Package 'ggpolypath'

September 25, 2023

Type Package Title Polygons with Holes for the Grammar of Graphics Version 0.3.0 Description Tools for working with polygons with holes in 'ggplot2', with a new 'geom' for drawing a 'polypath' applying the 'evenodd' or 'winding' rules. URL https://mdsumner.github.io/ggpolypath/, http://rpubs.com/kohske/3522/ BugReports https://github.com/mdsumner/ggpolypath/issues/ **Depends** R (>= 3.1), ggplot2 (>= 2.1.0) Suggests rmarkdown, knitr LazyData yes License GPL-3 VignetteBuilder knitr RoxygenNote 7.2.3 **Encoding** UTF-8 NeedsCompilation no Author Michael D. Sumner [aut, cre], Kohske Takahashi [ctb] (original author of 'geom_holygon') Maintainer Michael D. Sumner <mdsumner@gmail.com> **Repository** CRAN Date/Publication 2023-09-25 05:20:02 UTC

R topics documented:

Index

dathome gardenstate geom polypath	 •			•								•	 	•			•		 	3	;
8r).																				7	,

1

dathome

Description

A "home" profile of three objects with multiple parts as two related data frames.

Format

dathome is the metadata, a data frame with columns:

name A descriptive name

colour A colour to distinguish each object

FAD An arbitrary numeric value

object_ Key attribute, linking this object to its geometry in maphome

maphome is the geometry, a data frame with columns:

object_ Key attribute, linking this row to its metadata in dathome

branch_ Group attribute, unique values identify a closed ring

island_ Logical, TRUE for "island" vs. "hole"

order_ Numeric value to identify sort order within branch

 $x_y_ x$ and y coordinate

Details

maphome is the geometry

Examples

```
ggplot(maphome) + aes(x = x_, y = y_, group = branch_, fill = object_) +
geom_polypath() + geom_path() + facet_wrap(~object_, nrow = nrow(dathome))
```

gardenstate

Description

A data frame of coordinates and geometry classifiers of the garden state, South Australia.

Format

gardenstate is the geometry, a data frame with columns:

x,y x and y coordinate

id Key attribute for the objects

piece,part Group attribute, unique values identify a closed ring, part is the part 'id' within an object

hole Logical, FALSE for "island" vs. "hole"

order Numeric value to identify sort order within branch

Details

The PROJ.4 string for this map is:

+proj=lcc +lat_1=-47 +lat_2=-17 +lat_0=-32 +lon_0=136 +x_0=0 +y_0=0 +ellps=WGS84 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs

Examples

```
gs <- ggplot(gardenstate)
gs <- gs + aes(x = x, y = y, group = group, fill = id)
gs + geom_polypath() + geom_path()</pre>
```

geom_polypath

Geom polypath, a polygon filled path that can include holes.

Description

Polygons are drawn by tracing a 'path' of linked vertices and applying rule to differentiate the inside and the outside of the area traversed. The 'evenodd' rule provides the normal expected behaviour seen in simple GIS geometry and is immune to self-intersections and the orientation of the path (clockwise or anti-clockwise). The 'winding' rule behaves differently for self-intersections depending on relative orientation of the interacting paths.

Usage

```
geom_polypath(
  mapping = NULL,
  data = NULL,
  stat = "identity",
  position = "identity",
  na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE,
  rule = "winding",
  ...
)
```

Arguments

mapping	Set of aesthetic mappings created by aes(). If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.
data	The data to be displayed in this layer. There are three options:
	If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().
	A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.
	A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data. A function can be created from a formula (e.g. \sim head(.x, 10)).
stat	The statistical transformation to use on the data for this layer, either as a ggproto Geom subclass or as a string naming the stat stripped of the stat_ prefix (e.g. "count" rather than "stat_count")
position	Position adjustment, either as a string naming the adjustment (e.g. "jitter" to use position_jitter), or the result of a call to a position adjustment function. Use the latter if you need to change the settings of the adjustment.
na.rm	If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.
show.legend	logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.
inherit.aes	If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g. borders().
rule	character value specifying the path fill mode: either "winding" or "evenodd", see polypath
	Other arguments passed on to layer(). These are often aesthetics, used to set an aesthetic to a fixed value, like colour = "red" or size = 3. They may also be parameters to the paired geom/stat.

4

geom_polypath

Details

See https://en.wikipedia.org/wiki/Even-odd_rule and https://en.wikipedia.org/wiki/ Nonzero-rule for more details.

Value

a ggplot2 layer

See Also

polypath and pathGrob geom_polygon for the implementation on polygonGrob, geom_map for a convenient way to tie the values and coordinates together, geom_path for an unfilled polygon, geom_ribbon for a polygon anchored on the x-axis

Examples

```
# When using geom_polypath, you will typically need two data frames:
# one contains the coordinates of each polygon (positions), and the
# other the values associated with each polygon (values). An id
# variable links the two together.
# Normally this would not be created manually, but by using \code{\link{fortify}}
# to generate it from the Spatial classes in the `sp` package.
## the built-in data \code{\link{home}} uses nested data frames
library(ggplot2)
ggplot(maphome) + aes(x = x_, y = y_, group = branch_, fill = factor(object_)) +
geom_polypath()
## this is the same example built from scratch
positions = data.frame(x = c(0, 0, 46, 46, 0, 7, 13, 13, 7, 7, 18, 24,
24, 18, 18, 31, 37, 37, 31, 31, 18.4, 18.4, 18.6, 18.8, 18.8,
18.6, 18.4, 31, 31, 37, 37, 31, 0, 21, 31, 37, 46, 0, 18, 18,
24, 24, 18, 18.4, 18.6, 18.8, 18.8, 18.6, 18.4, 18.4),
y = c(0, 19, 19, 0, 0, 6, 6, 13, 13, 6, 1, 1, 12, 12, 1, 4, 4, 11, 11,
4, 6.899999999999999, 7.4999999999999, 7.6999999999999, 7.499999999999999,
6.89999999999999, 6.699999999999, 6.8999999999999, 27, 34,
34, 24, 27, 19, 32, 27, 24, 19, 19, 1, 12, 12, 1, 1, 6.8999999999999999,
6.6999999999999, 6.89999999999, 7.4999999999999, 7.6999999999999,
7.49999999999999, 6.8999999999999),
group = c(1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 4L,
4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 7L,
7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 9L))
values <- data.frame(</pre>
 id = unique(positions$id),
 value = c(2, 5.4, 3)
)
```

manually merge the two together

```
datapoly <- merge(values, positions, by = c("id"))
# the entire house
(house <- ggplot(datapoly, aes(x = x, y = y)) + geom_polypath(aes(fill = value, group = group)))
# just the front wall (and chimney), with its three parts, the first of which has three holes
wall <- ggplot(datapoly[datapoly$id == 1, ], aes(x = x, y = y))</pre>
```

```
wall + geom_polypath(aes(fill = id, group = group))
```

Index

polypath, 4, 5

* datasets ${\tt geom_polypath, 3}$ aes(), <mark>4</mark> borders(), 4 dathome, 2, 2fortify(),4 gardenstate, 3geom_map, 5 geom_path, 5 geom_polygon, 5 geom_polypath, 3 geom_ribbon, 5GeomPolypath(geom_polypath), 3 ggplot(), 4 layer(), 4maphome, 2maphome (dathome), 2 pathGrob, 5 polygonGrob, 5