC) coefficients of 5 (so the
first FPC are not adequate for estimation). S3 in Section 2 of Garcia-Portugués et al. (2021).

e r_gof2021_flmfr gives a numerical example in Section 2 of Garcia-Portugués et al. (2021),
denoted therein as S2.

Usage

r_cm2013_flmfr(n, s = seq(@, 1, len = 101), t = seq(@, 1, len = 101),
std_error = 0.15, n_fpc = 50, concurrent = FALSE)

r_ik2018_flmfr(n, s = seq(@, 1, 1 = 101), t = seq(@, 1, 1 = 101),
std_error = 1.5, parameters = c(1.75, 0.8, 2.4, 0.25), n_fpc = 50,
concurrent = FALSE)

r_gof2021_flmfr(n, s = seq(@, 1, len = 101), t = seq(@, 1, len = 101),
std_error = 0.35, concurrent = FALSE)

Arguments
n number of trajectories to sample.
s, t grid points where functional covariates and responses are valued, respectively.
std_error standard deviation of the random variables involved in the generation of the
functional error error_fdata. Defaults to 0. 15.
n_fpc number of FPC to be taken into account for the data generation. Must be greater
than 4 when r_ik2@18_f1mfr is applied, since the first 4 FPC are null. Defaults
to 50.
concurrent flag to consider a concurrent FLMFR (degenerate case). Defaults to FALSE.
parameters vector of parameters, only required for r_ik2018_f1mfr. Defaults to
c(1.75, 0.8, 2.4, 0.25).
Details

Descriptions of the processes X and ¢, and of 5 can be seen in the references.

12 elem-Aimfr

Value

A list with the following elements:

X_fdata functional covariates, an fdata object of length n.
error_fdata functional errors, an fdata object of length n.
beta either the matrix with (s, t) evaluated at the argvals of X_fdata and Y_fdata

(if concurrent = FALSE) or a vector with 3(¢) evaluated at the argvals of
X_fdata (if concurrent = TRUE).

Author(s)

Javier Alvarez-Liébana.

References

Cardot, H. and Mas, A. (2013). Asymptotics of prediction in functional linear regression with
functional outputs. Bernoulli, 19(5B):2627-2651. doi:10.3150/12BEJ469

Imaizumi, M. and Kato, K. (2018). PCA-based estimation for functional linear regression with
functional responses. Journal of Multivariate Analysis, 163:15-36. doi:10.1016/j.jmva.2017.10.001

Garcia-Portugués, E., AlvareZ-Liébana, J., AlvareZ-PéreZ, G. and Gonzalez-Manteiga, W. (2021). A
goodness-of-fit test for the functional linear model with functional response. Scandinavian Journal
of Statistics, 48(2):502-528. doi:10.1111/sjos.12486

Examples

FLMFR based on Imaizumi and Kato (2018) adopting different Hilbert spaces
s <- seq(0, 1, 1 = 201)
t <- seq(2, 4, 1 = 301)
r_ik2018 <- r_ik2018_flmfr(n = 50, s = s, t = t, std_error = 1.5,
parameters = c(1.75, 0.8, 2.4, 0.25), n_fpc = 50)
plot(r_ik2018$X_fdata)
plot(r_ik2018%error_fdata)
image(x = s, y = t, z = r_ik2018%$beta, col = viridislLite::viridis(20))

FLMFR based on Cardot and Mas (2013) adopting different Hilbert spaces
r_cm2013 <- r_cm2013_flmfr(n = 50, s =s, t = t, std_error = 0.15,
n_fpc = 50)
plot(r_cm2013$X_fdata)
plot(r_cm2013$error_fdata)
image(x = s, y = t, z = r_cm2013$beta, col = viridisLite::viridis(20))

FLMFR in Garcia-Portugués et al. (2021) adopting different Hilbert spaces

r_gof2021 <- r_gof2021_flmfr(n = 50, s =s, t = t, std_error = 0.35,
concurrent = FALSE)

plot(r_gof2021$X_fdata)

plot(r_gof2021$error_fdata)

image(x = s, y = t, z = r_gof2021$beta, col = viridisLite::viridis(20))

Concurrent model in Garcia-Portugués et al. (2021)
r_gof2021 <- r_gof2021_flmfr(n = 50, s =s, t = s, std_error = 0.35,

https://doi.org/10.3150/12-BEJ469
https://doi.org/10.1016/j.jmva.2017.10.001
https://doi.org/10.1111/sjos.12486

flm_est 13

concurrent = TRUE)
plot(r_gof2021$X_fdata)
plot(r_gof2021$error_fdata)
plot(r_gof2021$beta)

flm_est Estimation of functional linear models

Description

Estimation of the linear operator relating a functional predictor X with a functional response Y in
the linear model

b
Y(t) = / B(s,t) X (s) ds + &(t),

where X is a random variable in the Hilbert space of square-integrable functions in [a, b], L?([a, b]),
Y and ¢ are random variables in L?([c,d]), and s € [a, b] and t € [c, d].

The linear, Hilbert—-Schmidet, integral operator is parametrized by the bivariate kernel 3 € L?([a,b])®
L?([c,d]). Its estimation is done through the truncated expansion of 3 in the tensor product of the
data-driven bases of the Functional Principal Components (FPC) of X and Y, and through the fit-
ting of the resulting multivariate linear model. The FPC basis for X is truncated in p components,
while the FPC basis for Y is truncated in ¢ components. Automatic selection of p and ¢ is detailed
below.

The particular cases in which either X or Y are constant functions give either a scalar predictor or
response. The simple linear model arises if both X and Y are scalar, for which g is a constant.

Usage

flm_est(X, Y, est_method = "fpcr_11s", p = NULL, g = NULL,
thre_p = 0.99, thre_q = 0.99, lambda = NULL, X_fpc = NULL,
Y_fpc = NULL, compute_residuals = TRUE, centered = FALSE,

int_rule = "trapezoid”, cv_verbose = FALSE, ...)
Arguments
X, Y samples of functional/scalar predictors and functional/scalar response. Either
fdata objects (for functional variables) or vectors of length n (for scalar vari-
ables).
est_method either "fpcr” (Functional Principal Components Regression; FPCR), " fpcr_12"

(FPCR with ridge penalty), "fpcr_11" (FPCR with lasso penalty) or "fpcr_11s"
(FPCR with lasso-selected FPC). If X is scalar, flm_est only considers "fpcr”
as estimation method. See details below. Defaults to "fpcr_11s".

P, q index vectors indicating the specific FPC to be considered for the truncated bases
expansions of X and Y, respectively. If a single number for p is provided, then
p <- 1:max(p) internally (analogously for q) and the first max(p) FPC are con-
sidered. If NULL (default), then a data-driven selection of p and q is done. See
details below.

14 flm_est

thre_p, thre_q thresholds for the proportion of variance that is explained, at least, by the first
p and q FPC of X and Y, respectively. These thresholds are employed for an
(initial) automatic selection of p and ¢. Default to ©.99. thre_p (thre_q) is
ignored if p (q) is provided.

lambda regularization parameter A for the estimation methods "fpcr_12", "fpcr_11",
and "fpcr_11s". If NULL (default), it is chosen with cv_glmnet.

X_fpc, Y_fpc FPC decompositions of X and Y, as returned by fpc. Computed if not provided.

compute_residuals
whether to compute the fitted values Y_hat and its Y_hat_scores, and the
residuals of the fit and its residuals_scores. Defaults to TRUE.

centered flag to indicate if X and Y have been centered or not, in order to avoid their
recentering. Defaults to FALSE.

int_rule quadrature rule for approximating the definite unidimensional integral: trape-
zoidal rule (int_rule = "trapezoid") and extended Simpson rule (int_rule
= "Simpson”) are available. Defaults to "trapezoid"”.

cv_verbose flag to display information about the estimation procedure (passed to cv_glmnet).
Defaults to FALSE.

further parameters to be passed to cv_glmnet (and then to cv.glmnet) such as
cv_1se, cv_nlambda or cv_parallel, among others.

Details

flm_est deals seamlessly with either functional or scalar inputs for the predictor and response. In
the case of scalar inputs, the corresponding dimension-related arguments (p, g, thre_p or thre_q)
will be ignored as in these cases either p = 1 or ¢ = 1.

The function translates the functional linear model into a multivariate model with multivariate re-
sponse and then estimates the p x g matrix of coefficients of [in the tensor basis of the FPC of X
and Y. The following estimation methods are implemented:

e "fpcr"”: Functional Principal Components Regression (FPCR); see details in Ramsay and
Silverman (2005).
e "fpcr_12": FPCR, with ridge penalty on the associated multivariate linear model.
e "fpcr_11": FPCR, with lasso penalty on the associated multivariate linear model.
* "fpcr_11s": FPCR, with FPC selected by lasso regression on the associated multivariate
linear model.
The last three methods are explained in Garcia-Portugués et al. (2021).
The p FPC of X and q FPC of Y are determined as follows:
* If p=NULL, then p is set as p_thre <- 1:j_thre, where j_thre is the j-th FPC of X for

which the cumulated proportion of explained variance is greater than thre_p. If p !=NULL,
then p_thre <- p.

* If g = NULL, then the same procedure is followed with thre_q, resulting q_thre.

flm_est 15

Once p_thre and g_thre have been obtained, the methods "fpcr_11" and "fpcr_11s" perform a
second selection of the FPC that are effectively considered in the estimation of 3. This subset of
FPC (of p_thre) is encoded in p_hat. No further selection of FPC is done for the methods "fpcr"”
and "fpcr_12".

The flag compute_residuals controlsif Y_hat, Y_hat_scores, residuals, and residuals_scores
are computed. If FALSE, they are set to NULL. Y_hat equals Y;(t) = f: B(s,t)X;(s)ds and
residuals stands for &;(¢) = Y;(t) — f/i(t), both fori = 1,...,n. Y_hat_scores and
residuals_scores are the n x ¢ matrices of coefficients (or scores) of these functions in the FPC
of V.

Missing values on X and Y are automatically removed.

Value
A list with the following entries:

Beta_hat estimated (3, a matrix with values B (s,t) evaluated at the grid points for X and
Y. Its size is c(length(X$argvals), length(Y$argvals)).
Beta_hat_scores
the matrix of coefficients of Beta_hat (resulting from projecting it into the ten-
sor basis of X_fpc and Y_fpc), with dimension c(p_hat, q_thre).

H_hat hat matrix of the associated fitted multivariate linear model, a matrix of size c(n,
n). NULL if est_method = "fpcr_11", since lasso estimation does not provide
it explicitly.

p_thre index vector indicating the FPC of X considered for estimating the model. Cho-

sen by thre_p or equal to p if given.

p_hat index vector of the FPC considered by the methods "fpcr_11" and "fpcr_11s"
methods after further selection of the FPC considered in p_thre. For methods
"fpcr” and "fpcr_12", p_hat equals p_thre.

g_thre index vector indicating the FPC of Y considered for estimating the model. Cho-
sen by thre_gq or equal to q if given. Note that zeroing by lasso procedure only
affects in the rows.

est_method the estimation method employed.
Y_hat fitted values, either an fdata object or a vector, depending on Y.
Y_hat_scores the matrix of coefficients of Y_hat, with dimension c(n, g_thre).

residuals residuals of the fitted model, either an fdata object or a vector, depending on Y.
residuals_scores
the matrix of coefficients of residuals, with dimension c(n, q_thre).

X_fpc, Y_fpc FPC of X and Y, as returned by fpc with n_fpc =n.

lambda regularization parameter A used for the estimation methods "fpcr_12", "fpcr_11",
and "fpcr_11s".
cv cross-validation object returned by cv_glmnet.
Author(s)

Eduardo Garcia-Portugués and Javier Alvarez-Liébana.

16 flm_est

References

Garcia-Portugués, E., Alvarez-Liébana, J., Alvarez-Pérez, G. and Gonzalez-Manteiga, W. (2021). A
goodness-of-fit test for the functional linear model with functional response. Scandinavian Journal
of Statistics, 48(2):502-528. doi:10.1111/sjos.12486

Ramsay, J. and Silverman, B. W. (2005). Functional Data Analysis. Springer-Verlag, New York.

Examples

Quick example of functional response and functional predictor

Generate data

set.seed(12345)

n <- 50

X_fdata <- r_ou(n = n, t = seq(o, 1, 1
epsilon <- r_ou(n =n, t =seq(o, 1, 1
Y_fdata <- 2 * X_fdata + epsilon

2)
0.5)

201), sigma
201), sigma

Lasso-selection FPCR (p and g are estimated)
flm_est(X = X_fdata, Y = Y_fdata, est_method = "fpcr_11s")

Functional response and functional predictor

Generate data

set.seed(12345)

n <- 50

X_fdata <- r_ou(n = n, t = seq(@, 1, 1 = 201), sigma = 2)
epsilon <- r_ou(n = n, t = seq(@, 1, 1 = 201), sigma = 0.5)
Y_fdata <- 2 * X_fdata + epsilon

FPCR (p and g are estimated)

fpcr_1 <- flm_est(X = X_fdata, Y = Y_fdata, est_method = "fpcr")
fpcr_1$Beta_hat_scores

fpcr_1$p_thre

fpcr_1$q_thre

FPCR (p and g are provided)

fpcr_2 <- flm_est(X = X_fdata, Y = Y_fdata, est_method = "fpcr”,
p=c(,5, 2,7),q=2:1)

fpcr_2$Beta_hat_scores

fpcr_2$p_thre

fpcr_2$q_thre

Ridge FPCR (p and q are estimated)

12_1 <- flm_est(X = X_fdata, Y = Y_fdata, est_method = "fpcr_12")
12_1$Beta_hat_scores

12_1$p_hat

Ridge FPCR (p and q are provided)

12_2 <- flm_est(X = X_fdata, Y = Y_fdata, est_method = "fpcr_12",
p=c(, 5,2, 7), qg=2:1)

12_2%Beta_hat_scores

https://doi.org/10.1111/sjos.12486

flm_est 17

12_2$p_hat

Lasso FPCR (p and q are estimated)

11_1 <- flm_est(X = X_fdata, Y = Y_fdata, est_method = "fpcr_11")
11_1$Beta_hat_scores

11_1$p_thre

11_1$p_hat

Lasso estimator (p and g are provided)

11_2 <- flm_est(X = X_fdata, Y = Y_fdata, est_method = "fpcr_11",
p=c(, 5,2, 7),qg=2:1)

11_2%$Beta_hat_scores

11_2$p_thre

11_2%$p_hat

Lasso-selection FPCR (p and q are estimated)

11s_1 <- flm_est(X = X_fdata, Y = Y_fdata, est_method = "fpcr_11s")
11s_1$Beta_hat_scores

11s_1$p_thre

11s_1$p_hat

Lasso-selection FPCR (p and q are provided)

11s_2 <- flm_est(X = X_fdata, Y = Y_fdata, est_method = "fpcr_11s",
p=c(,5, 2,7, qg=1:4)

11s_2$Beta_hat_scores

11s_2%p_thre

11s_2%p_hat

Scalar response

Generate data

set.seed(12345)

n <- 50

beta <- r_ou(n =1, t = seq(@, 1, 1 = 201), sigma = 0.5, x0 = 3)
X_fdata <- fdata_cen(r_ou(n = n, t = seq(@, 1, 1 = 201), sigma = 2))
epsilon <- rnorm(n, sd = 0.25)

Y <- drop(inprod_fdata(X_fdatal = X_fdata, X_fdata2 = beta)) + epsilon

FPCR
fpcr_4 <- flm_est(X = X_fdata, Y = Y, est_method = "fpcr")
fpcr_4$p_hat

Ridge FPCR
12_4 <~ flm_est(X = X_fdata, Y = Y, est_method = "fpcr_12")
12_4%$p_hat

Lasso FPCR
11_4 <- flm_est(X = X_fdata, Y =Y, est_method = "fpcr_11")
11_4%$p_hat

Lasso-selection FPCR
11s_4 <- flm_est(X = X_fdata, Y =Y, est_method = "fpcr_11s")
11s_4$p_hat

18 flm_stat

Scalar predictor

Generate data

set.seed(12345)

n <- 50

X <= rnorm(n)

epsilon <- r_ou(n =n, t = seq(@, 1, 1 = 201), sigma = 0.5)

beta <- r_ou(n =1, t = seq(@, 1, 1 = 201), sigma = 0.5, x0 = 3)

beta$data <- matrix(beta$data, nrow = n, ncol = ncol(beta$data),
byrow = TRUE)

Y_fdata <- beta * X + epsilon

FPCR

fpcr_4 <- flm_est(X = X, Y = Y_fdata, est_method = "fpcr")
plot(beta, col = 2)

lines(beta$argvals, drop(fpcr_4%$Beta_hat))

flm_stat Projected Cramér—von Mises test statistic for the goodness-of-fit test
of functional linear models

Description

Computation of the Projected Cramér—von Mises (PCvM) test statistic and its associated A , matrix.
For a sample of functional covariates X1, ..., X, the test statistic is computed from X1 5, . .., Xy p,
the coefficients (scores) of the sample in a p-truncated basis expansion, such as Functional Principal
Components (FPC).

The PCvM statistic is defined as

PCvM, pq=c- tr(E;A.Eq)

where
c = 2rPTD/271 /(gD (p/2)T (q/2)n?),

E, is the n x g matrix of multivariate residuals, and A, is a n x n matrix whose 7j-th element is
Son_ Ayjr, for A;;, depending on (x; , X; p, Xy). Its exact expression can be seen in Escanciano
(2006) and Garcia-Portugués et al. (2021).

Usage

flm_stat(E, p, Adot_vec, constant = TRUE)

Adot (X)

flm_stat 19

Arguments

E the matrix of multivariate residuals, with dimension c(n, q). A vectorif ¢ = 1.

p dimension of the covariates space. Must be a positive integer.

Adot_vec output from Adot. A vector of length n* (n-1) / 2+ 1. This corresponds to
the most expensive computation in the test statistic.

constant whether to include the constant of the PCvM test statistic, ¢, in its computation.
Defaults to TRUE.

X a matrix of size c(n, p) containing the coefficients (scores) of the functional
data in a p-truncated orthonormal basis expansion, such as FPC. Must not con-
tain repeated rows.

Details

Adot assumes that X does not have repeated rows or otherwise NaNs will be present in the result. If
X has repeated rows, Adot will throw a warning.

The implementation of the PCvM test statistic for scalar response is addressed in Garcia-Portugués
et al. (2014), whereas Garcia-Portugués et al. (2021) presents its multivariate extension and shows
that A, induces a weighted quadratic norm (if there are no repetitions in the sample). The PCvM
statistic is rooted in the proposal by Escanciano (2006).

Both flm_stat and A_dot are coded in C++.

Value

e flm_stat: the value of the test statistic, a scalar.

* A_dot: a vector of length nx (n - 1) / 2+ 1. The first entry contains the common diagonal
element of A,. The remaining entries are the upper triangular matrix (excluding the diagonal)
of A,, stacked by columns.

Author(s)

Eduardo Garcia-Portugués.

References

Garcia-Portugués, E., Alvarez-Liébana,], Alvarez-Pérez, G. and Gonzalez-Manteiga, W. (2021). A
goodness-of-fit test for the functional linear model with functional response. Scandinavian Journal
of Statistics, 48(2):502-528. doi:10.1111/sjos.12486

Escanciano, J. C. (2006) A consistent diagnostic test for regression models using projections.
Econometric Theory, 22(6):1030—1051. doi:10.1017/S0266466606060506

Garcia-Portugués, E., Gonzdlez-Manteiga, W. and Febrero-Bande, M. (2014). A goodness-of-fit
test for the functional linear model with scalar response. Journal of Computational and Graphical
Statistics, 23(3):761-778. doi:10.1080/10618600.2013.812519

https://doi.org/10.1111/sjos.12486
https://doi.org/10.1017/S0266466606060506
https://doi.org/10.1080/10618600.2013.812519

20 flm_stat

Examples

flm_stat

Generate data

<- 200

<- 2

<-3

<- matrix(rnorm(n *), nrow = n, ncol = q)
_fdata <- r_ou(n = n, t = seq(@, 1, 1 = 101))

X MT O 5 +H

Compute FPC
X_fpc <- fpc(X_fdata)

Adot
Adot_vec <- Adot(X = X_fpc[["scores"]])

Check equality
constant <- n*(-2) * 2 * pi*((p / 2) - 1) / gamma(p / 2)
constant * .Fortran("pcvm_statistic”, n = as.integer(n),
Adot_vec = Adot_vec, residuals = E[, 2],
statistic = @)$statistic
flm_stat(E = E[, 2, drop = FALSE], p = p, Adot_vec = Adot_vec,
constant = FALSE)

Adot

Generate data
n <- 200
X_fdata <- r_ou(n = n, t = seq(@, 1, 1 =101))

Compute FPC
X_fpc <- fpc(X_fdata)

Using inprod_fdata and Adot
Adot_vec <- Adot(X = X_fpc[["scores"]])

Check with fda.usc::Adot with adequate inprod
head(drop(Adot_vec))
head(fda.usc: :Adot(X_fdata))

Obtention of the entire Adot matrix

Ad <- diag(rep(Adot_vec[1], n))
Ad[upper.tri(Ad, diag = FALSE)] <- Adot_vec[-1]
head(Ad <- t(Ad) + Ad - diag(diag(Ad)))

Positive definite
eigen(Ad)$values

Warning if X contains repeated observations
Adot(X = rbind(1:3, 1:3, 3:5))

Comparison with .Fortran(”adot"”, PACKAGE = "fda.usc")

fim_term 21

n <- as.integer(n)
a <- as.double(rep(@, (n * (n - 1) / 2 + 1)))
inprod <- X_fpc[["scores"]] %*% t(X_fpc[["scores”"]])
inprod <- inprodlfupper.tri(inprod, diag = TRUE)]
X <= X_fpc[["scores"]]
microbenchmark: :microbenchmark(
.Fortran("adot”, n = n, inprod = inprod, Adot_vec = a,
PACKAGE = "fda.usc"),
Adot(X = X),
times = 50, control = list(warmup = 10))

flm_term Functional linear model term with bivariate kernel

Description

Computation of the functional linear term

b
/ B(s,)X (s) ds,

of a Functional Linear Model with Functional Response (FLMFR), where X is a random variable
in the Hilbert space of square-integrable functions in [a, b], L?([a, b]), 3 is the bivariate kernel of
the FLMFR, and ¢ is a random variable in L?(]c, d]).

Usage

flm_term(X_fdata, beta, t, int_rule = "trapezoid”, equispaced = NULL,
concurrent = FALSE)

Arguments
X_fdata sample of functional data as an fdata object of length n.
beta matrix containing the values 3(s, t), for each grid point s in [a, b] and ¢ in [c, d].
If concurrent = TRUE, a row/column vector must be introduced, valued in the
same grid as error_fdata, with the same length as 1length(X_fdata$argvals).
t grid points where responses are valued.
int_rule quadrature rule for approximating the definite unidimensional integral: trape-
zoidal rule (int_rule = "trapezoid”) and extended Simpson rule (int_rule
= "Simpson") are available. Defaults to "trapezoid”.
equispaced flag to indicate if X_fdata$data is valued in an equispaced grid or not. Defaults
to FALSE.
concurrent flag to consider a concurrent FLMFR (degenerate case). Defaults to FALSE.
Value

Functional linear model term as the integral (in s) between X_fdata and beta, as an fdata object
of length n.

22 fim_test

Author(s)

Javier Alvarez-Liébana.

References

Garcia-Portugués, E., Alvarez-Liébana, J., Alvarez-Pérez, G. and Gonzalez-Manteiga, W. (2021). A
goodness-of-fit test for the functional linear model with functional response. Scandinavian Journal
of Statistics, 48(2):502-528. doi:10.1111/sjos.12486

Examples

Generate a sample of functional responses via FLMFR

Bivariate kernel beta(s,t) as an egg carton shape

s <- seq(@, 1, 1 =101)

t <- seq(@, 1, 1 = 201)

beta <- outer(s, t, FUN = function(s, t) sin(6 * pi * s) + cos(6 * pi x t))

Functional data as zero-mean Gaussian process with exponential variogram
X_fdata <- fda.usc::rproc2fdata(n = 50, t = s, sigma = "vexponential”,
list = list(scale = 2.5))

Functional error as an OU process with variance 0.075
sigma <- sqrt(0.075) x 2
error_fdata <- r_ou(n = 50, t
Y_fdata <- flm_term(X_fdata =
plot(Y_fdata)

= t, sigma = sigma)
X_fdata, beta = beta, t = t) + error_fdata

Generate a sample of functional responses via concurrent model

Function beta(t)

s <- seq(1, 3, 1 = 201)

t <- seq(2, 5, 1 = 201)

beta <- sin(pi * t) + cos(pi * t)

Functional data as zero-mean Gaussian process with exponential variogram
X_fdata <- fda.usc::rproc2fdata(n = 50, t = s, sigma = "vexponential”,
list = list(scale = 2.5))

Functional error as an OU process with variance 0.075

sigma <- sqrt(0.075) * 2

error_fdata <- r_ou(n = 50, t = t, sigma = sigma)

Y_fdata <- flm_term(X_fdata = X_fdata, beta = beta, t = t,
concurrent = TRUE) + error_fdata

plot(Y_fdata)

flm_test Goodness-of-fit test for functional linear models

https://doi.org/10.1111/sjos.12486

flm_test 23

Description

Goodness-of-fit test of a functional linear model with functional response Y € L?(]c, d]) and func-
tional predictor X € L?([a, b]), where L?([a, b]) is the Hilbert space of square-integrable functions
in [a, b].

The goodness-of-fit test checks the linearity of the regression model m : L?([a,b]) — L*([c,d])

that relates Y and X by
Y (t) = m(X) +&(t),

where ¢ is a random variable in L?([c,d]) and ¢ € [¢,d]. The check is formalized as the test of the
composite hypothesis

Ho:m € {mg: 8 € L*([a,b]) ® L*(|c,d])},

where ,
ma(X(5))(t) = / B(s,)X (s) ds

is the linear, Hilbert—Schmidt, integral operator parametrized by the bivariate kernel 3. Its esti-
mation is done by the truncated expansion of [in the tensor product of the data-driven bases of
Functional Principal Components (FPC) of X and Y. The FPC basis for X is truncated in p com-
ponents, while the FPC basis for Y is truncated in ¢ components.

The particular cases in which either X or Y are constant functions give either a scalar predictor or
response. The simple linear model arises if both X and Y are scalar, for which g is a constant.

Usage

flm_test(X, Y, betad® = NULL, B = 500, est_method = "fpcr”, p = NULL,
g = NULL, thre_p = 0.99, thre_q = 0.99, lambda = NULL,
boot_scores = TRUE, verbose = TRUE, plot_dens = TRUE,
plot_proc = TRUE, plot_max_procs = 100, plot_max_p = 2,
plot_max_q = 2, save_fit_flm = TRUE, save_boot_stats = TRUE,

int_rule = "trapezoid”, refit_lambda = FALSE, ...)
Arguments
X, Y samples of functional/scalar predictors and functional/scalar response. Either
fdata objects (for functional variables) or vectors of length n (for scalar vari-
ables).
beta@ if provided (defaults to NULL), the simple null hypothesis Hy : m = mg, is

tested. beta® must be a matrix of size

c(length(X$argvals), length(Y$argvals)). If X or Y are scalar, beta® can
be also an fdata object, with the same argvals as X or Y. Can also be a constant
(understood as a shorthand for a matrix with all its entries equal to the constant).

B number of bootstrap replicates. Defaults to 500.

est_method either "fpcr” (Functional Principal Components Regression; FPCR), " fpcr_12"
(FPCR with ridge penalty), "fpcr_11" (FPCR with lasso penalty) or "fpcr_11s"
(FPCR with lasso-selected FPC). If X is scalar, f1m_est only considers "fpcr”
as estimation method. See details below. Defaults to "fpcr_11s".

24

fim_test

P, q either index vectors indicating the specific FPC to be considered for the trun-
cated bases expansions of X and Y, respectively. If a single number for p is pro-
vided, then p <- 1:max(p) internally (analogously for q) and the first max(p)
FPC are considered. If NULL (default), then a data-driven selection of p and q is
done. See details below.

thre_p, thre_q thresholds for the proportion of variance that is explained, at least, by the first
p and ¢ FPC of X and Y, respectively. These thresholds are employed for an
(initial) automatic selection of p and ¢. Default to ©.99. thre_p (thre_q) is
ignored if p (q) is provided.

lambda regularization parameter A for the estimation methods "fpcr_12", "fpcr_11",
and "fpcr_11s". If NULL (default), it is chosen with cv_glmnet.

boot_scores flag to indicate if the bootstrap shall be applied to the scores of the residuals,
rather than to the functional residuals. This improves the computational expedi-
ency notably. Defaults to TRUE.

verbose flag to show information about the testing progress. Defaults to TRUE.

plot_dens flag to indicate if a kernel density estimation of the bootstrap statistics shall be
plotted. Defaults to TRUE.

plot_proc whether to display a graphical tool to identify the degree of departure from the
null hypothesis. If TRUE (default), the residual marked empirical process, pro-
jected in several FPC directions of X and Y, is shown, together with bootstrap
analogues. The FPC directions are ones selected at the estimation stage.

plot_max_procs maximum number of bootstrapped processes to plot in the graphical tool. Set as
the minimum of plot_max_procs and B. Defaults to 100.

plot_max_p, plot_max_q
maximum number of FPC directions to be considered in the graphical tool. They
limit the resulting plot to be at most of size c(plot_max_p, plot_max_q). De-
fault to 2.

save_fit_flm, save_boot_stats
flag to return fit_flm and boot_x. If FALSE, these memory-expensive objects
are set to NA. Default to TRUE.

int_rule quadrature rule for approximating the definite unidimensional integral: trape-
zoidal rule (int_rule = "trapezoid"”) and extended Simpson rule (int_rule
= "Simpson") are available. Defaults to "trapezoid”.

refit_lambda flag to reselect lambda in each bootstrap replicate, incorporating its variability
in the bootstrap calibration. Much more time consumig. Defaults to FALSE.

further parameters to be passed to cv_glmnet (and then to cv.glmnet) such as
cv_1se, cv_nlambda or cv_parallel, among others.

Details

The function implements the bootstrap-based goodness-of-fit test for the functional linear model
with functional/scalar response and functional/scalar predictor, as described in Algorithm 1 in
Garcia-Portugués et al. (2021). The specifics are detailed there.

By default cv_1se = TRUE for cv_glmnet is considered, unless it is changed via This is the
recommended choice for conducting the goodness-of-fit test based on regularized estimators, as

flm_test 25

the oversmoothed estimate of the regression model under the null hypothesis notably facilitates the
calibration of the test (see Garcia-Portugués et al., 2021).

The graphical tool obtained with plot_proc = TRUE is based on an extension of the tool described
in Garcia-Portugués et al. (2014).

Repeated observations on X are internally removed, as otherwise they would cause NaNs in Adot.
Missing values on X and Y are also automatically removed.

Value

An object of the htest class with the following elements:

statistic test statistic.

p.value p-value of the test.
boot_statistics
the bootstrapped test statistics, a vector of length B.

method information on the type of test performed.
parameter a vector with the dimensions p and ¢ considered in the test statistic. These are
the lengths of the outputs p and q.
p the index of the FPC considered for X.
q the index of the FPC considered for Y.
fit_flm the output resulted from calling f1m_est.
boot_lambda bootstrapped lambda.
boot_p a list with the bootstrapped indexes of the FPC considered for X.
data.name name of the value of data.
Author(s)

Eduardo Garcia-Portugués.

References

Garcia-Portugués, E., AlvareZ-Liébana, J., AlvareZ-PéreZ, G. and Gonzalez-Manteiga, W. (2021). A
goodness-of-fit test for the functional linear model with functional response. Scandinavian Journal
of Statistics, 48(2):502-528. doi:10.1111/sjos.12486

Garcia-Portugués, E., Gonzadlez-Manteiga, W. and Febrero-Bande, M. (2014). A goodness-of-fit
test for the functional linear model with scalar response. Journal of Computational and Graphical
Statistics, 23(3):761-778. doi:10.1080/10618600.2013.812519

Examples

Quick example for functional response and predictor

Generate data under Ho@

n <- 100

set.seed(987654321)

X_fdata <- r_ou(n = n, t = seq(@, 1, 1 = 101), sigma = 2)

https://doi.org/10.1111/sjos.12486
https://doi.org/10.1080/10618600.2013.812519

26

epsilon <- r_ou(n = n, t = seq(@, 1, 1 = 101), sigma = 0.5)

Y_fdata <- epsilon

Test the FLMFR
flm_test(X = X_fdata, Y = Y_fdata)

Simple hypothesis
flm_test(X = X_fdata, Y = Y_fdata, beta@d = @)

Generate data under H1
n <- 100
set.seed(987654321)

sample_frm_fr <- r_frm_fr(n = n, scenario = 3, s = seq(@, 1, 1 = 101),

t = seqo, 1, 1
X_fdata <- sample_frm_fr[["X_fdata"]]
Y_fdata <- sample_frm_fr[["Y_fdata"]]

Test the FLMFR
flm_test(X = X_fdata, Y = Y_fdata)

Functional response and predictor

Generate data under Ho@

n <- 50

B <- 100

set.seed(987654321)

t <- seq(@, 1, 1 = 201)

X_fdata <- r_ou(n = n, t = t, sigma = 2)
epsilon <- r_ou(n =n, t = t, sigma = 0.5)
Y_fdata <- epsilon

With boot_scores = TRUE

flm_test(X = X_fdata, Y = Y_fdata, est_method
flm_test(X = X_fdata, Y = Y_fdata, est_method
flm_test(X = X_fdata, Y = Y_fdata, est_method

With boot_scores = FALSE

flm_test(X = X_fdata, Y = Y_fdata, est_method
boot_scores = FALSE, B = B)

flm_test(X = X_fdata, Y = Y_fdata, est_method
boot_scores = FALSE, B = B)

flm_test(X = X_fdata, Y = Y_fdata, est_method
boot_scores = FALSE, B = B)

flm_test(X = X_fdata, Y = Y_fdata, est_method
boot_scores = FALSE, B = B)

Simple hypothesis
flm_test(X = X_fdata, Y = Y_fdata, betad = 2,
flm_test(X = X_fdata, Y = Y_fdata, beta@
flm_test(X = X_fdata, Y = Y_fdata, beta@

i u
[SENS]

Generate data under H1
n <- 50

= "fper”, B = B)
= "fpcr_12", B = B)
= "fpcr_11s", B = B)

= "fper”,
= "fpcr_12"

= "fpcr_11"

= "fpcr_11s",

est_method
est_method
est_method

’

’

"fper”, B = B)
"fpcr”, B = B)
"fpcr_11s", B

101), nonlinear = "quadratic")

B)

fim_test

flm_test 27

B <- 100

set.seed(987654321)

sample_frm_fr <- r_frm_fr(n = n, scenario =3, s =1t, t = t,
nonlinear = "quadratic")

X_fdata <- sample_frm_fr$X_fdata

Y_fdata <- sample_frm_fr$Y_fdata

With boot_scores = TRUE

flm_test(X = X_fdata, Y = Y_fdata, est_method = "fpcr”, B = B)
flm_test(X = X_fdata, Y = Y_fdata, est_method = "fpcr_12", B = B)
flm_test(X = X_fdata, Y = Y_fdata, est_method = "fpcr_1l1s", B = B)

With boot_scores = FALSE

flm_test(X = X_fdata, Y = Y_fdata, est_method = "fpcr”,
boot_scores = FALSE, B = B)

flm_test(X = X_fdata, Y = Y_fdata, est_method = "fpcr_12",
boot_scores = FALSE, B = B)

flm_test(X = X_fdata, Y = Y_fdata, est_method = "fpcr_11",
boot_scores = FALSE, B = B)

flm_test(X = X_fdata, Y = Y_fdata, est_method = "fpcr_11s",
boot_scores = FALSE, B = B)

Scalar response and functional predictor

Generate data under HO

n <- 50

B <- 100

set.seed(987654321)

t <- seq(0, 1, 1 = 201)

X_fdata <- r_ou(n = n, t = t, sigma = 2)

beta <- r_ou(n =1, t = t, sigma = 0.5, x0 = 2)

epsilon <- rnorm(n = n)

Y <- drop(inprod_fdata(X_fdatal = X_fdata, X_fdata2 = beta) + epsilon)

With boot_scores = TRUE

flm_test(X = X_fdata, Y =Y, est_method = "fpcr”, B = B)
flm_test(X = X_fdata, Y =Y, est_method = "fpcr_12", B = B)
flm_test(X = X_fdata, Y =Y, est_method = "fpcr_l1s", B = B)

With boot_scores = FALSE

flm_test(X = X_fdata, Y =Y, est_method = "fpcr”,
boot_scores = FALSE, B = B)

flm_test(X = X_fdata, Y =Y, est_method = "fpcr_12",
boot_scores = FALSE, B = B)

flm_test(X = X_fdata, Y =Y, est_method = "fpcr_11",
boot_scores = FALSE, B = B)

flm_test(X = X_fdata, Y =Y, est_method = "fpcr_l1s",
boot_scores = FALSE, B = B)

Simple hypothesis
flm_test(X = X_fdata, Y =
flm_test(X = X_fdata, Y
flm_test(X = X_fdata, Y =

|
=<

, betad = beta, est_method = "fpcr”, B = B)
Y, beta@ = 0, est_method = "fpcr”, B = B)
, beta@ = @, est_method = "fpcr_11s", B = B)

I
—<

28

Generate data under H1

n <- 50

B <- 100

set.seed(987654321)

X_fdata <- r_ou(n = n, t = t, sigma = 2)

beta <- r_ou(n =1, t = t, sigma = 0.5)

epsilon <- rnorm(n = n)

Y <- drop(exp(inprod_fdata(X_fdatal = X_fdata*2, X_fdata2 = beta)) + epsilon)

With boot_scores = TRUE

flm_test(X = X_fdata, Y =Y, est_method = "fpcr”, B = B)
flm_test(X = X_fdata, Y =Y, est_method = "fpcr_12", B = B)
flm_test(X = X_fdata, Y =Y, est_method = "fpcr_l1s", B = B)

With boot_scores = FALSE

flm_test(X = X_fdata, Y =Y, est_method
boot_scores = FALSE, B = B)

flm_test(X = X_fdata, Y =Y, est_method = "fpcr_12",
boot_scores = FALSE, B = B)

flm_test(X = X_fdata, Y =Y, est_method = "fpcr_11",
boot_scores = FALSE, B = B)

flm_test(X = X_fdata, Y = Y, est_method = "fpcr_11s",
boot_scores = FALSE, B = B)

"fpcr“ ,

Functional response and scalar predictor

Generate data under HO

n <- 50

B <- 100

set.seed(987654321)

X <= rnorm(n)

t <- seq(o, 1, 1 = 201)

beta <- r_ou(n =1, t = t, sigma = 0.5, x0 = 3)

beta$data <- matrix(beta$data, nrow = n, ncol = ncol(beta$data),
byrow = TRUE)

epsilon <- r_ou(n = n, t = t, sigma = 0.5)

Y_fdata <- X *x beta + epsilon

With boot_scores = TRUE
flm_test(X = X, Y = Y_fdata, est_method = "fpcr”, B = B)

With boot_scores = FALSE
flm_test(X = X, Y = Y_fdata, est_method = "fpcr"”, boot_scores = FALSE, B = B)

Simple hypothesis
flm_test(X = X, Y = Y_fdata, beta® = betal[1], est_method = "fpcr”, B = B)
flm_test(X = X, Y = Y_fdata, beta® = 0, est_method = "fpcr”, B = B)

Generate data under H1
n <- 50

B <- 100
set.seed(987654321)

fim_test

fpc 29

X <- rexp(n)

beta <- r_ou(n =1, t = t, sigma = 0.5, x0 = 3)

beta$data <- matrix(beta$data, nrow = n, ncol = ncol(beta$data),
byrow = TRUE)

epsilon <- r_ou(n =n, t =t, sigma = 0.5)

Y_fdata <- log(X * beta) + epsilon

With boot_scores = TRUE
flm_test(X = X, Y = Y_fdata, est_method = "fpcr”, B = B)

With boot_scores = FALSE
flm_test(X = X, Y = Y_fdata, est_method = "fpcr"”, boot_scores = FALSE, B = B)

fpc Computation of functional principal components

Description
Computation of Functional Principal Components (FPC) for equispaced and non equispaced func-
tional data.

Usage

fpc(X_fdata, n_fpc = 3, centered = FALSE, int_rule = "trapezoid”,
equispaced = FALSE, verbose = FALSE)

Arguments
X_fdata sample of functional data as an fdata object of length n.
n_fpc number of FPC to be computed. If n_fpc > n, n_fpc is set to n. Defaults to 3.
centered flag to indicate if X_fdata is centered or not. Defaults to FALSE.
int_rule quadrature rule for approximating the definite unidimensional integral: trape-
zoidal rule (int_rule = "trapezoid") and extended Simpson rule (int_rule
= "Simpson") are available. Defaults to "trapezoid"”.
equispaced flag to indicate if X_fdata$data is valued in an equispaced grid or not. Defaults
to FALSE.
verbose whether to show or not information about the fpc procedure. Defaults to FALSE.
Details

The FPC are obtained by performing the single value decomposition
XW1?2 = UD(V'W1/?)

where X is the matrix of discretized functional data, W is a diagonal matrix of weights (computed
by w_integrallD according to int_rule), D is the diagonal matrix with singular values (standard
deviations of FPC), U is a matrix whose columns contain the left singular vectors, and V is a matrix
whose columns contain the right singular vectors (FPC).

30 fpc

Value

An "fpc” object containing the following elements:

d standard deviations of the FPC (i.e., square roots of eigenvalues of the empirical
autocovariance estimator).

rotation orthonormal eigenfunctions (loadings or functional principal components), as
an fdata class object.

scores rotated samples: inner products. between X_fdata and eigenfunctions in
rotation.

1 vector of index of FPC.

equispaced equispaced flag.

Author(s)

Javier Alvarez-Liébana and Gonzalo Alvarez-Pérez.

References

Jolliffe, I. T. (2002). Principal Component Analysis. Springer-Verlag, New York.

Examples

Computing FPC for equispaced data

Sample data
X_fdatal <- r_ou(n = 200, t = seq(2, 4, 1 = 201))

FPC with trapezoid rule
X_fpcl <- fpc(X_fdata = X_fdatal, n_fpc = 50, equispaced = TRUE,
int_rule = "trapezoid")

FPC with Simpsons's rule
X_fpc2 <- fpc(X_fdata = X_fdatal, n_fpc = 50, equispaced = TRUE,
int_rule = "Simpson")

Check if FPC are orthonormal
norms1 <- rep(@, length(X_fpc1$l))
for (i in X_fpc1$l) {

norms1[i] <- integral1D(fx = X_fpcl$rotations$datali,]*2,
t = X_fdatal$argvals)

3
norms2 <- rep(@, length(X_fpc2$l))
for (i in X_fpc2%$l) {

norms2[i] <- integrall1D(fx = X_fpc2%$rotation$datali, 1*2,
t = X_fdatal$argvals)

fpc_utils 31

Computing FPC for non equispaced data

Sample data
X_fdata2 <- r_ou(n = 200, t = c(seq(@, 0.5, 1 = 201), seq(@0.51, 1, 1 = 301)))

FPC with trapezoid rule
X_fpc3 <- fpc(X_fdata = X_fdata2, n_fpc = 5, int_rule = "trapezoid”,
equispaced = FALSE)

Check if FPC are orthonormal
norms3 <- rep(@, length(X_fpc3$l))
for (i in X_fpc3%$l) {

norms3[i] <- integrall1D(fx = X_fpc3$rotation$datali, 1*2,
t = X_fdata2$argvals)

3
Efficiency comparisons

fpc() vs. fda.usc::fdata2pc()
data(phoneme, package = "fda.usc")

mlearn <- phoneme$learn[1:10,]

res1 <- fda.usc::fdata2pc(mlearn, ncomp = 3)
res2 <- fpc(X_fdata = mlearn, n_fpc = 3)
plot(res1$x[, 1:31, col = 1)
points(res2$scores, col = 2)

microbenchmark: :microbenchmark(fda.usc::fdata2pc(mlearn, ncomp = 3),
fpc(X_fdata = mlearn, n_fpc = 3), times = 1e3,
control = list(warmup = 20))

fpc_utils Utilities for functional principal components

Description

Computation of coefficients and reconstructions based on Functional Principal Components (FPC).
The function fpc_coef's allows to project a functional data sample into a basis of FPC; the recon-
struction of the sample from its projections and the FPC is done with fpc_to_fdata. The functions
beta_fpc_coefs and fpc_to_beta do analogous operations but for the bivariate kernel 5 and the
tensor product of two FPC bases.

Usage
fpc_coefs(X_fdata, X_fpc, ind_X_fpc = 1:3, int_rule = "trapezoid")

beta_fpc_coefs(beta, X_fpc, Y_fpc, ind_X_fpc = 1:3, ind_Y_fpc = 1:3,

32 fpc_utils

int_rule = "trapezoid")
fpc_to_fdata(coefs, X_fpc, ind_coefs = seq_len(ncol(coefs)))
fpc_to_beta(beta_coefs, X_fpc, Y_fpc,

ind_coefs_X = seq_len(nrow(beta_coefs)),
ind_coefs_Y = seq_len(ncol(beta_coefs)))

Arguments
X_fdata sample of functional data as an fdata object of length n.
X_fpc, Y_fpc "fpc” objects as resulted from calling fpc.

ind_X_fpc, ind_Y_fpc
vectors giving the FPC indexes for whom the coefficients are computed. Their
lengths must be smaller than the number of FPC in X_fpc and Y_fpc, respec-
tively. Default to 1: 3.

int_rule quadrature rule for approximating the definite unidimensional integral: trape-
zoidal rule (int_rule = "trapezoid") and extended Simpson rule (int_rule
= "Simpson") are available. Defaults to "trapezoid"”.

beta a matrix containing the bivariate kernel 8 evaluated on a grid. Must be of size
c(length(X_fpc$rotation$argvals),length(Y_fpc$rotation$argvals)).

coefs a vector of coefficients to combine linearly the FPC. Its length must be smaller
than the number of FPC in X_fpc.

ind_coefs, ind_coefs_X, ind_coefs_Y
indexes of FPC to associate to the provided coefficients. By default, from the
first FPC to the sizes of coef's or beta_coefs.

beta_coefs a matrix of coefficients to combine linearly the tensor products of FPC. Its size
must be smaller than the number of FPC in X_fpc and Y_fpc.

Value

fpc_coefs a vector of the same length as coef's containing the coefficients of X_fdata in
the FPC of X_fpc.

beta_fpc_coefs a matrix of the same size as beta_coefs containing the coefficients of 3 in the
tensor product of the FPC in X_fpc and Y_fpc.

fpc_to_fdata an fdata object of the same type as X_fpc$rotation.

fpc_to_beta a matrix with the reconstructed kernel and size
c(length(X_fpc$rotation$argvals), length(Y_fpc$rotation$argvals)).

Author(s)

Eduardo Garcia-Portugués.

References

Jolliffe, I. T. (2002). Principal Component Analysis. Springer-Verlag, New York.

fpc_utils

Examples

Compute FPC coefficients and reconstruct data

Sample data
X_fdata <- r_ou(n = 200, t = seq(2, 4, 1 = 201))

Compute FPC
X_fpc <~ fpc(X_fdata = X_fdata, n_fpc = 50)

FPC coefficients are the same if the data is centered
fpc_coefs(X_fdata = fdata_cen(X_fdata), X_fpc = X_fpc)[1:4,]
X_fpc$scores[1:4, 1:3]

Reconstruct the first two curves for an increasing number of FPC
plot(X_fdata[1:2, 1, col = 1)
n_fpc <- c(2, 5, 10, 25, 50)
for (j in 1:5) {
lines(fpc_to_fdata(X_fpc = X_fpc,
coefs = X_fpc$scores[, 1:n_fpc[jI1I)[1:2, 1, col = j + 1)

Project and reconstruct beta

Surface

beta_fun <- function(s, t) sin(6 * pi * s) + cos(6 * pi * t)
s <- seq(o, 1, 1 =101)

t <- seq(o, 1, 1 = 201)

beta_surf <- outer(s, t, FUN = beta_fun)

Functional data as zero-mean Gaussian process with exponential variogram
X_fdata <- fda.usc::rproc2fdata(n = 100, t = s, sigma = "vexponential”,
list = list(scale = 2.5))
Y_fdata <- flm_term(X_fdata = X_fdata, beta = beta_surf, t = t) +
r_ou(n = 100, t = t, sigma = sqrt(0.075) * 2)

FPC
X_fpc <- fpc(X_fdata
Y_fpc <- fpc(X_fdata

X_fdata, n_fpc = 50)
Y_fdata, n_fpc = 50)

Coefficients
beta_coefs <- beta_fpc_coefs(beta = beta_surf, X_fpc = X_fpc, Y_fpc = Y_fpc,
ind_X_fpc = 1:50, ind_Y_fpc = 1:50)

Reconstruction

beta_surf1 <- fpc_to_beta(beta_coefs = beta_coefs[1:2, 1:5],
X_fpc = X_fpc, Y_fpc = Y_fpc)

beta_surf2 <- fpc_to_beta(beta_coefs = beta_coefs[1:15, 1:10],
X_fpc = X_fpc, Y_fpc = Y_fpc)

beta_surf3 <- fpc_to_beta(beta_coefs = beta_coefs[1:50, 1:501],
X_fpc = X_fpc, Y_fpc = Y_fpc)

Show reconstructions

33

34 ontario

old_par <- par(mfrow = c(2, 2))

col <- viridisLite::viridis(20)

image(s, t, beta_surf, col = col, zlim = c(-2.5, 2.5), main = "Original”)
image(s, t, beta_surfl, col = col, zlim = c(-2.5, 2.5), main = "2 x 5")
image(s, t, beta_surf2, col = col, zlim = c(-2.5, 2.5), main = "15 x 10")
image(s, t, beta_surf3, col = col, zlim = c(-2.5, 2.5), main = "50 x 50")
par(old_par)

ontario Ontario temperature and electricity consumption during 2010-2014

Description

Real dataset employed Benatia et al. (2017). Contains the hourly electricity consumption and air
temperature curves in the province of Ontario (Canada). It features a set of daily curves during the
summer months of 2010-2014.

Usage

ontario

Format

A list with the following entries:
temp an fdata with 368 smoothed daily temperature (in Celsius degrees) curves of the Ontario
province, discretized on 73 equispaced grid points on [—24, 48] (see examples).

elec an fdata with the daily electricity consumption (in gigawatts) curves of the Ontario province.
Discretized on 25 equispaced grid points on [0, 24].

df a dataframe with time metadata for each curve:

* date: the date of the observation, a POSIXct object.
* weekday: the weekday of the observation.

Details

The summer months correspond to June Ist to September 15th. Weekend days and holidays are
disregarded.

The smoothed temperature curves are constructed by a weighted average of the temperatures of
41 Ontarian cities that is afterwards smoothed with a local polynomial regression. The curves
correspond to a 3-days window of the temperature (see examples). The temperature is standardized
such that its original minimum, 6 °C, is subtracted.

The electricity consumption curves are discretized on the interval [0, 24]. That means that the last
observation of the i-th curve is the same as the first observation of the (i + 1)-th curve if the curves
correspond to consecutive days.

See more details about the construction of the dataset in Benatia et al. (2017).

ontario 35

Author(s)

Data gathered and processed by David Benatia, Marine Carrasco, and Jean-Pierre Florens. Javier
Alvarez-Liébana and Eduardo Garcia-Portugués imported the dataset and added temporal metadata.

Source

The dataset comes from the companion data to Benatia et al. (2017), which was retrieved from
the first author’s website. The source of the electricity consumption data is the System operator’s
website. The source of the preprocessed temperature values is the Environment Canada’s website.

References

Benatia, D., Carrasco, M. and Florens, J. P. (2017) Functional linear regression with functional
response. Journal of Econometrics, 201(2):269-291. doi:10.1016/j.jeconom.2017.08.008

Examples

Show data

Load data
data("ontario”)

Plot

old_par <- par(mfrow = c(1, 2))
plot(ontario$temp)
plot(ontario$elec)

par(old_par)

Observe the 3-day windows for each observation
plot(ontario$temp$argvals, ontario$temp$datal2, 1, type = "o",

xlim = c(-48, 72), ylim = c(7, 13), xlab = "Hours",

ylab = "Electricity consumption”, pch = 16)
points(ontario$temp$argvals - 24, ontario$temp$datall,], col = 3, pch = 2)
points(ontario$temp$argvals + 24, ontario$temp$datal[3,], col = 2, cex = 1.5)
abline(v = 24 x -2:3, 1ty = 2)
legend("top”, legend = c("Curve 1", "Curve 2", "Curve 3"), col = c(3, 1, 2),

pt.cex = ¢c(1, 1, 1.5), pch = c(2, 16, 1))

If the days are not consecutive, then the electricity consumptions at the
end of one day and the beginning of the next do not match
head(abs(ontario$elec$datal[-368, 25] - ontario$elec$datal-1, 11))
head(diff(ontariodfdate))

Test the linear model with functional response and predictor

(comp_flmfr <- flm_test(X = ontario$temp, Y = ontario$elec,
est_method = "fpcr_11s"))

(simp_flmfr <- flm_test(X = ontario$temp, Y = ontario$elec,

beta® = 0, est_method = "fpcr_11s"))

Visualize estimation

https://www.davidbenatia.com/publication/
https://www.ieso.ca/
https://www.ieso.ca/
https://climat.meteo.gc.ca/
https://doi.org/10.1016/j.jeconom.2017.08.008

36 r_ou

filled.contour(x = ontario$temp$argvals, y = ontario$elec$argvals,
z = comp_flmfrfit_flmBeta_hat,
color.palette = viridisLite::viridis, nlevels = 20)

r_ou Simulation of an Ornstein—Uhlenbeck process

Description

Simulation of trajectories of the Ornstein—Uhlenbeck process { X;}. The process is the solution to
the stochastic differential equation

dXt = O[(Xt - ‘u)dt+ O'th,

whose stationary distribution is N (u, 02 /(2«)), for a0 > 0 and i € R.

Given an initial point z(and the evaluation times ¢4, . . ., t,,, a sample trajectory X; ,..., X, can
be obtained by sampling the joint Gaussian distribution of (X4, ..., X;).
Usage

r_ou(n, t = seq(@, 1, len = 201), mu = @, alpha = 1, sigma = 1,
x0 = rnorm(n, mean = mu, sd = sigma/sqrt(2 * alpha)))

Arguments

n number of trajectories to sample.

t evaluation times for the trajectories, a vector.

mu mean of the process, a scalar.

alpha strength of the drift, a positive scalar.

sigma diffusion coefficient, a positive scalar.

X0 a vector of length n giving the initial values of the Ornstein—Uhlenbeck trajecto-
ries. By default, n points are sampled from the stationary distribution. If a single
scalar is passed, then the same x0 is employed for all the trajectories.

Value

Random trajectories, an fdata object of length n and t as argvals.

Author(s)

Eduardo Garcia-Portugués.

sim-frmfr 37

Examples

Same initial point
plot(r_ou(n = 20, x0 = 5), col = viridisLite::viridis(20))

Different initial points
plot(r_ou(n = 100, alpha = 2, sigma = 4, x0 = 1:100),
col = viridisLite::viridis(100))

sim-frmfr Sampling functional regression models with functional responses

Description

Simulation of a Functional Regression Model with Functional Response (FRMFR) comprised of an
additive mix of a linear and nonlinear terms:

b
Y(t):/ X (5)B(s, t)ds + AX)(t) + (),

where X is a random variable in the Hilbert space of square-integrable functions in [a, b], L?([a, b]),
(3 is the bivariate kernel of the FRMFR, ¢ is a random variable in L?([c, d]), and A(X) is a nonlinear
term.

In particular, the scenarios considered in Garcia-Portugués et al. (2021) can be easily simulated.

Usage

r_frm_fr(n, scenario = 3, X_fdata = NULL, error_fdata = NULL,
beta = NULL, s = seq(@, 1, 1 = 101), t = seq(0, 1, 1 = 101),
std_error = 0.15, nonlinear = NULL, concurrent = FALSE,
int_rule = "trapezoid”, n_fpc = 50, verbose = FALSE, ...)

nl_dev(X_fdata, t = seq(@, 1, 1 = 101), nonlinear = NULL,

int_rule = "trapezoid”, equispaced = equispaced, verbose = FALSE)
Arguments
n sample size, only required when scenario is given.
scenario an index from 1 to 3 (default) denoting one of the scenarios (S1, S2 or S3) simu-

lated in Garcia-Portugués et al. (2021) (see details below). If scenario = NULL,
X_fdata, error_fdata, and beta have to be provided. Otherwise, X_fdata,
error_fdata, and beta will be ignored.

X_fdata sample of functional covariates X (s) as fdata objects of length n, with s in
[a, b]. Defaults to NULL.

error_fdata sample of functional errors £(t) as fdata objects of length n, with ¢ in [c, d].
If concurrent = TRUE, X_fdata and error_fdata must be valued in the same
grid. Defaults to NULL.

38 sim-frmfr

beta matrix containing the values 3(s, t), for each grid point s in [a, b] and ¢ in [c, d].
If concurrent = TRUE (see details below), a row/column vector must be in-
troduced, valued in the same grid as error_fdata. If beta =NULL (default),
scenario !=NULL is required.

s, t grid points. If X_fdata, error_fdata and beta are provided, s and t are ig-
nored. Default to s =seq(@, 1, 1=101) and t = seq(@, 1, 1 =101), respec-
tively.

std_error standard deviation of the random variables involved in the generation of the
functional error error_fdata. Defaults to . 15.

nonlinear nonlinear term. Either a character string ("exp”, "quadratic” or "sin") or an
fdata object of length n, valued in the same grid as error_fdata. If nonlinear
= NULL (default), the nonlinear part is set to zero.

concurrent flag to consider a concurrent FLRFR (degenerate case). Defaults to FALSE.

int_rule quadrature rule for approximating the definite unidimensional integral: trape-
zoidal rule (int_rule = "trapezoid") and extended Simpson rule (int_rule
= "Simpson") are available. Defaults to "trapezoid"”.

n_fpc number of components to be considered for the generation of functional vari-
ables. Defaults to 50.

verbose flag to display information about the sampling procedure. Defaults to FALSE.
further parameters passed to r_cm2013_f1lmfr, r_gof2021_flmfr and
r_ik2018_f1mfr, depending on the chosen scenario.

equispaced flag to indicate if X_fdata$data is valued in an equispaced grid or not. Defaults
to FALSE.

Details

» r_frm_fr samples the above regression model, where the nonlinear term A(X) is computed
by nl_dev. Functional covariates, errors, and /3 are generated automatically from the sce-
narios in Garcia-Portugués et al. (2021) when scenario !=NULL (see the documentation of
r_gof2021_f1lmfr). If scenario = NULL, covariates, errors and 5 must be provided.
When concurrent = TRUE, the concurrent FRMFR
Y(t) = X()B(t) + AX)(t) +&(t)

is considered.
nl_dev computes a nonlinear deviation A(X): exp(y/X (a + (t — ¢)((b — a)/(d — ¢)))) (for
"exp”), (X2(a+(t—c)((b—a)/(d—c)))—1) ("quadratic”) or (sin(27t) —cos(27t))|| X ||?
("sin"). Also, A(X) can be manually set as an fdata object of length n and valued in the
same grid as error_fdata.

Value

A list with the following elements:

X_fdata functional covariates, an fdata object of length n.

Y_fdata functional responses, an fdata object of length n.

sim-frmfr 39

error_fdata functional errors, an fdata object of length n.

beta either the matrix with (s, t) evaluated at the argvals of X_fdata and Y_fdata
(if concurrent = FALSE) or a vector with [3(t) evaluated at the argvals of
X_fdata (if concurrent = TRUE).

nl_dev nonlinear term, an fdata object of length n.

Author(s)

Javier Alvarez-Liébana.

References

Garcia-Portugués, E., Alvarez—Liébana, 1., Alvarez-Pérez, G. and Gonzalez-Mantei ga, W. (2021). A
goodness-of-fit test for the functional linear model with functional response. Scandinavian Journal
of Statistics, 48(2):502-528. doi:10.1111/sjos.12486

Examples

Generate samples for the three scenarios
Equispaced grids and Simpson's rule

s <- seq(@, 1, 1 = 101)
samp <- list()
old_par <- par(mfrow = c(3, 5))
for (i in 1:3)
samp[[i]] <- r_frm_fr(n = 100, scenario =i, s=s, t = s,
int_rule = "Simpson")
plot(samp[[i]]1$X_fdata)
plot(samp[[i]l]$error_fdata)
plot(samp[[i]]$Y_fdata)
plot(samp[[i]]1$nl_dev)
image(x ='s, y = s, z = samp[[i]]$beta, col = viridisLite::viridis(20))
3
par(old_par)

Linear term as a concurrent model

The grids must be have the same number of grid points for a given
nonlinear term and a given beta function

s <- seq(1, 2, 1 = 101)
t <- seq(o, 1, 1 101)
samp_c_1 <- r_frm_fr(n = 100, scenario = 3, beta = sin(t) - exp(t),
s =s, t =t, nonlinear = fda.usc::fdata(mdata =
t(matrix(rep(sin(t), 100), nrow = length(t))),
argvals = t),
concurrent = TRUE)
old_par <- par(mfrow = c(3, 2))
plot(samp_c_1$X_fdata)
plot(samp_c_1%error_fdata)

https://doi.org/10.1111/sjos.12486

40

plot(samp_c_1$Y_fdata)
plot(samp_c_1$nl_dev)
plot(samp_c_1$beta)
par(old_par)

Sample for given X_fdata, error_fdata, and beta

Non equispaced grids with sinusoidal nonlinear term and intensity 0.5
s <- c(seq(@, 0.5, 1 = 50), seq(@.51, 1, 1 = 101))
t <- seq(2, 4, len = 151)
X_fdata <- r_ou(n = 100, t = s, alpha = 2, sigma = 4, x0 = 1:100)
error_fdata <- r_ou(n = 100, t = t, alpha = 1, sigma = 1, x0 = 1:100)
beta <- r_gof2021_flmfr(n = 100, s = s, t = t)$beta
samp_Xeps <- r_frm_fr(scenario = NULL, X_fdata = X_fdata,
error_fdata = error_fdata, beta = beta,
nonlinear = "exp", int_rule = "trapezoid")
old_par <- par(mfrow = c(3, 2))
plot(samp_Xeps$X_fdata)
plot(samp_Xeps$error_fdata)
plot(samp_Xeps$Y_fdata)
plot(samp_Xeps$nl_dev)
image(x = s, y = t, z = beta, col = viridisLite::viridis(20))
par(old_par)

sim-frmfr

Index

x datasets
aemet_temp, 3
ontario, 34

Adot, 19

Adot (flm_stat), 18
aemet, 3
aemet_temp, 3

beta_fpc_coefs (fpc_utils), 31
bivariate kernel, 3/

cv.glmnet, 5-7, 14, 24
cv_glmnet, 5, 14, 15, 24

elem-flmfr, 10

fdata, 3, 12, 13, 15,21, 23, 29, 30, 32, 34,

36-39
flm_est, 13, 25
flm_stat, 18
flm_term, 21
flm_test, 22
fpc, 14, 15, 29, 32
fpc_coefs (fpc_utils), 31
fpc_to_beta (fpc_utils), 31
fpc_to_fdata (fpc_utils), 31
fpc_utils, 31

glmnet, 6, 7

goffda (goffda-package), 2
goffda-package, 2

nl_dev (sim-frmfr), 37

ontario, 34

POSIXct, 34
predict.glmnet, 7

r_cm2013_f1lmfr, 38

r_cm2013_f1lmfr (elem-flmfr), 10
r_frm_fr (sim-frmfr), 37
r_gof2021_f1lmfr, 38
r_gof2021_f1lmfr (elem-flmfr), 10
r_ik2018_f1mfr, 38
r_ik2018_f1lmfr (elem-flmfr), 10
r_ou, 36

sim-frmfr, 37

	goffda-package
	aemet_temp
	cv_glmnet
	elem-flmfr
	flm_est
	flm_stat
	flm_term
	flm_test
	fpc
	fpc_utils
	ontario
	r_ou
	sim-frmfr
	Index

