
Package ‘gitcreds’
October 13, 2022

Title Query 'git' Credentials from 'R'

Version 0.1.2

Description Query, set, delete credentials from the 'git' credential
store. Manage 'GitHub' tokens and other 'git' credentials. This
package is to be used by other packages that need to authenticate to
'GitHub' and/or other 'git' repositories.

License MIT + file LICENSE

URL https://gitcreds.r-lib.org/, https://github.com/r-lib/gitcreds

BugReports https://github.com/r-lib/gitcreds/issues

Depends R (>= 3.4)

Suggests codetools, covr, knitr, mockery, oskeyring, rmarkdown,
testthat (>= 3.0.0), withr

VignetteBuilder knitr

Config/Needs/website tidyverse/tidytemplate

Encoding UTF-8

RoxygenNote 7.2.1.9000

SystemRequirements git

Config/testthat/edition 3

NeedsCompilation no

Author Gábor Csárdi [aut, cre],
RStudio [cph, fnd]

Maintainer Gábor Csárdi <csardi.gabor@gmail.com>

Repository CRAN

Date/Publication 2022-09-08 10:42:55 UTC

R topics documented:
gitcreds_cache_envvar . 2
gitcreds_fill . 3

1

https://gitcreds.r-lib.org/
https://github.com/r-lib/gitcreds
https://github.com/r-lib/gitcreds/issues

2 gitcreds_cache_envvar

gitcreds_get . 4
gitcreds_list . 8
gitcreds_parse_output . 10

Index 12

gitcreds_cache_envvar Environment variable to cache the password for a URL

Description

gitcreds_get() caches credentials in environment variables. gitcreds_cache_envvar() calcu-
lates the environment variaable name that is used as the cache, for a URL.

Usage

gitcreds_cache_envvar(url)

Arguments

url Character vector of URLs, they may contain user names and paths as well. See
details below.

Value

Character vector of environment variables.

See Also

gitcreds_get().

Examples

gitcreds_cache_envvar("https://github.com")
gitcreds_cache_envvar("https://api.github.com/path/to/endpoint")
gitcreds_cache_envvar("https://jane@github.com")
gitcreds_cache_envvar("https://another.site.github.com")

gitcreds_fill 3

gitcreds_fill Access the low level credential API

Description

These function are primarily for package authors, who want more control over the user interface,
so they want to avoid calling gitcreds_get() and gitcreds_set() directly.

Usage

gitcreds_fill(input, args = character(), dummy = TRUE)

gitcreds_approve(creds, args = character())

gitcreds_reject(creds, args = character())

Arguments

input Named list to pass to git credential fill.

args Extra args, used before fill, to allow git -c ... fill.

dummy Whether to append a dummy credential helper to the list of credential helpers.

creds gitcreds object (named list) to add or remove.

Details

gitcreds_fill() calls git credential fill to query git credentials.

gitcreds_approve() calls git credential approve to add new credentials.

Value

The standard output of the git command, line by line.

See Also

gitcreds_parse_output() to parse the output of gitcreds_fill().

4 gitcreds_get

gitcreds_get Query and set git credentials

Description

This manual page is for users of packages that depend on gitcreds for managing tokens or passwords
to GitHub or other git repositories. If you are a package author and want to import gitcreds for
this functionality, see vignette("package", package = "gitcreds"). Otherwise please start at
’Basics’ below.

Usage

gitcreds_get(url = "https://github.com", use_cache = TRUE, set_cache = TRUE)

gitcreds_set(url = "https://github.com")

gitcreds_delete(url = "https://github.com")

gitcreds_list_helpers()

Arguments

url URL to get, set or delete credentials for. It may contain a user name, which is
typically (but not always) used by the credential helpers. It may also contain a
path, which is typically (but not always) ignored by the credential helpers.

use_cache Whether to try to use the environment variable cache before turning to git to
look up the credentials for url. See gitcreds_cache_envvar().

set_cache Whether to set the environment variable cache after receiving the credentials
from git. See gitcreds_cache_envvar().

Value

gitcreds_get() returns a gitcreds object, a named list of strings, the fields returned by the git
credential handler. Typically the fields are protocol, host, username, password. Some credential
helpers support path-dependent credentials and also return a path field.

gitcreds_set() returns nothing.

gitcreds_delete() returns FALSE if it did not find find any credentials to delete, and thus it did
not call git credential reject. Otherwise it returns TRUE.

gitcreds_get() errors if git is not installed, no credential helpers are configured or no creden-
tials are found. gitcreds_set() errors if git is not installed, or setting the new credentials fails.
gitcreds_delete() errors if git is not installed or the git calls fail. See vignette("package",
package = "gitcreds") if you want to handle these errors.

gitcreds_list_helpers() returns a character vector, corresponding to the credential.helper
git configuration key. Usually it contains a single credential helper, but it is possible to configure
multiple helpers.

gitcreds_get 5

Basics

gitcreds_get() queries git credentials. It is typically used by package code that needs to authenti-
cate to GitHub or another git repository. The end user might call gitcreds_get() directly to check
that the credentials are properly set up.

gitcreds_set() adds or updates git credentials in the credential store. It is typically called by
the user, and it only works in interactive sessions. It always asks for acknowledgement before it
overwrites existing credentials.

gitcreds_delete() deletes git credentials from the credential store. It is typically called by the
user, and it only works in interactive sessions. It always asks for acknowledgement.

gitcreds_list_helpers() lists the active credential helpers.

git versions:
These functions use the git credential system command to query and set git credentials. They
need an external git installation. You can download git from https://git-scm.com/downloads. A
recent version is best, but at least git 2.9 is suggested.
gitcreds should work out of the box on macOS with git versions 2.9.2 or later, and on Windows
with git versions 2.12.1 or later, using the default git settings. On Windows, for git versions from
2.9.2 up until 2.12.1 you probably need to set the default credential helper to wincred. It is usually
simpler to update git to a recent version.
To see your current git version run git --version from your shell. Or from R:

system("git --version")

If you need to avoid installing git, see ’Environment variables’ below.

GitHub:

New setup:
To set up password-less authentication to GitHub:
1. Create a personal access token (PAT). See https://docs.github.com/en/github/authenticating-

to-github/creating-a-personal-access-token.
2. Call gitcreds_set() and give this token as the password.
3. Run gitcreds_get(use_cache = FALSE) to check that the new PAT is set up. To see the

token, you can run gitcreds_get(use_cache = FALSE)$password.

Migrating from the GITHUB_PAT environment variable:
If you already have a GitHub token, and use the GITHUB_PAT or GITHUB_TOKEN environment
variable in your .Renviron file or elsewhere, no changes are neccessary. gitcreds will automat-
ically use this variable.
However, we still suggest that you add your token to the git credential store with gitcreds_set()
and remove GITHUB_PAT from your .Renviron file. The credential store is more secure than
storing tokens in files, and command line git also uses the credential store for password-less
authentication.

Advanced topics

Cached credentials:

6 gitcreds_get

Because querying the git credential store might not be very fast, gitcreds_get() caches creden-
tials in environment variables by default. Credentials for different URLs are stored in different en-
vironment variables. The name of the environment variable is calculated with gitcreds_cache_envvar().
To remove the cache, remove this environment variable with Sys.unsetenv().

Environment variables:
If you want to avoid installing git, or using the credential store for some reason, you can supply
credentials in environment variables, e.g. via the .Renviron file. Use gitcreds_cache_envvar()
to query the environment variable you need to set for a URL:

1. You can set this environment variable to the token or password itself.
2. If you also need a user name, then use the user:password form, i.e. separate them with a

colon. (If your user name or passwrd has : characters, then you need to escape them with a
preceding backslash.)

Proxies:
git should pick up the proxy configuration from the http_proxy, https_proxy, and all_proxy
environment variables. To override these, you can set the http.proxy git configuration key. More
info here: https://git-scm.com/docs/git-config#Documentation/git-config.txt-httpproxy and here:
https://github.com/microsoft/Git-Credential-Manager-Core/blob/master/docs/netconfig.md

Credential helpers:
git credential helpers are an extensible, configurable mechanism to store credentials. Different git
installations have different credentials helpers. On Windows the default helper stores credentials
in the system credential store. On macOS, it stores them in the macOS Keychain. Other helpers
cache credentials in a server process or in a file on the file system.
gitcreds only works if a credential helper is configured. For the current git version (2.29.0),
this is the case by default on Windows and macOS (for git from HomeBrew), but most Linux
distributions do not set up a default credential helper.
You can use gitcreds_list_helpers() to see the active credential helper(s) for a repository.
Make sure you set the working directory to the git tree before calling gitcreds_list_helpers().

The current working directory:
git allows repository specific configuration, via the .git/config file. The config file might spec-
ify a different credential helper, a different user name, etc. This means that gitcreds_get() etc.
will potentially work differently depending on the current working directory. This is especially
relevant for package code that changes the working directory temporarily.

Non-GitHub accounts:
Non-GitHub URLs work mostly the same way as GitHub URLs. gitcreds_get() and gitcreds_set()
default to GitHub, so you’ll need to explicitly set their url argument.
Some credential helpers, e.g. Git Credential Manager for Windows (manager) and Git Credential
Manager Core (manager-core) work slightly differently for GitHub and non-GitHub URLs, see
their documentation for details.

Multiple accounts:
The various credential helpers support having multiple accounts on the same server in different
ways. Here are our recommendations.

macOS:

gitcreds_get 7

1. Use the (currently default) osxkeychain credential helper.
2. In Keychain Access, remove all your current credentials for the host(s) you are targeting.

E.g. for GitHub, search for github.com Internet Passwords.
3. Then add the credential that you want to use for "generic access". This is the credential

that will be used for URLs without user names. The user name for this credential does not
matter, but you can choose something descriptive, e.g. "token", or "generic".

4. Configure git to use this username by default. E.g. if you chose "generic", then run

git config --global credential.username generic

5. Add all the other credentials, with appropriate user names. These are the user names that
you need to put in the URLs for the repositories or operations you want to use them for.
(GitHub does not actually use the user names if the password is a PAT, but they are used to
look up the correct token in the credential store.)

Windows with git 2.29.0 or later:
1. We suggest that you update to the latest git version, but at least 2.29.0, and use the manager-core

helper which is now default. If you installed manager-core separately from git, we suggest
that you remove it, because it might cause confusion as to which helper is actually used.

2. Remove all current credentials first, for the host you are targeting. You can do this in ’Cre-
dential Manager’ or gitcreds::gitcreds_list() to find them and ’Credential Manager’
or the oskeyring package to remove them. You can also use the oskeyring package to back
up the tokens and passwords.

3. Then add the credential that you want to use for "generic access". This is the credential
that will be used for URLs without user names. The user name for this credential does not
matter, but you can choose something descriptive, e.g. "PersonalAccessToken", "token", or
"generic".

4. Configure git to use this username by default. E.g. if you chose "generic", then run

git config --global credential.username generic

5. Add all the other credentials, with appropriate user names. These are the user names that
you need to put in the URLs for the repositories or operations you want to use them for.
(GitHub does not actually use the user names if the password is a PAT, but they are used to
look up the correct token from the credential store.)

Windows with older git versions, 2.28.0 and before:
A single GitHub account:
If you only need to manage a single github.com credential, together with possibly multiple
credentials to other hosts (including GitHub Enterprise hosts), then you can use the default
manager helper, and get away with the default auto-detected GCM authority setting.
In this case, you can add your github.com credential with an arbitrary user name, and for each
other host you can configure a default user name, and/or include user names in the URLs to
these hosts. This is how to set a default user name for a host called https://example.com:

git config --global credential.https://example.com.username myusername

Multiple GitHub credentials:
If you need to manage multiple github.com credentials, then you can still use the manager
helper, but you need to change the GCM authority by setting an option or an environment
variable, see https://github.com/microsoft/Git-Credential-Manager-for-Windows/
blob/master/Docs/Configuration.md#authority.
This is how to change GCM authority in the config:

https://github.com/microsoft/Git-Credential-Manager-for-Windows/blob/master/Docs/Configuration.md#authority.
https://github.com/microsoft/Git-Credential-Manager-for-Windows/blob/master/Docs/Configuration.md#authority.

8 gitcreds_list

git config --global credential.authority Basic

You can also change it only for github.com:

git config --global credential.github.com.authority Basic

Then you can configure a default user name, this will be used for URLs without a user name:

git config --global credential.username generic

Now you can add you credentials, the default one with the "generic" user name, and all the
others with their specific user and host names.
Alternatively, you can install a newer version of Git Credential Manager Core (GCM Core), at
least version 2.0.252-beta, and use the manager-core helper. You’ll potentially need to delete
the older manager-core helper that came with git itself. With the newer version of GCM
Core, you can use the same method as for newer git versions, see above.

Multiple credential helpers:
It is possible to configure multiple credential helpers. If multiple helpers are configured for a
repository, then gitcreds_get() will go over them until a credential is found. gitcreds_set()
will try to set the new credentials in every configured credential helper.
You can use gitcreds_list_helpers() to list all configured helpers.

Examples

Not run:
gitcreds_get()
gitcreds_get("https://github.com")
gitcreds_get("https://myuser@github.com/myorg/myrepo")

End(Not run)

gitcreds_list List all credentials stored by a git credential helper

Description

This function is meant to be used interactively, to help you when configuring credential helpers. It
is especially useful if you have multiple accounts on a host.

Usage

gitcreds_list(
url = "https://github.com",
credential_helper = NULL,
protocol = NULL

)

gitcreds_list 9

Arguments

url URL to list credentials for. If NULL then the credentials are listed for all URLs.
Note that for a host the results might be different if you specify or omit this
argument. gitcreds_list() uses heuristics when the url is not specified. If is
always best to specify the URL.

credential_helper

Credential helper to use. If this is NULL, then the configured credential helper
is used. If multiple credential helpers are configured, then the first one is used,
with a warning.

protocol Protocol to list credentials for. If NULL and url includes a protocol then that is
used. Otherwise "https" is used.

Details

Note that this function does not use the credential helper itself, so it does not have to be installed.
But it may also give false results, so interpret the results with caution, and also use the tool provided
by your OS, to look at the credentials: ’Keychain Access’ on macOS and ’Credential Manager’ on
Windows.

Only a small number of credential helpers are supported currently. Here is a brief description of
each.

osxkeychain on macOS:
This is the default credential helper on macOS.
It has some peculiarities:

• If you don’t specify a username in the URL, then it will return the oldest credentials that
match the specified host name, with an arbitrary user name.

• If the user name is specified in the URL, then it is used to look up the credentials.

To change or delete the listed credentials, see the oskeyring package or the ’Keychain Access’
macOS app.

manager, on Windows:
This is Git Credential Manager for Windows, see https://github.com/microsoft/Git-Credential-
Manager-for-Windows
It is currently the default helper on Windows, included in the git installer.
It has some oddities, especially with multiple GitHub users:

• The github authority (which is used by default for github.com URLs) cannot handle mul-
tiple users. It always sets the target_name of the Windows credential to git:<URL> where
<URL> does not contain the user name. Since target_name is a primary key, it is not possible
to add multiple GitHub users with the default configuration.

• To support multiple users, switch to the Basic authority, e.g. by setting the GCM_AUTHORITY
env var to Basic. Then the user name will be included in target_name, and everything
works fine.

• For this helper gitcreds_list() lists all records with a matching host name.

manager-core on Windows:

10 gitcreds_parse_output

This is Git Credential Manager Core, see https://github.com/microsoft/Git-Credential-Manager-
Core
On Windows it behaves almost the same way as manager, with some differences:

• Instead of authorities, it has providers. github.com URLs use the github provider by de-
fault. For better support for multiple GitHub accounts, switch to the generic provider by
setting the GCM_PROVIDER env var to generic.

• gitcreds_list() will list all credentials with a matching host, irrespectively of the user
name in the input URL.

manager-core, before version 2.0.246-beta, on macOS:
This is Git Credential Manager Core, see https://github.com/microsoft/Git-Credential-Manager-
Core
This helper has some peculiarities w.r.t. user names:

• If the "github" provider is used (which is the default for github.com URLs), then it com-
pletely ignores user names, even if they are explicitly specified in the query.

• For other providers, the user name (if specified) is saved in the Keychain item.
• For this helper, gitcreds_list() always lists all records that match the host, even if the

user name does not match, because it is impossible to tell if the user name would be used in
a proper git credential lookup.

To change or delete the listed credentials, see the oskeyring package or the ’Keychain Access’
macOS app.

manager-core, version 2.0.246-beta or newer, on macOS:
This is a newer version of Git Credential Manager Core, that supports multiple users better:

• if a user name is provided, then it saves it in the credential store, and it uses this user name
for looking up credentials, even for the github provider.

• gitcreds_list() always lists all records that match the host, even if the user name does not
match.

• Credentials that were created by an older version of manager-core, with the generic provider,
do not work with the newer version of manager-core, because the format of the Keychain
item is different.

Value

A list of oskeyring_macos_item objects. See oskeyring::macos_item().

gitcreds_parse_output Parse standard output from git credential fill

Description

Parse standard output from git credential fill

Usage

gitcreds_parse_output(txt, url)

gitcreds_parse_output 11

Arguments

txt Character vector, standard output lines from git credential fill.

url URL we queried, to be able to create a better error message.

Details

For dummy credentials (i.e. the lack of credentials), it throws an error of class gitcreds_no_credentials.

Value

gitcreds object.

Index

gitcreds (gitcreds_get), 4
gitcreds_approve (gitcreds_fill), 3
gitcreds_cache_envvar, 2
gitcreds_cache_envvar(), 4, 6
gitcreds_delete (gitcreds_get), 4
gitcreds_fill, 3
gitcreds_get, 4
gitcreds_get(), 2, 3
gitcreds_list, 8
gitcreds_list_helpers (gitcreds_get), 4
gitcreds_list_helpers(), 8
gitcreds_parse_output, 10
gitcreds_parse_output(), 3
gitcreds_reject (gitcreds_fill), 3
gitcreds_set (gitcreds_get), 4
gitcreds_set(), 3

oskeyring::macos_item(), 10

Sys.unsetenv(), 6

12

	gitcreds_cache_envvar
	gitcreds_fill
	gitcreds_get
	gitcreds_list
	gitcreds_parse_output
	Index

