
Calibration of Machine Learning Models in glmnetr

Walter K. Kremers, Mayo Clinic, Rochester MN

10 May 2025

The Package

The “An Overview of glmnetr” vignette shows how to run the main package function nested.glmnetr() and
how to summarize model performances. If one identifies a well performing model according to the metrics in
this summary, e.g. concordance, correlation, deviance ratio, linear calibration, one may want to do further
evaluation in terms of calibration. The strongest calibration and validation will involve calibration with new,
independent datasets. Frequently one will not have immediate access to such new data sets, or one may want
first to do an internal validation before subjecting a model to an external validation. Here we consider an
internal validation approach using cross validation or bootstrap re-sampling, similar to how we numerically
assessed model performance.

An Example Analysis

To explore calibration we first consider the nested.glmnetr() call from the “An Overview of glmnetr” vignette
which fit machine learning models to survival data with family=“cox”, i.e.

set.seed(465783345)
nested.cox.fit = nested.glmnetr(xs, NULL, yt, event, family="cox",

dolasso=1, dostep=1, steps_n=40, folds_n=10, track=1)

Linear Calibration

Using either print() or summary() on the output object nested.cox.fit one gets, amongst other information,
summaries for the linear calibration slopes and intercepts as in

summary(nested.cox.fit)

Sample information including number of records, events, number of columns in
design (predictor, X) matrix, and df (rank) of design matrix:
family n nevent
cox 1000 698
xs.columns xs.df null.dev/nevent
100 94 12.43
null.m2LogLik/nevent sat.m2LogLik/nevent
12.43 0
##
For LASSO, and Stepwise regression tuned by df and p, average (Ave) model

1

performance measures from the 10-fold (NESTED) Cross Validation are given together
with naive summaries calculated using all data without cross validation
##
Ave DevRat Ave Slope Ave Concordance Ave Non Zero
lasso 0.2457 1.0907 0.8736 45.5
lassoR 0.2473 1.0149 0.8742 20.4
lassoR0 0.2455 0.9667 0.8740 14.9
elastic net 0.2480 1.0203 0.8746 20.8
ridge 0.2340 1.1025 0.8674 99.0
Naive DevRat Naive Concordance Non Zero
lasso 0.1683 0.8789 40
lassoR 0.1663 0.8759 14
lassoR0 0.1663 0.8759 14
elastic net 0.1713 0.8790 21
ridge 0.1718 0.8822 99
##
Ave DevRat Ave Slope Ave Concordance Ave Non Zero
Stepwise df tuned 0.2541 0.9741 0.8776 14.7
Stepwise p tuned 0.2549 0.9775 0.8786 15.0
Naive DevRat Naive Concordance Non Zero
Stepwise df tuned 0.1711 0.8785 15
Stepwise p tuned 0.1711 0.8785 15

Here we see that for many of the models the linear calibration slope term is near 1, the ideal for perfect
calibration. For the Cox model any intercept term can be absorbed into the baseline survival function and
there is no pertinent intercept term for calibration.

A First Visual

An initial calibration consideration was made in the overview vignette by regressing observed outcomes on
the predicteds from the final model based upon the relaxed lasso. This regression was made using splines,
in particular the pspline() function from within a coxph() call, as in

Get predicteds from CV relaxed lasso model embedded in nested CV outputs & Plot
xb.hat = predict(object=nested.cox.fit , xs_new=xs, lam=NULL, gam=NULL, comment=FALSE)
Fit a spline to xb.hat uisng coxph, and plot
#library(survival) ## load survival package for Cox model fits
fit1 = coxph(Surv(yt, event) ~ pspline(xb.hat, df=3))

summary(fit1)

Call:
coxph(formula = Surv(yt, event) ~ pspline(xb.hat, df = 3))
##
n= 1000, number of events= 698
##
coef se(coef) se2 Chisq DF p
pspline(xb.hat, df = 3), 1.001 0.03121 0.03121 1028.34 1.00 1.2e-225
pspline(xb.hat, df = 3), 2.13 2.04 3.5e-01
##
exp(coef) exp(-coef) lower .95 upper .95

2

ps(xb.hat)3 8.956e+00 1.117e-01 1.494e+00 5.370e+01
ps(xb.hat)4 8.021e+01 1.247e-02 3.410e+00 1.887e+03
ps(xb.hat)5 7.170e+02 1.395e-03 1.234e+01 4.165e+04
ps(xb.hat)6 6.094e+03 1.641e-04 7.332e+01 5.064e+05
ps(xb.hat)7 5.772e+04 1.732e-05 7.010e+02 4.753e+06
ps(xb.hat)8 6.805e+05 1.469e-06 8.358e+03 5.541e+07
ps(xb.hat)9 5.319e+06 1.880e-07 6.447e+04 4.388e+08
ps(xb.hat)10 5.281e+07 1.894e-08 6.157e+05 4.530e+09
ps(xb.hat)11 6.531e+08 1.531e-09 6.451e+06 6.613e+10
ps(xb.hat)12 8.340e+09 1.199e-10 5.227e+07 1.331e+12
##
Iterations: 4 outer, 14 Newton-Raphson
Theta= 0.8077628
Degrees of freedom for terms= 3
Concordance= 0.876 (se = 0.005)
Likelihood ratio test= 1446 on 3.04 df, p=<2e-16

followed by plotting with

termplot(fit1,term=1,se=TRUE, rug=TRUE, lwd.term=2, lwd.se=2, lty.se=1) # , col.term=1, col.se=2
abline(a=0,b=1,lty=3)
title ("Naive calibration curve for relaxed lasso model")

−10 −5 0 5

−
10

−
5

0
5

10

xb.hat

P
ar

tia
l f

or
 p

sp
lin

e(
xb

.h
at

, d
f =

 3
)

Naive calibration curve for relaxed lasso model

The spline fits may help to understand potential nonlinearities in the model. Here we see, a clibration line
which is not far from linear. Still, as noted in the “An Overview of glmnetr” vignette, because the same
data are used for model evaluation as well as model derivation, it is hard to put much confidence in such a
calibration plot because of potential bias which may suggest a better fit than can be expected for new data.

3

Calibration Using Spline Fits and Resampling

For each of the models fit, nested.glmnetr() saves the X* Beta’s from the final model. The nested.glmentr()
function also calculates the X* Betas’s for the hold out data for each partitioning, i.e. each hold out fold of
the outer loop of nested cross validation or the out-of-bag items not selected by the sample whit replacement
of the bootstrap sample. In this manner there are multiple subsets, e.g. k from the k-fold nested CV, or
calculation of X*Betas based upon independent observations, and each of these subsets can contribute to
calibrate the final model. While each of these calibrations will individually have limited information, when
combined following the principles of cross validation for boostrap sampling, they will collectively provide a
more meaningful evaluation. This is done by the calplot() function as in

calplot(nested.cox.fit, wbeta=3)

Range of X*Beta for calibration:
-9.205444 9.022476
Range of calibrated confidence intervals:
-13.54516 11.34994

lassoR log(HR) (Nested CV)

C
al

ib
ra

te
d

lo
g(

H
R

)

−
5

0
5

−5 0 5

Here we see a smooth, nearly linear predicted log hazard ratio as a function of the model X* Beta from
the relaxed lasso model. The bounding lines in red depict the average +/- 2 standard errors (SE) to
assist in assessing meaningfulness in any deviation from the ideal identity line, and non linearities. In
these curves the central region with solid lines denotes the region within the range of all the calibration
spline fit, i.e. spline fits from all the different leave-out folds of the CV overlap without extrapolation. The
dashed lines depict areas out of range for at least one of the leave out folds. Because spline fits can be
rather uncertain when extrapolating beyond the data range, one should be more cautious in making strong

4

conclusions in the dashed regions of these plots. Here we see somewhat wider confidence bounds about the
overall calibration curve.

Bengio et al. showed that the standard deviations from cross validation might not be accurate for estimation
of the actual standard errors. Bates et al. showed that the cross validation (CV) estimates and standard errors
may be biased, and should thus be viewed with caution. In particular the CV estimates may more closely
estimate the expected performance measures over multiple samples than the performance of the model based
upon the observed data, and usage the CV standard errors when constructing confidence intervals might be
associated with mis-coverage three times the nominal non-coverage. This is discussed further in the vignette
“An Overview of glmnetr”.

A naive calibration curve similar to that shown above (the first figure) can also be easily gotten using the
calplot function when specifying to not use the resample for construction as in

calplot(nested.cox.fit, wbeta=3, resample=0, xlim=c(-10,9), ylim=c(-15,10), col.term=2, col.se=7)

lassoR log(HR) (naive)

C
al

ib
ra

te
d

lo
g(

H
R

)

−
15

−
10

−
5

0
5

10

−10 −5 0 5

Due to user specified xlim 1 tick marks are not displayed repn (replicaiton number))

The code above using the termplot() function is provided to show our general approach for derivation of the
calibration curves.

In the Nested CV figure we see two rugs, one below and one above the plotted region. The rug below depicts
the model X* Beta’s which are not associated with an event and the rug above depicts X* Beta’s which are
associated with events. When there are lots of data points it can be hard to read these rugs. One can use the
vref option in calplot to draw two vertical lines where the first separates the smaller vref% of the X* Beta’s
form the rest, and a second which separates the larger vref% of the data. To depict the hazard ratios (HR)

5

instead of the X*Beta for the Cox model one can use the option plothr, where one assigns a numerical value
for the product between tick marks, e.g. exp(1) or 10. Combining these two options we have the example

calplot(nested.cox.fit, wbeta=3, vref=1, plothr=100)

Range of X*Beta for calibration:
-9.205444 9.022476
Range of calibrated confidence intervals:
-13.54516 11.34994

lassoR HR (Nested CV)

C
al

ib
ra

te
d

H
R

0.01

1

100

0.01 1 100

The user can also use different colors for the lines with the options col.term, col.se. One can also specify
xlim and ylim in case a few data points cause an excessive amount of white space or odd aspect ratio in the
plots.

To view the calibration plots form the individual leave out cross validation folds, one may specify foldplot=
1. In that this generates many figures, we omit in this vignette actually producing plots using this option
specification, and instead assign plotfold=1 which overlays the individual calibration curves, albeit without
the +/- 2 SE limits for the individual CV folds. The overall calibration (average of the individual CV fold
calibrations) and overall +/- 2 SE limits though are maintained.

calplot(nested.cox.fit, 3, plotfold=1, vref=1, plothr=100)

Range of X*Beta for calibration:
-9.205444 9.022476
Range of calibrated confidence intervals:
-13.54516 11.34994

6

lassoR HR (Nested CV)

C
al

ib
ra

te
d

H
R

0.01

1

100

0.01 1 100

As we see from the above calls the first term in the calplot() function call is an output object form a
nested.glmnetr() call. The second term, wbeta, specifies “which beta” or model is to be used for deriving
the model X*Beta’s. Here, as we see in the figure x-axis label, the 5 determines the relaxed lasso model.
Instead of making a hard to remember key the user can leave this term unspecified and a key will be
directed to the R console. The actual numbers for the different models will depend on which models are fit
and so this key is dynamic.

calplot(nested.cox.fit)

specify num for wbeta =
Var num
null 0.000000 1
lasso 5.218992 2
lassoR 6.081169 3
lassoR0 6.691563 4
elastic 6.027242 5
ridge 4.620162 6
step.df 7.098487 7
step.p 7.129952 8

From this key we read of the numers corresponding to the respective models. The variance in X*beta for the
“null” model is 0 as the intercept for the Cox model is arbitrarily assinged the value of 0 for each resample
model fit. From this key we see we can produce a calibration plot for the ridge regression model by setting
wbeta = 6 (wbeta for “which beta”), as in

7

calplot(nested.cox.fit, 6)

Range of X*Beta for calibration:
-8.186478 7.32873
Range of calibrated confidence intervals:
-13.18355 11.28552

ridge log(HR) (Nested CV)

C
al

ib
ra

te
d

lo
g(

H
R

)

−
10

−
5

0
5

−5 0 5

Due to user specified xlim 1 tick marks are not displayed in rug
min:max xb = -8.41200405895543 7.16903899924776

Here we see the model is not ideally calibrated as the calibration curve largely does not include the identity
line, and it requires a correction to achieve an un (less) biased estimation of the hazard ratio. Inspecting
the calibration curve for a step wise regression model, where the number of terms included in the model is
informed by corss validation

calplot(nested.cox.fit, 7)

Range of X*Beta for calibration:
-9.687786 9.413883
Range of calibrated confidence intervals:
-13.39504 11.42646

8

step.df log(HR) (Nested CV)

C
al

ib
ra

te
d

lo
g(

H
R

)

−
10

−
5

0
5

−10 −5 0 5 10

we see that the response is roughly linear but numerically at least there seems to be some correction for
over fitting.

To obtain the numerical values used to construct these calibration plots one may specify plot=0 (or plot=2
to plot and obtain the numerical data) in list format as in

tmp = calplot(nested.cox.fit, 5, plot=0)

Range of X*Beta for calibration:
-8.977966 8.666339
Range of calibrated confidence intervals:
-13.19551 10.8097

str(tmp)

List of 5
$ estimates : num [1:101, 1:5] -8.98 -8.8 -8.63 -8.45 -8.27 ...
..- attr(*, "dimnames")=List of 2
.. ..$: chr [1:101] "1" "2" "3" "4" ...
.. ..$: chr [1:5] "plotxb" "est" "se" "lower" ...
$ est.resample : num [1:10, 1:101] -8.19 -8.59 -9.89 -7.23 -8.23 ...
$ se.resample : num [1:10, 1:101] 5.82 4.07 4.71 3.83 4.93 ...
$ lower.resample: num [1:10, 1:101] -19.8 -16.7 -19.3 -14.9 -18.1 ...
$ upper.resample: num [1:10, 1:101] 3.46 -0.452 -0.477 0.42 1.628 ...

These data may be further processed by the user.

9

A Binomial Model

For nested.glmnetr() analyses with family = “binomial” with the call

yb = simdata$yb
nested.bin.fit = nested.glmnetr(xs,NULL,yb,NULL,family="binomial",

dolasso=1, doxgb=list(nrounds=250), dorf=1, doorf=1, doann=1,
folds_n=10, seed=219301029, track=1)

an example calibration plot is

calplot(nested.bin.fit, 3, plotfold=0)

Range of X*Beta for calibration:
-8.436527 9.550485
Range of calibrated confidence intervals:
-82.43472 78.3849

lassoR X*Beta (Nested CV)

C
al

ib
ra

te
d

X
*B

et
a

−5 0 5 10

−
20

−
10

0
10

Due to user specified xlim 1 tick marks are not displayed in rug
min:max xb = -8.00241438016261 9.86285374629758

Since these data were generated with probabilities exp(Xbeta)/(1+exp(Xbeta)) we want that the medal
would calibrate linearly. Next we look at the “fully” relaxed model where an unpenalized model is fit based
upon the non-zero terms in the fully penalized lasso model.

10

calplot(nested.bin.fit, 4, plotfold=0)

Range of X*Beta for calibration:
-9.621492 10.61001
Range of calibrated confidence intervals:
-89.77758 69.26614

lassoR0 X*Beta (Nested CV)

C
al

ib
ra

te
d

X
*B

et
a

−10 −5 0 5 10

−
20

−
10

0
10

This may calibrate slightly better but is not as linear as we might expect.

A Binomial Model Calibrated Using Bootstrap

Considering this we next fit models using bootstrap, that is fit models based upon random samples from the
original sample (with replacement) of same sample size as the original sample. Then we fit calibration curves
for the out-of-bag sample units for each bootstrap sample fitted model, that is the elements of the original
sample that are not selected by the bootstrap sample. The number of bootstrap samples for calculation is
specified using the bootstrap option in the nested.glmnetr() call,

yb = simdata$yb
nested.bin.boot.fit = nested.glmnetr(xs,NULL,yb,NULL,family="binomial",

dolasso=1, dorf=1,
folds_n=10, seed=219301029, track=1, bootstrap=20)

The Out-Of-Bag (OOB) calibration plots can then be constructed using the calplot() function as before,

11

calplot(nested.bin.boot.fit, 3, plotfold=1)

Range of X*Beta for calibration:
-8.371663 9.497081
Range of calibrated confidence intervals:
-17.85182 10.55995

lassoR X*Beta (Bootstrap Out Of Bag)

C
al

ib
ra

te
d

X
*B

et
a

−5 0 5 10

−
10

−
5

0
5

10

Here we see a similar yet slightly different characteristics between the (nested) cross validation and bootstrap
calibration plots. While technically the bootstrap might seem more accurate due to the confidence interval
containing the ideal line (which we know applies due ot the way we simulated the data), this may as well be
due to the random nature of the re-sample selection process. For the bootstrap one can run a larger number
of re-samples to minimize this effect. For the cross validation one may repeat the whole process many times
(see the glmnet package vignettes) and then average, but we have not done this here.

Variability in Bootstrap In-Bag Calibrations

In earlier works Austin et al. as well as Riley et al. fit models based upon bootstrap samples and then fit
calibration curves based upon the in-bag data points and model XBeta (predicteds). This mimics the usual
procedure for bootstrap analysis. This can be done using the calplot() function by setting the oob option to
0,

calplot(nested.bin.boot.fit, wbeta=3, oob=0, plotfold=1)

12

Range of X*Beta for calibration:
-8.371663 9.497081
Range of calibrated confidence intervals:
-38.64772 12.36804

lassoR X*Beta (Bootstrap In Bag)

C
al

ib
ra

te
d

X
*B

et
a

−5 0 5 10

−
30

−
20

−
10

0
10

This figure shows the variability expected in the construction of calibration curves as described by the
above authors. These curves however make no adjustment for bias correction possible using the bootstrap.
Making the usual bias adjustment we have (XBeta_full) - (XBeta_i - XBeta_full) or 2*XBeta_full -
XBeta_i. These can be produced setting the bootci option to 1 as with the call

calplot(nested.bin.boot.fit, wbeta=3, bootci=1, plotfold=1)

For (bootci == 1) & (oob == 1), oob is set to 0
Range of X*Beta for calibration:
-8.371663 9.497081
Range of calibrated confidence intervals:

13

lassoR X*Beta (Bootstrap In Bag, bias adjusted)

C
al

ib
ra

te
d

X
*B

et
a

−5 0 5 10

−
20

−
10

0
10

This figure differs from the simple in-bag calibrations. These two figures differ meaningfully from the
out-of-bag calibration curves described above.

Bootstrap In-Bag Calibration for a Random Forest

These bootstrap plots above were for the relaxed lasso model fit. We now examine similar bootstrap cali-
bration plots but for random forest models. The variability in the in-bag bootstrap calibratin curves for the
random forest model is depicted in the graph

calplot(nested.bin.boot.fit, wbeta=12, bootci=0, oob=0, plotfold=1)

Range of X*Beta for calibration:
-2.682732 4.119037
Range of calibrated confidence intervals:
-77.7793 108.1106

14

rf X*Beta (Bootstrap In Bag)

C
al

ib
ra

te
d

X
*B

et
a

−2 −1 0 1 2 3 4

−
50

0
50

10
0

Here we see a strong deviation from the identity line. The bias corrected bootstrap calibration curves

calplot(nested.bin.boot.fit, wbeta=12, bootci=1, plotfold=1)

For (bootci == 1) & (oob == 1), oob is set to 0
Range of X*Beta for calibration:
-2.682732 4.119037
Range of calibrated confidence intervals:

15

rf X*Beta (Bootstrap In Bag, bias adjusted)

C
al

ib
ra

te
d

X
*B

et
a

−2 −1 0 1 2 3 4

−
60

−
40

−
20

0
20

40

have a more unusual and unexpected deviation from the ideal calibration curve of the identity line.
Returning to the out-of-bag calibration bootstrap plots

calplot(nested.bin.boot.fit, wbeta=12, plotfold=1)

Range of X*Beta for calibration:
-2.682732 4.119037
Range of calibrated confidence intervals:
-34.91789 42.46664

16

rf X*Beta (Bootstrap Out Of Bag)

C
al

ib
ra

te
d

X
*B

et
a

−2 −1 0 1 2 3 4

−
10

−
5

0
5

we see that these too are highly variable but more consistent with the ideal calibration curve, the identity
line, than the in-bag calıbratıon curves.

While these two in-bag calibration curve sets strongly depart from the ideal of the identity line, the out-of-
bag curves while possibly highly variable were consistent as a group with the ideal of the identity line. The
bootstrap out-of-bag calibration curves have a clearer basis and depict more reasonable findings. In a sense
this is not unexpected. When fitting machine learning models one typically evaluates model fit based upon
the out-of-bag data points and not the in-bag data points. A difficulty here could be that the calibration
curves, calculated at particular values for XBeta, do not describe a well defined parameter in terms of the
disturbution function. Potentially as well the fitting process for machine learning models might not lend it
self to the assumptions typically used to support bootstrap inferences. In particular as we see here when
fitting random forest models, with the multiple repeat observations in the bootstrap resamples the model
refits are overly optimistic, more strongly overfit and give more extreme XBeta as evidenced in these figures.
We present the in-bag and biased adjusted bootstrap calibration curves not to promote their usage but to
1) show the variability in model fit and 2) how they may give poor inferences for a simple dataset. The user
may want to generate other datasets of different known form and see how the bootstrap performs for their
data.

A Normal (Gaussian Errors) Model

First calculating the numerical summaries of prediction performance

nested.gau.fit = nested.glmnetr(xs,NULL,y_,NULL,family="gaussian",
dolasso=1, doxgb=list(nrounds=250), dorf=1, doorf=1, doann=list(bestof=10),
folds_n=10, seed=219301029, track=1)

17

and then plotting

calplot(nested.gau.fit, wbeta=4)

Range of X*Beta for calibration:
-8.476826 10.03254
Range of calibrated confidence intervals:
-9.678346 11.94409

lassoR0 X*Beta (Nested CV)

C
al

ib
ra

te
d

X
*B

et
a

−5 0 5 10

−
5

0
5

10

Due to user specified xlim 2 tick marks are not displayed in rug
min:max xb = -8.68237855272738 10.2389293382382

we see a small but probably not significant deviation from the ideal calibration line, the identity function.

Perspective

The summary and calibration plot functions used here do not address all needed for model validation and
calibration but do allow a meaningful and un (or minimally) biased summary of model fits. The original
outcome variable and X*betas are stored as vectors or matrices in the output with names y_, xbetas (full
model) and xbetas.cv (cross-validation) and xbetas.boot.oob and betas.boot.inb (bootstrap out-of-bag and
in-bag) allowing the user to further inspect model fits and to perform other means of calibration. For cross-
validation analyses the fold information is contained in the output object in the vector foldid. For bootstrap
analyses the first column of xbetas.boot.oob and betas.boot.inb describe the replication of the bootstrap
sampling process and the second columns the sequential index for the data point in the input dataset.

18

References

Austin PC, Steyerberg EW. Graphical assessment of internal and external calibration of logistic regression
models by using loess smoothers. Stat Med. 2014; 33(3):517-35. doi: 10.1002/sim.5941 .

Bates S, Hastie T, Tibshirani R, “Cross-validation: what does it estimate and how well does it do it?”, 2022,
https://arxiv.org/abs/2104.00673 .

Bengio Y & Grandvalet Y, “No Unbiased Estimator of the Variance of K-Fold Cross-Validation”, Journal
of Machine Learning Research 5, 2004, 1089–1105, https://www.jmlr.org/papers/volume5/grandvalet04a/
grandvalet04a.pdf .

Riley RD, Pate A, Dhiman P, Archer L, Martin GP, Collins GS. Clinical prediction models and the multiverse
of madness. BMC Med. 2023; 21(1):502. doi: 10.1186/s12916-023-03212-y .

19

https://arxiv.org/abs/2104.00673
https://www.jmlr.org/papers/volume5/grandvalet04a/grandvalet04a.pdf
https://www.jmlr.org/papers/volume5/grandvalet04a/grandvalet04a.pdf

	The Package
	An Example Analysis
	Linear Calibration
	A First Visual
	Calibration Using Spline Fits and Resampling
	A Binomial Model
	A Binomial Model Calibrated Using Bootstrap
	Variability in Bootstrap In-Bag Calibrations
	Bootstrap In-Bag Calibration for a Random Forest
	A Normal (Gaussian Errors) Model
	Perspective
	References

