Package ‘gghdx’

May 30, 2025
Title Hacks for 'ggplot2'
Version 0.3.1

Description A 'ggplot2' extension that does a variety of little
helpful things. The package extends 'ggplot2' facets through
customisation, by setting individual scales per panel, resizing panels
and providing nested facets. Also allows multiple colour and fill
scales per plot. Also hosts a smaller collection of stats, geoms and axis
guides.

License MIT + file LICENSE

URL https://github.com/teunbrand/ggh4x,
https://teunbrand.github.io/ggh4x/

BugReports https://github.com/teunbrand/ggh4x/issues
Depends ggplot2 (>=3.5.2)

Imports grid, gtable, scales, vctrs (>= 0.5.0), rlang (>= 1.1.0),
lifecycle, stats, cli, S7

Suggests covr, fitdistrplus, ggdendro, vdiffr, knitr, MASS, rmarkdown,
testthat (>= 3.0.0), utils

VignetteBuilder knitr
Encoding UTF-8
RoxygenNote 7.3.2
Config/testthat/edition 3

Collate 'at_panel.R' 'borrowed_ggplot2.R' ‘conveniences.R'
'ggh4x_extensions.R' 'coord_axes_inside.R' 'deprecated.R’
'element_part_rect.R' 'facet_grid2.R' 'facet_wrap2.R'
'facet_manual.R' 'facet_nested.R' 'facet_nested_wrap.R'
'facetted_pos_scales.R' 'force_panelsize.R' 'geom_box.R'
'geom_outline_point.R' 'geom_pointpath.R'
'geom_polygonraster.R' 'geom_rectrug.R' 'geom_text_aimed.R’
'ggh4x-package.R' 'guide_stringlegend.R' 'help_secondary.R'
"position_disjoint_ranges.R' 'position_lineartrans.R'
'scale_facet.R' 'scale_listed.R' 'scale_manual .R'

https://github.com/teunbrand/ggh4x
https://teunbrand.github.io/ggh4x/
https://github.com/teunbrand/ggh4x/issues

2 Contents

'scale_multi.R' 'stat_difference.R' 'stat_funxy.R' 'stat_rle.R’
'stat_roll.R' 'stat_theodensity.R' 'strip_vanilla.R’'
'strip_themed.R' 'strip_nested.R' 'strip_split.R' 'strip_tag.R'
'themes.R' 'utils.R' 'utils_grid.R' 'utils_gtable.R’

NeedsCompilation no

Author Teun van den Brand [aut, cre] (ORCID:
<https://orcid.org/0000-0002-9335-7468>)

Maintainer Teun van den Brand <tahvdbrand@gmail.com>
Repository CRAN
Date/Publication 2025-05-30 08:00:01 UTC

Contents
at_panel e 3
center limits L 4
coord_axes_inside e e e e e 5
deprecated 6
distribute_args L. e e 7
element_part_TeCt e e e e e 9
facetted_pos_scales 10
facet_grid2 11
facet_manual e e 14
facet_nested e 17
facet_nested_wrap e 20
facet_wrap2 e e 23
force_panelsizes 26
CEOM_DOX L e e e e 27
geom_outline_point L. e 29
geom_pointpath L 32
geom_polygonrastero e e e e 35
GEOM_TECtMArZIN o v v v v et e e i e e e e e e e e e e e e 38
geom_text_aimed e 42
gghdX_extensions e e e e e e 46
guide_stringlegend 46
help_secondary L 47
position_disjoint_rangeso i e e e e e 49
position_lineartransol 50
scale_facet. L e, 54
scale_fill_multi e 56
scale_listed e 57
scale_x_manual L e 58
SEP_diSCrete e e e e e e e 61
stat_difference L L L e 61
stat_funxy e e e e 64
stat_rle L e e 67

stat_rollingkernel L 70

https://orcid.org/0000-0002-9335-7468

at_panel 3
stat_theodensity e e 73
strip_nested L e e e e e e e 77
Strip_Split e e 78
SIIP_AZ . .« o o o e 80
strip_themed 82
strip_vanilla e e e 84
theme_extensions e e e e e 85
weave factors e s 85

Index 87

at_panel Constrain layer to panels

Description

This function limits the panels in which a layer is displayed. It can be used to make panel-specific
annotations.

Usage

at_panel(layer, expr)

Arguments
layer A layer as returned by layer (). Alternatively, a bare list of layers.
expr An expression that, when evaluated in the facet’s layout data.frame, yields a
logical vector parallel to the rows.
Details

The expr argument’s expression will be evaluated in the context of the plot’s layout. This is an
internal data. frame structure that isn’t ordinarily exposed to users, so it will require some extra
knowledge. For most facets, the layout describes the panels with one panel per row. It typically
has COL, ROW and PANEL columns that keep track of where a panel goes in a grid-layout of cells.
In addition, the layout contains the facetting variables provided to the facets or rows and cols
arguments of the facets. For example, if we have a plot facetted on the var variable with the
levels A, B and C, as 1 row and 3 columns, we might target the second B panel iwth any of these
expressions: var == "B”, PANEL == 2 or COL == 2. We can inspect the layout structure by using
ggplot_build(p)$layout$layout, wherein p is a plot.

Value

A modified layer which will only show in some panels.

4 center_limits

Examples
p <- ggplot(mpg, aes(displ, hwy)) +
geom_point() +
facet_grid(year ~ drv)
anno <- annotate("text", x = 3, y = 40, label = "My text")

Target specific panels
p + at_panel(anno, PANEL %in% c(2, 4))

Target a variable
p + at_panel(anno, drv == "f")

Or combine variable with position

p + at_panel(anno, drv == "f" & ROW == 2)
center_limits Center limits
Description

This a function factory that allows the centering of scales around a certain value while still including
all values. Convenient for centering log2 fold change limits around zero.

Usage

center_limits(around = @)

Arguments

around A numeric of length 1 indicating around which value to center the limits.

Value

A function that takes limits and returns expanded limits centered at the around argument.

Examples

center_limits(5)(c(3,8))

g <- ggplot(iris,
aes(Sepal.Width, Sepal.Length,
colour = log2(Petal.Width / Petal.Length))) +
geom_point() +
scale_colour_gradient2(limits = center_limits())

coord_axes_inside 5

coord_axes_inside Cartesian coordinates with interior axes

Description

This coordinate system places the plot axes at interior positions. Other than this, it behaves like
coord_cartesian() or coord_fixed() (the latter if the ratio argument is set).

Usage
coord_axes_inside(
xlim = NULL,
ylim = NULL,

xintercept = 0,
yintercept = 0,
labels_inside = FALSE,
ratio = NULL,

expand = TRUE,

default = FALSE,

clip = "on"

Arguments

x1im, ylim Limits for the x and y axes.

xintercept, yintercept
A numeric(1) for the positions where the orthogonal axes should be placed.
If these are outside the bounds of the limits, the axes are placed to the nearest
extreme.

labels_inside One of "x", "y", "both"” or "none” specifying the axes where labels should be
placed inside the panel along the axes. TRUE is translated as "both"” and FALSE
(default) is translated as "none”.

ratio Either NULL, or a numeric(1) for a fixed aspect ratio, expressed as y / x.

expand If TRUE, the default, adds a small expansion factor to the limits to ensure that
data and axes don’t overlap. If FALSE, limits are taken exactly from the data or
xlim/ylim.

default Is this the default coordinate system? If FALSE (the default), then replacing this

coordinate system with another one creates a message alerting the user that the
coordinate system is being replaced. If TRUE, that warning is suppressed.

clip Should drawing be clipped to the extent of the plot panel? A setting of "on" (the
default) means yes, and a setting of "of f” means no. In most cases, the default
of "on" should not be changed, as setting clip = "of f” can cause unexpected
results. It allows drawing of data points anywhere on the plot, including in
the plot margins. If limits are set via x1im and ylim and some data points fall
outside those limits, then those data points may show up in places such as the
axes, the legend, the plot title, or the plot margins.

6 deprecated

Value

A CoordAxesInside object, which can be added to a plot.

Examples

A standard plot

p <- ggplot(mpg, aes(scale(displ), scale(hwy))) +
geom_point() +
theme(axis.line = element_line())

By default, axis text is still placed outside the panel
p + coord_axes_inside()

However, this can simply be changed
p + coord_axes_inside(labels_inside = TRUE)

The place where the axes meet can be changed
p + coord_axes_inside(xintercept = 1, yintercept = -1)

Axes snap to the nearest limit when out-of-bounds
p + coord_axes_inside(xintercept = -5, yintercept = Inf, clip = "off")

Can be combined with other non-default axes
p + guides(x = guide_axis(minor.ticks = TRUE)) +
coord_axes_inside()

deprecated Deprecated functions

Description

The functions listed here are deprecated and no longer work.
Usage

guide_axis_logticks(...)

guide_axis_manual(...)

guide_axis_minor(...)

guide_axis_nested(...)

guide_axis_scalebar(...)

guide_axis_truncated(...)

guide_axis_colour(...)

distribute_args 7

guide_axis_color(...)
guide_dendro(...)
ggsubset(...)
scale_x_dendrogram(...)
scale_y_dendrogram(...)

Arguments

Not used.

Value

None, raises deprecation signal

Examples

None

distribute_args Element list constructors

Description

These functions take a vector of arguments and pass on the i*” item of the vector to an i*" call of
a function. The elem_list_text and elem_list_rect are convenience functions for constructing
lists of element_text() and element_rect() theme elements.

Usage

distribute_args(..., .fun = element_text, .cull = TRUE)
elem_list_text(...)
elem_list_rect(...)

Arguments

Vectorised arguments to pass on to functions.
.fun A function to distribute arguments to.

.cull A logical(1) determining if unknown arguments are being culled.

8 distribute_args

Details

NAs and NULLs will be silently dropped. If you want to pass on a transparent fill or colour
argument, you should use the more verbose character "transparent” instead. However, you can
use a NA to indicate that it’s argument should not be passed to a function in that position.

Value

A list of outputs from fun.

Note

Whereas the distribute_args function might seem amenable for off-label uses elsewhere (be-
sides constructing lists of theme elements), it is not intended as such. For example, because valid
arguments will be deduced from the formals of a function, using certain functions can be trouble-
some. For example, the distribute_args function does not properly recognise the utility of a

. argument in a function that it is supposed to distribute arguments to. This can be a problem
for object-oriented functions: if the methods contain more arguments than the generic itself, these
extra arguments will be silently dropped.

See Also

The element_text() and element_rect() theme elements for a description of their arguments.

Examples

Providing arguments for ~element_rect()"

elem_list_rect(
The first element_rect will have linetype 1, the second gets 3
linetype = c(1, 3),
If an argument doesn't exist, it will be silently dropped
nonsense_argument = c("I", "will”, "be"”, "filtered", "out")

)

Providing arguments for ~element_text()"
elem_list_text(
“NA"s will be skipped
family = c("mono”, NA, "sans"),
Providing a list of more complex arguments. “NULL™ will be skipped too.
margin = list(NULL, margin(t = 5))
)

Providing arguments to other functions
distribute_args(

lineend = c("round”, "butt", "square"),
If you want to pass a vector instead of a scalar, you can use a list
colour = list(c("blue”, "red"), "green"),

.fun = element_line

element_part_rect

element_part_rect

Partial rectangle theme element

Description

The element_part_rect() function draws sides of a rectangle as theme elements. It can substitute
element_rect() theme elements.

Usage
element_part_rect(
side = "tlbr",
fill = NULL,

colour = NULL,
linewidth = NULL,
linetype = NULL,

color = NULL,
inherit.blank

Arguments

side

fill

colour, color
linewidth
linetype

inherit.blank

Value

An S3 object of cla

Examples

= FALSE

n.n

A character of length one containing any of "t”, "1", "b"”, "r". If these
letters are present it will draw an edge at the top (t), left (1), bottom (b) or right
(r) respectively. Including all or none of these letters will default to normal
element_rect().

Fill colour.
Line/border colour. Color is an alias for colour.
Line/border size in mm.

Line type. An integer (0:8), a name (blank, solid, dashed, dotted, dotdash, long-
dash, twodash), or a string with an even number (up to eight) of hexadecimal
digits which give the lengths in consecutive positions in the string.

Should this element inherit the existence of an element_blank among its par-
ents? If TRUE the existence of a blank element among its parents will cause this
element to be blank as well. If FALSE any blank parent element will be ignored
when calculating final element state.

ss element_part_rect.

ggplot(iris, aes(Sepal.Width, Sepal.lLength)) +

geom_point() +

facet_grid(Species ~.) +

10 facetted_pos_scales

theme (
strip.background = element_part_rect(side = "tb", colour = "black"),
panel.background = element_part_rect(side = "1", colour = "black")

)

facetted_pos_scales Set individual scales in facets

Description

This function allows the tweaking of the position scales (x and y) of individual facets. You can
use it to fine-tune limits, breaks and other scale parameters for individual facets, provided the facet
allows free scales.

Usage

facetted_pos_scales(x = NULL, y = NULL)

Arguments
X,y A list wherein elements are either x/y position scales or NULLs. Alternatively,
a list of formulae (see details).
Details

It is intended that this function works with both ggplot2: : facet_wrap() and ggplot2: :facet_grid().

For facet_wrap, the scales are used for each individual panel. For facet_grid, the scales are used
for the rows and columns. Note that these facets must be used with scales = "free" or "free_x"
or "free_y", depending on what scales are added.

Axis titles are derived from the first scale in the list (or the default position scale when the first list
element is NULL).

Scale transformations: It is allowed to use individual scale transformations for facets, but this
functionality comes with the trade-off that the out of bounds (oob) argument for individual scales
is ignored. Values that are out of bounds will be clipped. Whereas the stat part of a ggplot layer
is typically calculated after scale transformations, the calculation of the stat happens before
scale transformation with this function, which can lead to some awkward results. The suggested
workaround is to pre-transform the data for layers with non-identity stat parts.

Scale list input: NULLs are valid list elements and signal that the default position scale should
be used at the position in the list where the NULL occurs. Since transformations are applied before
facet scales are initiated, it is not recommended to use a default position (either the first in the
list, or defined outside facetted_pos_scales()) scale with a transformation other than trans =
"identity" (the default).

facet_grid2 11

Formula list input: The x and y arguments also accept a list of two-sided formulas. The left
hand side of a formula should evaluate to a logical vector. The right hand side of the formula
should evaluate to a position scale, wherein the x argument accepts x-position scales and the y
argument accepts y-position scales. Notably, the left hand side of the formula is evaluated using
the tidy evaluation framework, whereby the data.frame with the plot’s layout is given priority
over the environment in which the formula was created. As a consequence, variables (columns)
that define faceting groups can be references directly.

Value

A facetted_pos_scales object, instructing a ggplot how to adjust the scales per facet.

See Also

ggplot2::scale_x_continuous() and scale_x_discrete.

Examples

plot <- ggplot(iris, aes(Sepal.Width, Sepal.Length)) +
geom_point(aes(colour = Species)) +
facet_wrap(Species ~ ., scales = "free_y")

Reversing the y-axis in the second panel. When providing a list of scales,
NULL indicates to use the default, global scale

plot +
facetted_pos_scales(
y = list(NULL, scale_y_continuous(trans = "reverse"))
)

Alternative for specifying scales with formula lists. The LHS can access
columns in the plot's layout.

plot +
facetted_pos_scales(
y = list(
Species == "virginica” ~ scale_y_continuous(breaks = c(6, 7)),
Species == "versicolor" ~ scale_y_reverse()
)
)
facet_grid2 Extended grid facets
Description

This function behaves like ggplot2::facet_grid with default arguments, but has a few extra options.
It can draw partial or full axis guides at inner panels, and position scales can be independent.

facet_grid2(

rows = NULL,

cols = NULL,

scales = "fixed",

space = "fixed",

axes = "margins”,
remove_labels = "none”,
independent = "none",

shrink = TRUE,

labeller = "label_value”,
as.table = TRUE,

switch = NULL,

drop = TRUE,

margins = FALSE,
render_empty = TRUE,

facet_grid2

strip = "vanilla”
Arguments
rows, cols A set of variables or expressions quoted by vars() and defining faceting groups

scales

space

axes

on the rows or columns dimension. The variables can be named (the names are
passed to labeller).

For compatibility with the classic interface, rows can also be a formula with the
rows (of the tabular display) on the LHS and the columns (of the tabular display)
on the RHS; the dot in the formula is used to indicate there should be no faceting
on this dimension (either row or column).

A character(1) or logical (1) whether scales are shared across facets or al-
lowed to vary. Interacts with the independent argument. One of the following:
"fixed" or FALSE Scales are shared across all facets (default).

"free_x" x-scales are allowed to vary across rows.

"free_y" y-scales are allowed to vary across columns.

"free" or TRUE Scales can vary across rows and columns.

A character(1) or logical(1) determining whether the size of panels are
proportional to the length of the scales. When the independent argument allows
for free scales in a dimension, the panel sizes cannot be proportional. Note that
the scales argument must be free in the same dimension as the space argument
to have an effect.One of the following:

"fixed" or FALSE All panels have the same size (default).

"free_x" Panel widths are proportional to the x-scales.

"free_y" Panel heights are proportional to the y-scales.

"free" or TRUE Both the widths and heights vary according to scales.

A character(1) or logical (1) where axes should be drawn. One of the fol-
lowing:

facet_grid2

remove_labels

independent

shrink

labeller

as.table

switch

drop

margins

13

"margins” or FALSE Only draw axes at the outer margins (default).
"x" Draw axes at the outer margins and all inner x-axes too.

"y" Draw axes at the outer margins and all inner y-axes too.

"all” or TRUE Draw the axes for every panel.

A character(1) or logical(1) determining whether axis text is displayed at
inner panels. One of the following:

"none” or FALSE Display axis text at all axes (default).

"x" Display axis text at outer margins and all inner y-axes.
"y" Display axis text at outer margins and all inner x-axes.
"all” or TRUE Only display axis text at the outer margins.

A character (1) or logical(1) determining whether scales can vary within a
row or column of panels, like they can be in ggplot2::facet_wrap. The scales
argument must be free for the same dimension before they can be set to inde-
pendent. One of the following:

"none” or FALSE All y-scales should be fixed in a row and all x-scales are fixed
in a column (default).

n,n

x" x-scales are allowed to vary within a column.

non

y" y-scales are allowed to vary within a row.

"all” or TRUE Both x- and y-scales are allowed to vary within a column or row
respectively.

If TRUE, will shrink scales to fit output of statistics, not raw data. If FALSE, will
be range of raw data before statistical summary.

A function that takes one data frame of labels and returns a list or data frame
of character vectors. Each input column corresponds to one factor. Thus there
will be more than one with vars(cyl, am). Each output column gets displayed
as one separate line in the strip label. This function should inherit from the
"labeller" S3 class for compatibility with labeller(). You can use different
labeling functions for different kind of labels, for example use label_parsed()
for formatting facet labels. label_value() is used by default, check it for more
details and pointers to other options.

If TRUE, the default, the facets are laid out like a table with highest values at the
bottom-right. If FALSE, the facets are laid out like a plot with the highest value
at the top-right.

By default, the labels are displayed on the top and right of the plot. If "x", the
top labels will be displayed to the bottom. If "y", the right-hand side labels will
be displayed to the left. Can also be set to "both".

If TRUE, the default, all factor levels not used in the data will automatically be
dropped. If FALSE, all factor levels will be shown, regardless of whether or not
they appear in the data.

Either a logical value or a character vector. Margins are additional facets which
contain all the data for each of the possible values of the faceting variables.
If FALSE, no additional facets are included (the default). If TRUE, margins are
included for all faceting variables. If specified as a character vector, it is the
names of variables for which margins are to be created.

14 facet_manual

render_empty A logical(1): whether to draw panels without any data (TRUE, default) or
display these as blanks (FALSE).

strip A strip specification as one of the following:

* Anobject inheriting from <Strip>, such as an object created with strip_vanilla().
* A strip function, i.e. strip_vanilla.
* A string giving such function without the strip_-prefix, i.e. "vanilla”.

An object created by a call to a strip function, such as strip_vanilla.

Details

Both the independent and space arguments only have an effect when the scales argument in a
dimension is free. However, the independent and space arguments can not be used to simultane-
ously set an independent scale and have the panel size be proportional to that scale.

Value

A Facet ggproto object that can be added to a plot.

See Also

Other facetting functions: facet_manual(), facet_nested(), facet_nested_wrap(), facet_wrap2()

Examples

p <- ggplot(mpg, aes(displ, hwy)) + geom_point()

Repeat all axes for every facet
p + facet_grid2(cyl ~ drv, axes = "all")

Repeat only y-axes
p + facet_grid2(cyl ~ drv, axes = "y")

Repeat axes without x-labels
p + facet_grid2(cyl ~ drv, axes = "all"”, remove_labels = "x")

Grid facets with independent axes for every panel
p + facet_grid2(cyl ~ drv, scales = "free"”, independent = "all")

facet_manual Manual layout for panels

Description

In facet_manual() the layout for panels is determined by a custom design. Inspired by base-R
graphics layout () function, this variant of facets offers more freedom in how panels are displayed,
but comes with less guarantees that it looks right.

facet_manual

Usage

facet_manual(
facets,
design = NULL
widths = NULL

15

’

’

heights = NULL,
respect = FALSE,

drop = TRUE,
strip.position = "top"”,
scales = "fixed",

axes = "margins”,

remove_labels

= "none”,

labeller = "label_value”,
trim_blank = TRUE,

strip = "vanilla”
)
Arguments

facets A set of variables or expressions quoted by vars() and defining faceting groups
on the rows or columns dimension. The variables can be named (the names are
passed to labeller).
For compatibility with the classic interface, can also be a formula or character
vector. Use either a one sided formula, ~a + b, or a character vector, c("a",
n b") .

design Specification of panel areas in the layout. Can either be specified as a character (1)

widths, heights

respect

drop

strip.position

scales

string or as a matrix. See examples.

A numeric or unit vector setting the sizes of panels. A numeric vector is
converted to relative "null” units. Alternatively, when NULL (default), the sizes
are set per instructions of coord or theme aspect ratio. Note that these widths
and heights apply to the cells where panels can be drawn. In between such cells,
room will be made to fit plot decoration such as paddings, axes and strips.

A logical(1). If TRUE, widths and heights specified in "null” units are propor-
tional. If FALSE, "null” units in the x- and y-directions can vary independently.
Alternatively, when NULL, the respect parameter takes instructions from the
coord or theme.

If TRUE, the default, all factor levels not used in the data will automatically be
dropped. If FALSE, all factor levels will be shown, regardless of whether or not
they appear in the data.

By default, the labels are displayed on the top of the plot. Using strip.position
it is possible to place the labels on either of the four sides by setting strip.position
=c("top", "bottom”, "left"”, "right")

A character(1) or logical (1) whether scales are shared across facets or al-
lowed to vary. One of the following:

"fixed" or FALSE Scales are shared across all facets (default).
"free_x" x-scales are allowed to vary.

16 facet_manual

"free_y" y-scales are allowed to vary.
"free" or TRUE Both scales can vary

axes A character(1) or logical (1) where axes should be drawn. One of the fol-
lowing:
"margins” or FALSE Only draw axes at the outer margins (default).
"x" Draw axes at the outer margins and all inner x-axes too.
"y" Draw axes at the outer margins and all inner y-axes too.
"all” or TRUE Draw the axes for every panel.

remove_labels A character(1) or logical(1) determining whether axis text is displayed at
inner panels. One of the following:
"none” or FALSE Display axis text at all axes (default).
"x" Display axis text at outer margins and all inner y-axes.
"y" Display axis text at outer margins and all inner x-axes.
"all” or TRUE Only display axis text at the outer margins.

labeller A function that takes one data frame of labels and returns a list or data frame
of character vectors. Each input column corresponds to one factor. Thus there
will be more than one with vars(cyl, am). Each output column gets displayed
as one separate line in the strip label. This function should inherit from the
"labeller" S3 class for compatibility with labeller(). You can use different
labeling functions for different kind of labels, for example use label_parsed()

for formatting facet labels. label_value() is used by default, check it for more
details and pointers to other options.

trim_blank A logical(1). When TRUE (default), the design will be trimmed to remove
empty rows and columns.

strip A strip specification as one of the following:
* An object inheriting from <Strip>, such as an object created with strip_vanilla().
* A strip function, i.e. strip_vanilla.
* A string giving such function without the strip_-prefix, i.e. "vanilla”.

Value

A Facet ggproto object that can be added to a plot.

See Also

Other facetting functions: facet_grid2(), facet_nested(), facet_nested_wrap(), facet_wrap2()

Examples

A standard plot
p <- ggplot(mtcars, aes(mpg, wt)) +
geom_point()

The ~design™ argument can be a character string.
New rows are indicated by newline symbol (“\n~), which are added
automatically for multi-line strings.

facet_nested 17

The “# -symbol indicates empty cells.
design <- "

Att#

AB#

#BC

##C

"

p + facet_manual(~ cyl, design)

Alternatively, the “design™ argument can be a matrix.
Using “NA~s will leave the cell empty.

design <- matrix(c(1,2,3,3), 2, 2, byrow = TRUE)

p + facet_manual(~ cyl, design)

The sizes of columns and rows can be adjusted with the “widths™ and
“heights parameters respectively.
p + facet_manual(

~ cyl, t(design),

widths = c(2, 1), heights = c(2, 1), respect = TRUE

facet_nested Layout panels in a grid with nested strips

Description

facet_nested() forms a matrix of panels defined by row and column faceting variables and nests
grouped facets.

Usage

facet_nested(
rows = NULL,
cols = NULL,
scales = "fixed",
space = "fixed",
axes = "margins”,
remove_labels = "none”,
independent = "none",
shrink = TRUE,
labeller = "label_value”,
as.table = TRUE,
switch = NULL,
drop = TRUE,
margins = FALSE,
nest_line = element_line(inherit.blank = TRUE),
solo_line = FALSE,
resect = unit(@, "mm"),
render_empty = TRUE,

18

facet_nested

strip = "nested”,

bleed

Arguments

rows, cols

scales

space

axes

remove_labels

independent

NULL

A set of variables or expressions quoted by vars() and defining faceting groups
on the rows or columns dimension. The variables can be named (the names are
passed to labeller).

For compatibility with the classic interface, rows can also be a formula with the
rows (of the tabular display) on the LHS and the columns (of the tabular display)
on the RHS; the dot in the formula is used to indicate there should be no faceting
on this dimension (either row or column).

A character (1) or logical (1) whether scales are shared across facets or al-
lowed to vary. Interacts with the independent argument. One of the following:
"fixed" or FALSE Scales are shared across all facets (default).

"free_x" x-scales are allowed to vary across rows.

"free_y" y-scales are allowed to vary across columns.

"free" or TRUE Scales can vary across rows and columns.

A character(1) or logical(1) determining whether the size of panels are
proportional to the length of the scales. When the independent argument allows
for free scales in a dimension, the panel sizes cannot be proportional. Note that
the scales argument must be free in the same dimension as the space argument
to have an effect.One of the following:

"fixed" or FALSE All panels have the same size (default).

"free_x" Panel widths are proportional to the x-scales.

"free_y" Panel heights are proportional to the y-scales.

"free" or TRUE Both the widths and heights vary according to scales.

A character(1) or logical (1) where axes should be drawn. One of the fol-
lowing:

"margins” or FALSE Only draw axes at the outer margins (default).

"x" Draw axes at the outer margins and all inner x-axes too.

"y" Draw axes at the outer margins and all inner y-axes too.

"all” or TRUE Draw the axes for every panel.

A character(1) or logical(1) determining whether axis text is displayed at
inner panels. One of the following:

"none” or FALSE Display axis text at all axes (default).

"x" Display axis text at outer margins and all inner y-axes.

"y" Display axis text at outer margins and all inner x-axes.

"all” or TRUE Only display axis text at the outer margins.

A character(1) or logical(1) determining whether scales can vary within a
row or column of panels, like they can be in ggplot2::facet_wrap. The scales

argument must be free for the same dimension before they can be set to inde-
pendent. One of the following:

facet_nested

shrink

labeller

as.table

switch

drop

margins

nest_line

solo_line

resect

render_empty

strip

bleed

19

"none” or FALSE All y-scales should be fixed in a row and all x-scales are fixed
in a column (default).

nyn

x" x-scales are allowed to vary within a column.
"y" y-scales are allowed to vary within a row.

"all” or TRUE Both x- and y-scales are allowed to vary within a column or row
respectively.

If TRUE, will shrink scales to fit output of statistics, not raw data. If FALSE, will
be range of raw data before statistical summary.

A function that takes one data frame of labels and returns a list or data frame
of character vectors. Each input column corresponds to one factor. Thus there
will be more than one with vars(cyl, am). Each output column gets displayed
as one separate line in the strip label. This function should inherit from the
"labeller" S3 class for compatibility with labeller(). You can use different
labeling functions for different kind of labels, for example use label_parsed()
for formatting facet labels. label_value() is used by default, check it for more
details and pointers to other options.

If TRUE, the default, the facets are laid out like a table with highest values at the
bottom-right. If FALSE, the facets are laid out like a plot with the highest value
at the top-right.

By default, the labels are displayed on the top and right of the plot. If "x", the
top labels will be displayed to the bottom. If "y", the right-hand side labels will
be displayed to the left. Can also be set to "both".

If TRUE, the default, all factor levels not used in the data will automatically be
dropped. If FALSE, all factor levels will be shown, regardless of whether or not
they appear in the data.

Either a logical value or a character vector. Margins are additional facets which
contain all the data for each of the possible values of the faceting variables.
If FALSE, no additional facets are included (the default). If TRUE, margins are
included for all faceting variables. If specified as a character vector, it is the
names of variables for which margins are to be created.

atheme element, either element_blank() orinheriting from ggplot2: :element_line().

Lines are drawn between layers of strips indicating hierarchy. The element in-
herits from the ggh4x. facet.nestline element in the theme.

A logical(1) indicating whether parent strips with a single child should be
drawn with a nest_line (TRUE) or the line only applies to parents with multiple
children (FALSE, default). Only relevant when nest_line is drawn.

a unit vector of length 1, indicating how much the nesting line should be short-
ened.

A logical(1): whether to draw panels without any data (TRUE, default) or
display these as blanks (FALSE).

An object created by a call to a strip function, such as strip_nested().

[Deprecated] the bleed argument has moved to the strip_nested() function.

20 facet_nested_wrap

Details

This function inherits the capabilities of facet_grid2().

Unlike facet_grid(), this function only automatically expands missing variables when they have
no variables in that direction, to allow for unnested variables. It still requires at least one layer to
have all faceting variables.

Hierarchies are inferred from the order of variables supplied to rows or cols. The first variable is
interpreted to be the outermost variable, while the last variable is interpreted to be the innermost
variable. They display order is always such that the outermost variable is placed the furthest away
from the panels. For more information about the nesting of strips, please visit the documentation of
strip_nested().

Value

A FacetNested ggproto object that can be added to a plot.

See Also

See strip_nested() for nested strips. See ggplot2: :facet_grid() for descriptions of the origi-
nal arguments. See grid: :unit() for the construction of a unit vector.

Other facetting functions: facet_grid2(), facet_manual(), facet_nested_wrap(), facet_wrap2()

Examples

A standard plot
p <- ggplot(mtcars, aes(mpg, wt)) +
geom_point()

Similar to ~facet_grid2(..., strip = strip_nested())"
p + facet_nested(~ vs + cyl)

The nest line inherits from the global theme
p + facet_nested(~ cyl + vs, nest_line = element_line(colour = "red")) +
theme(ggh4x.facet.nestline = element_line(linetype = 3))

facet_nested_wrap Ribbon of panels with nested strips.

Description

facet_nested_wrap() wraps a sequence of panels onto a two-dimensional layout, and nests grouped
facets where possible.

facet_nested_wrap

Usage

21

facet_nested_wrap(

facets,

nrow = NULL,
ncol = NULL,

scales = "fixed",
axes = "margins”,

remove_labels

= "none”,

shrink = TRUE,
labeller = "label_value”,
as.table = TRUE,

drop = TRUE,

dir = "h",

strip.position = "top”,

nest_line = element_line(inherit.blank = TRUE),

solo_line =

FALSE,

resect = unit(@, "mm"),
trim_blank = TRUE,

strip = "nested”,
bleed = NULL
)
Arguments
facets A set of variables or expressions quoted by vars() and defining faceting groups
on the rows or columns dimension. The variables can be named (the names are
passed to labeller).
For compatibility with the classic interface, can also be a formula or character
vector. Use either a one sided formula, ~a + b, or a character vector, c("a",
n b") .
nrow, ncol Number of rows and columns.
scales A character(1) or logical (1) whether scales are shared across facets or al-
lowed to vary. One of the following:
"fixed" or FALSE Scales are shared across all facets (default).
"free_x" x-scales are allowed to vary.
"free_y" y-scales are allowed to vary.
"free" or TRUE Both scales can vary
axes A character(1) or logical (1) where axes should be drawn. One of the fol-

remove_labels

lowing:

"margins” or FALSE Only draw axes at the outer margins (default).
"x" Draw axes at the outer margins and all inner x-axes too.

"y" Draw axes at the outer margins and all inner y-axes too.

"all” or TRUE Draw the axes for every panel.

A character(1) or logical (1) determining whether axis text is displayed at
inner panels. One of the following:

22 facet_nested_wrap

"none” or FALSE Display axis text at all axes (default).

"x" Display axis text at outer margins and all inner y-axes.
"y" Display axis text at outer margins and all inner x-axes.
"all” or TRUE Only display axis text at the outer margins.

shrink If TRUE, will shrink scales to fit output of statistics, not raw data. If FALSE, will
be range of raw data before statistical summary.

labeller A function that takes one data frame of labels and returns a list or data frame
of character vectors. Each input column corresponds to one factor. Thus there
will be more than one with vars(cyl, am). Each output column gets displayed
as one separate line in the strip label. This function should inherit from the
"labeller" S3 class for compatibility with labeller(). You can use different
labeling functions for different kind of labels, for example use label_parsed()
for formatting facet labels. label_value() is used by default, check it for more
details and pointers to other options.

as.table If TRUE, the default, the facets are laid out like a table with highest values at the
bottom-right. If FALSE, the facets are laid out like a plot with the highest value
at the top-right.

drop If TRUE, the default, all factor levels not used in the data will automatically be
dropped. If FALSE, all factor levels will be shown, regardless of whether or not
they appear in the data.

dir Direction: either "h" for horizontal, the default, or "v", for vertical.

strip.position By default, the labels are displayed on the top of the plot. Using strip.position
itis possible to place the labels on either of the four sides by setting strip.position
=c("top”, "bottom”, "left”, "right”)

nest_line atheme element, either element_blank() orinheriting from ggplot2: :element_line().
Lines are drawn between layers of strips indicating hierarchy. The element in-
herits from the ggh4x . facet.nestline element in the theme.

solo_line A logical(1) indicating whether parent strips with a single child should be
drawn with a nest_line (TRUE) or the line only applies to parents with multiple
children (FALSE, default). Only relevant when nest_line is drawn.

resect a unit vector of length 1, indicating how much the nesting line should be short-
ened.
trim_blank A logical(1). When TRUE (default), does not draw rows and columns contain-

ing no panels. When FALSE, the nrow and ncol arguments are taken literally,
even when there are more than needed to fit all panels.

strip An object created by a call to a strip function, such as strip_nested().
bleed [Deprecated] the bleed argument has moved to the strip_nested() function.
Details

This function inherits the capabilities of facet_wrap2().

This function only merges strips in the same row or column as they appear through regular facet_wrap()
layout behaviour.

facet_wrap2 23

Hierarchies are inferred from the order of variables supplied to facets. The first variable is in-
terpreted to be the outermost variable, while the last variable is interpreted to be the innermost
variable. They display order is always such that the outermost variable is placed the furthest away
from the panels. For more information about the nesting of strips, please visit the documentation of
strip_nested().

Value

A FacetNestedWrap ggproto object that can be added to a plot.

See Also

See strip_nested() for nested strips. See ggplot2: :facet_wrap() for descriptions of the origi-
nal arguments. See grid: :unit() for the construction of a unit vector.

Other facetting functions: facet_grid2(), facet_manual(), facet_nested(), facet_wrap2()

Examples

A standard plot
p <- ggplot(mpg, aes(displ, hwy)) +
geom_point()

Similar to ~facet_wrap2(..., strip = strip_nested())".
p + facet_nested_wrap(vars(cyl, drv))

A nest line inherits from the global theme
p + facet_nested_wrap(vars(cyl, drv),
nest_line = element_line(colour = "red"”)) +
theme(ggh4x.facet.nestline = element_line(linetype = 3))

facet_wrap2 Extended wrapped facets

Description

This function behaves like ggplot2: : facet_wrap(), but has a few extra options on axis drawing
when scales are fixed.

Usage

facet_wrap2(
facets,
nrow = NULL,
ncol = NULL,
scales = "fixed",
axes = "margins”,
remove_labels = "none”,
shrink = TRUE,

24 facet_wrap2
labeller = "label_value”,
as.table = TRUE,
drop = TRUE,
dir. = IIhH s
strip.position = "top",
trim_blank = TRUE,
strip = "vanilla”
Arguments
facets A set of variables or expressions quoted by vars() and defining faceting groups

on the rows or columns dimension. The variables can be named (the names are
passed to labeller).

For compatibility with the classic interface, can also be a formula or character
vector. Use either a one sided formula, ~a + b, or a character vector, c("a",

Hbll) .
nrow, ncol Number of rows and columns.
scales A character (1) or logical (1) whether scales are shared across facets or al-

lowed to vary. One of the following:

"fixed" or FALSE Scales are shared across all facets (default).
"free_x" x-scales are allowed to vary.

"free_y" y-scales are allowed to vary.

"free" or TRUE Both scales can vary

axes A character(1) or logical (1) where axes should be drawn. One of the fol-

lowing:
"margins” or FALSE Only draw axes at the outer margins (default).
"x" Draw axes at the outer margins and all inner x-axes too.

y" Draw axes at the outer margins and all inner y-axes too.
"all” or TRUE Draw the axes for every panel.

remove_labels A character(1) or logical(1) determining whether axis text is displayed at

inner panels. One of the following:

"none” or FALSE Display axis text at all axes (default).
"x" Display axis text at outer margins and all inner y-axes.
"y" Display axis text at outer margins and all inner x-axes.
"all” or TRUE Only display axis text at the outer margins.

shrink If TRUE, will shrink scales to fit output of statistics, not raw data. If FALSE, will

be range of raw data before statistical summary.

labeller A function that takes one data frame of labels and returns a list or data frame

of character vectors. Each input column corresponds to one factor. Thus there
will be more than one with vars(cyl, am). Each output column gets displayed
as one separate line in the strip label. This function should inherit from the
"labeller" S3 class for compatibility with labeller(). You can use different
labeling functions for different kind of labels, for example use 1label_parsed()
for formatting facet labels. label_value() is used by default, check it for more
details and pointers to other options.

facet_wrap2 25

as.table If TRUE, the default, the facets are laid out like a table with highest values at the
bottom-right. If FALSE, the facets are laid out like a plot with the highest value
at the top-right.

drop If TRUE, the default, all factor levels not used in the data will automatically be
dropped. If FALSE, all factor levels will be shown, regardless of whether or not
they appear in the data.

dir Direction: either "h" for horizontal, the default, or "v", for vertical.

strip.position By default, the labels are displayed on the top of the plot. Using strip.position
it is possible to place the labels on either of the four sides by setting strip.position
=c("top”, "bottom”, "left”, "right”)

trim_blank A logical(1). When TRUE (default), does not draw rows and columns contain-
ing no panels. When FALSE, the nrow and ncol arguments are taken literally,
even when there are more than needed to fit all panels.

strip A strip specification as one of the following:

* An object inheriting from <Strip>, such as an object created with strip_vanilla().
* A strip function, i.e. strip_vanilla.

* A string giving such function without the strip_-prefix, i.e. "vanilla”.

Value

A Facet ggproto object that can be added to a plot.

See Also

Other facetting functions: facet_grid2(), facet_manual(), facet_nested(), facet_nested_wrap()

Examples
p <- ggplot(mpg, aes(displ, hwy)) + geom_point()

Repeat all axes for every facet
p + facet_wrap2(vars(class), axes = "all")

Repeat only y-axes
p + facet_wrap2(vars(class), axes = "y")

Repeat axes without labels
p + facet_wrap2(vars(class), axes = "all", remove_labels = "all")

Repeat axes without x-axis labels
p + facet_wrap2(vars(class), axes = "all"”, remove_labels = "x")

26 force_panelsizes

force_panelsizes Force a facetted plot to have specified panel sizes

Description

Takes a ggplot and modifies its facet drawing behaviour such that the widths and heights of panels
are set by the user.

Usage
force_panelsizes(
rows = NULL,
cols = NULL,

respect = NULL,
total_width = NULL,
total_height = NULL

)

Arguments
rows, cols anumeric or unit vector for setting panel heights (rows) or panel widths (cols).
respect a logical value. If TRUE, widths and heights specified in "null” units are

proportional. If FALSE, "null” units in x- and y-direction vary independently.
total_width, total_height

an absolute unit of length 1 setting the total width or height of all panels and

the decoration between panels. If not NULL, rows and cols should be numeric

and not units.

Details

Forcing the panel sizes should in theory work regardless of what facetting choice was made, as long
as this function is called after the facet specification. Even when no facets are specified, ggplot2
defaults to the ggplot2::facet_null() specification; a single panel. force_panelsizes works
by wrapping the original panel drawing function inside a function that modifies the widths and
heights of panel grobs in the original function’s output gtable.

When rows or cols are numeric vectors, panel sizes are defined as ratios i.e. relative "null” units.
rows and cols vectors are repeated or shortened to fit the number of panels in their direction. When
rows or cols are NULL, no changes are made in that direction.

When respect = NULL, default behaviour specified elsewhere is inherited.

No attempt is made to guarantee that the plot fits the output device. The space argument in
ggplot2::facet_grid() will be overruled. When individual panels span multiple rows or columns,
this function may not work as intended.

Value

A forcedsize S3 object that can be added to a plot.

geom_box 27

See Also

ggplot2::facet_grid() ggplot2::facet_wrap() ggplot2::facet_null() grid::unit()

Examples

ggplot(mtcars, aes(disp, mpg)) +
geom_point() +
facet_grid(vs ~ am) +

force_panelsizes(rows = c(2, 1),
cols = c(2, 1))
geom_box Flexible rectangles

Description

The geom_box () function offers a more flexible variant of geom_rect () and geom_tile(). Instead
of exclusively working with the (x/y)min/(x/y)max or (x/y)/(width/height) aesthetics, any
two out of these four aesthetics suffice to define a rectangle.

Usage
geom_box (
mapping = NULL,
data = NULL,
stat = "identity”,
position = "identity"”,
linejoin = "mitre”,

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
radius = NULL

)
Arguments
mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.
data The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be

fortified to produce a data frame. See fortify() for which variables will be
created.

28

stat

position

linejoin

geom_box

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

The statistical transformation to use on the data for this layer. When using a
geom_* () function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

* A Stat ggproto subclass, for example StatCount.

* A string naming the stat. To give the stat as a string, strip the function name
of the stat_ prefix. For example, to use stat_count(), give the stat as
"count”.

» For more information and other ways to specify the stat, see the layer stat
documentation.

A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

* A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

* For more information and other ways to specify the position, see the layer
position documentation.

Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through

. Unknown arguments that are not part of the 4 categories below are ignored.

« Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red” or linewidth
=3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

* When constructing a layer using a stat_x() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area”, outline.type = "both”). The
geom’s documentation lists which parameters it can accept.

* Inversely, when constructing a layer using a geom_x() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density”, adjust =0.5). The
stat’s documentation lists which parameters it can accept.

* The key_glyph argument of layer () may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

Line join style (round, mitre, bevel).

geom_outline_point

na.rm

show. legend

inherit.aes

radius

Value

29

If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

A grid::unit object of length 1 or numeric(1) to set rounded corners. If
NULL (default), no rounded corners are applied. If numeric(1), it is interpreted
as millimetres. Does not work under non-linear coordinates.

A ggplot2 Layer object that can be added to a plot.

Examples

Combine any two

df <- data.frame(
x = c¢(1.5, 3.5)
y = c(1.5, 2.5)

)

ggplot(df) +

position aesthetics

, xmin = c(1, 2),
, ymin = c(1, 2)

geom_box(aes(x = x, xmin = xmin, y =y, ymin = ymin))

Works with partial information for position, as long as two aesthetics
are complete for any observation.

df <- data.frame(

= c(1.5, NA, 4), xmin

X
y = c(1.5, 2.5,

)

ggplot(df) +

c(1, 2, NA), width = c(NA, 3, 2),
NA), ymin = c(NA, 2, 3), height = c(1, NA, 3)

geom_box(aes(x = x, xmin = xmin, y =y, ymin = ymin,
width = width, height = height))

Set radius for rounded corners

ggplot() +
geom_box (

aes(x = 1:3, width = rep(1, 3),
y = 1:3, height = 3:1),

radius = 5

geom_outline_point Points with outline

30

Description

geom_outline_point

This is a variant of the point geom, wherein overlapping points are given a shared outline. It works
by drawing an additional layer of points below a regular layer of points with a thicker stroke.

Usage

geom_outline_point(
mapping = NULL,

"identity",

data = NULL,

stat = "identity”,
position =

na.rm = FALSE,

show.legend = NA,

inherit.aes

Arguments

mapping

data

stat

position

TRUE

Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

The statistical transformation to use on the data for this layer. When using a
geom_* () function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

* A Stat ggproto subclass, for example StatCount.

* A string naming the stat. To give the stat as a string, strip the function name
of the stat_ prefix. For example, to use stat_count(), give the stat as
"count”.

* For more information and other ways to specify the stat, see the layer stat
documentation.

A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

geom_outline_point 31

¢ A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

* For more information and other ways to specify the position, see the layer
position documentation.

Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through

.. Unknown arguments that are not part of the 4 categories below are ignored.

« Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red” or linewidth
=3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

* When constructing a layer using a stat_x() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom= "area"”, outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

* Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density”, adjust =@.5). The
stat’s documentation lists which parameters it can accept.

* The key_glyph argument of layer () may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Details

Due to the way this geom is implemented, it handles the alpha aesthetic pretty ungracefully.

Value

A ggplot Layer

Aesthetics

geom_outline_point () understands the following aesthetics (required aesthetics are in bold):

32 geom_pointpath

* X
*y

e alpha
e colour
e fill

* group
¢ shape
e size

* stroke

e stroke_colour

Learn more about setting these aesthetics in vignette("ggplot2-specs”).

Examples

A standard plot

p <- ggplot(mpg, aes(displ, cty, colour = factor(cyl))) +
geom_outline_point(size = 10, stroke = 3)

p

The colour of the stroke can be mapped to a scale by setting the
aesthetics to ~"stroke_colour”™.
P +

aes(stroke_colour = factor(cyl)) +

scale_colour_hue(

aesthetics = "stroke_colour”,
1 =750
)
geom_pointpath Point Paths
Description

The point path geom is used to make a scatterplot wherein the points are connected with lines in
some order. This geom intends to mimic the type = 'b" style of base R line plots.
Usage

geom_pointpath(
mapping = NULL,

data = NULL,
stat = "identity"”,
position = "identity",

L

na.rm = FALSE,

geom_pointpath

show. legend
arrow = NULL
inherit.aes

Arguments

mapping

data

stat

position

33

NA,

TRUE

Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

The statistical transformation to use on the data for this layer. When using a
geom_* () function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

* A Stat ggproto subclass, for example StatCount.

* A string naming the stat. To give the stat as a string, strip the function name
of the stat_ prefix. For example, to use stat_count(), give the stat as
"count”.

* For more information and other ways to specify the stat, see the layer stat
documentation.

A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

* A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

* For more information and other ways to specify the position, see the layer
position documentation.

Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through

.. Unknown arguments that are not part of the 4 categories below are ignored.

* Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red” or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the

34 geom_pointpath
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

* When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area”, outline.type = "both”). The
geom’s documentation lists which parameters it can accept.

* Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density”, adjust =@.5). The
stat’s documentation lists which parameters it can accept.

* The key_glyph argument of layer () may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

arrow Arrow specification as created by grid: :arrow().

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Details

The mult is a numeric value to scale the proportion of gaps in the line around points.

While the need for this geom is not very apparent, since it can be approximated in a variety of ways,
the trick up its sleeve is that it dynamically adapts the inter-point segments so these don’t deform
under different aspect ratios or device sizes.

Value

A Layer ggproto object.

Aesthetics

geom_pointpath() understands the following aesthetics (required aesthetics are in bold):

* X
*y

e alpha
e colour
* group

* shape

geom_polygonraster 35

* size

* stroke

e linewidth
e linetype

e mult

Examples

ggplot(pressure, aes(temperature, pressure)) +
geom_pointpath()

Using geom_pointpath as annotation
ggplot() +
annotate(
"pointpath”,
x =c(1, 0.32, 0.31, -0.12, -0.81, -0.4, -0.81, -0.12, 0.31, 0.32, 1),
y = c(0, 0.24, 0.95, 0.38, 0.59, 0, -0.59, -0.38, -0.95, -0.24, 0)
)

geom_polygonraster Polygon parameterisation for rasters

Description

geom_polygonraster takes data that describes a raster with pixels of the same size and reparametrises
the data as a polygon. This allows for more flexible transformations of the data, but comes at an
efficiency cost.

Usage

geom_polygonraster(
mapping = NULL,
data = NULL,
stat = "identity",
position = position_lineartrans(),

hjust = 0.5,

vjust = 0.5,

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

36

Arguments

mapping

data

stat

position

geom_polygonraster

Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

The statistical transformation to use on the data for this layer. When using a
geom_* () function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

* A Stat ggproto subclass, for example StatCount.

* A string naming the stat. To give the stat as a string, strip the function name
of the stat_ prefix. For example, to use stat_count(), give the stat as
"count”.

» For more information and other ways to specify the stat, see the layer stat
documentation.

A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

* A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

* For more information and other ways to specify the position, see the layer
position documentation.

Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through

.. Unknown arguments that are not part of the 4 categories below are ignored.

* Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red"” or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

geom_polygonraster

hjust, vjust

na.rm

show. legend

inherit.aes

Details

37

* When constructing a layer using a stat_x() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area”, outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

* Inversely, when constructing a layer using a geom_x() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density”, adjust =@.5). The
stat’s documentation lists which parameters it can accept.

* The key_glyph argument of layer () may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

horizontal and vertical justification of the grob. Each justification value should
be a number between 0 and 1. Defaults to 0.5 for both, centering each pixel over
its data location.

If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

For each pixel in a raster, makes a vertex for each of the four corner points. These coordinates can
then by transformed by coord-functions such as ggplot2: : coord_polar () or position-functions
such as position_lineartrans(). Currently substitutes group aesthetics right before drawing in
favour of pixel identifiers.

Value

A Layer ggproto object.

Aesthetics

geom_raster () understands the following aesthetics (required aesthetics are in bold):

* X
°y

« fill

* alpha

* group

See Also

geom_raster()

38 geom_rectmargin

Examples

Combining with coord_polar()
ggplot(faithfuld, aes(waiting, eruptions)) +
geom_polygonraster(aes(fill = density)) +

coord_polar()

Combining with linear transformations

df <- data.frame(x = row(volcano)[TRUE],
y = col(volcano)[TRUE],
z = volcano[TRUE])

ggplot(df, aes(x, y, fill = z)) +
geom_polygonraster(position = position_lineartrans(angle = 30,
shear = c(1, 0)))

geom_rectmargin Rectangular rugs in the margins

Description

Like rug plots display data points of a 2D plot as lines in the margins, this function plots rectangles
in the margins. Rectangular rugs are convenient for displaying one-dimensional, ranged annotations
for two-dimensional plots.

Usage

geom_rectmargin(
mapping = NULL,

data = NULL,
stat = "identity"”,
position = "identity"”,

L

outside = FALSE,

sides = "bl",
length = unit(0.03, "npc"),
linejoin = "mitre”,

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

geom_tilemargin(
mapping = NULL,
data = NULL,
stat = "identity"”,
position = "identity",

L

geom_rectmargin 39

outside = FALSE,

sides = "bl",
length = unit(0.03, "npc"),
linejoin = "mitre”,

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data. frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data. frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_x () function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

* A Stat ggproto subclass, for example StatCount.

* A string naming the stat. To give the stat as a string, strip the function name
of the stat_ prefix. For example, to use stat_count(), give the stat as
"count”.

* For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

* A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

 For more information and other ways to specify the position, see the layer
position documentation.

Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.. .. Unknown arguments that are not part of the 4 categories below are ignored.

40 geom_rectmargin

« Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red” or linewidth
=3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

* When constructing a layer using a stat_x() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area"”, outline.type = "both”). The
geom’s documentation lists which parameters it can accept.

* Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density”, adjust =@.5). The
stat’s documentation lists which parameters it can accept.

* The key_glyph argument of layer () may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

outside logical of length 1 that controls whether to move the rectangles outside of the
plot area. For the best results, it is probably best to set coord_cartesian(clip
= "off") and avoid overlap with the default axes by changing the sides argu-
ment to "tr".

sides A string of length 1 that controls which sides of the plot the rug-rectangles
appear on. A string containing any letters in "trbl” will set it to top, right,
bottom and left respectively.

length A grid: :unit() object that sets the width and height of the rectangles in the x-
and y-directions respectively. Note that scale expansion can affect the look of
this.

linejoin Line join style (round, mitre, bevel).

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,

missing values are silently removed.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Details

By default, scales are expanded 5\ whereas the rug rectangles will occupy 3\ default. The geom_rectmargin()
and geom_tilemargin() versions do the same thing, but are parametrised differently; see geom_rect ().

These functions do not have hard-coded required aesthetics, since the x and y directions can be
omitted by not choosing a side in the corresponding direction, i.e. y-direction variables are omitted
when plotting the rug only on the top and/or bottom. This can result in errors when the aesthetics
are not specified appropriately, so some caution is advised.

geom_rectmargin 41

Value

A Layer ggproto object.

Aesthetics

geom_rectmargin() requires either one of the following sets of aesthetics, but also can use both:

e xXmin

¢ Xmax

and/or:

* ymin

* ymax

geom_tilemargin() requires either one of the following sets of aesthetics, but can also use both:

* X

e width

and/or:

Yy

¢ height
Furthermore, geom_rectmargin() and geom_tilemargin() also understand these shared aesthet-
ics:

* alpha

* colour

 fill

e group

* linetype

e size

See Also

ggplot2::geom_rug(), geom_rect(), ggplot2::geom_tile()

42 geom_text_aimed

Examples

geom_rectmargin() is parameterised by the four corners
df <- data.frame(
xmin = c(1, 5),

xmax = c(2, 7),
ymin = c(1, 2),
ymax = c(2, 4),
f‘ill = C("A“’ IIBII)

ggplot(df, aes(xmin = xmin, xmax = xmax,
ymin = ymin, ymax = ymax,
fill = fill)) +
geom_rect() +
geom_rectmargin()

geom_tilemargin() is parameterised by center and size
df <- data.frame(

x =c(1, 4),

y =c(1, 2),

width = c(2, 1),

height = c(1, 2),

fill = c("A", "B")
)

ggplot(df, aes(x, v,
width = width, height = height,
fill = fill)) +
geom_tile() +
geom_tilemargin()

geom_text_aimed Aimed text

Description

Similar to geom_text (), this geom also generates text but places the text at an angle so that the text
seems aimed towards a point defined by [xend, yend].

Usage

geom_text_aimed(
mapping = NULL,

data = NULL,
stat = "identity"”,
position = "identity",

L

parse = FALSE,

geom_text_aimed

nudge_x =
nudge_y =

43

flip_upsidedown = TRUE,
check_overlap = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

Arguments

mapping

data

stat

position

Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data. frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data. frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

The statistical transformation to use on the data for this layer. When using a
geom_x () function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

* A Stat ggproto subclass, for example StatCount.

* A string naming the stat. To give the stat as a string, strip the function name
of the stat_ prefix. For example, to use stat_count(), give the stat as
"count”.

* For more information and other ways to specify the stat, see the layer stat
documentation.

A position adjustment to use on the data for this layer. Cannot be jointy specified
with nudge_x or nudge_y. This can be used in various ways, including to pre-
vent overplotting and improving the display. The position argument accepts
the following:

* The result of calling a position function, such as position_jitter().

* A string nameing the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

 For more information and other ways to specify the position, see the layer
position documentation.

Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.. .. Unknown arguments that are not part of the 4 categories below are ignored.

44

geom_text_aimed

« Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red” or linewidth
=3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

* When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area”, outline.type = "both”). The
geom’s documentation lists which parameters it can accept.

* Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density”, adjust =0.5). The
stat’s documentation lists which parameters it can accept.

e The key_glyph argument of layer () may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

parse If TRUE, the labels will be parsed into expressions and displayed as described in
?plotmath.

nudge_x, nudge_y
Horizontal and vertical adjustment to nudge labels by. Useful for offsetting text
from points, particularly on discrete scales. Cannot be jointly specified with
position.

flip_upsidedown
A logical(1). If TRUE (default), the angle of text placed at angles between 90
and 270 degrees is flipped so that it is more comfortable to read. If FALSE, will
take calculated angles literally.

check_overlap If TRUE, text that overlaps previous text in the same layer will not be plotted.
check_overlap happens at draw time and in the order of the data. Therefore
data should be arranged by the label column before calling geom_text (). Note
that this argument is not supported by geom_label ().

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Details

The calculated angle is such that the text will be parallel to a line passing through the coordinates
[x, y]and [xend, yend]. The calculated angle is added to the angle angle aesthetic, so that you
can set text perpendicular to that line by setting angle = 90. These angles are calculated in absolute
coordinates, meaning that resizing the plot will retain the same appearance.

geom_text_aimed 45

Value

A ggplot2 Layer that can be added to a plot.

Aesthetics
geom_text_aimed() understands the following aesthetics (required aesthetics are in bold):
* X
*y
e label
e alpha
e angle
e colour
e family
» fontface
e group
¢ hjust
e lineheight
e size
* vjust
* xend

* yend

Learn more about setting these aesthetics in vignette("ggplot2-specs”).

Note

When using this geom to aim text at the centre of a polar plot, make sure the radius range does not
have close to zero width.

Examples

Point all labels to upper right corner
ggplot(mtcars, aes(mpg, wt)) +
geom_text_aimed(aes(label = rownames(mtcars)),
xend = Inf, yend = Inf)

Point all labels to center of polar plot
ggplot(mpg, aes(manufacturer)) +
geom_bar(width = 1, aes(fill = manufacturer), show.legend = FALSE) +
geom_text_aimed(aes(label = manufacturer), hjust = 0,
stat = "count”, nudge_y = 2) +
scale_x_discrete(labels = NULL) +
coord_polar()

46 guide_stringlegend

ggh4x_extensions ggh4x extensions to ggplot2

Description

gghdx relies on the extension mechanism of ggplot2 through ggproto class objects, which allows
cross-package inheritance of objects such as geoms, stats, facets, scales and coordinate systems.
These objects can be ignored by users for the purpose of making plots, since interacting with these
objects is preferred through various geom_, stat_, facet_, coord_ and scale_ functions.

See Also

ggproto

guide_stringlegend String legend

Description

This type of legend shows colour and fill mappings as coloured text. It does not draw keys as
guide_legend() does.

Usage

guide_stringlegend(
title = waiver(),
theme = NULL,
position = NULL,
direction = NULL,

nrow = NULL,
ncol = NULL,
reverse = FALSE,
order = 0
)
Arguments
title A character string or expression indicating a title of guide. If NULL, the title is
not shown. By default (waiver()), the name of the scale object or the name
specified in labs() is used for the title.
theme A theme object to style the guide individually or differently from the plot’s
theme settings. The theme argument in the guide overrides, and is combined
with, the plot’s theme.
position A character string indicating where the legend should be placed relative to the

plot panels.

help_secondary 47

direction A character string indicating the direction of the guide. One of "horizontal" or
"vertical."

nrow, ncol The desired number of rows and column of legends respectively.

reverse logical. If TRUE the order of legends is reversed.

order positive integer less than 99 that specifies the order of this guide among multiple

guides. This controls the order in which multiple guides are displayed, not the
contents of the guide itself. If O (default), the order is determined by a secret
algorithm.

Value

A GuideStringlegend object.

Examples

p <- ggplot(mpg, aes(displ, hwy)) +
geom_point(aes(colour = manufacturer))

String legend can be set in the “guides()” function
p + guides(colour = guide_stringlegend(ncol = 2))

The string legend can also be set as argument to the scale

p + scale_colour_viridis_d(guide = "stringlegend")
help_secondary Secondary axis helper
Description

The purpose of this function is to construct a secondary axis with a projection function.

Usage

help_secondary(
data = NULL,
primary = c(0, 1),
secondary = c(@, 1),
method = c("range”, "max", "fit", "ccf”, "sortfit"),
na.rm = TRUE,

48

Arguments

data

help_secondary

A data. frame object.

primary, secondary

method

na.rm

Details

An expression that is evaluated in the context of the data argument. These can
be symbols for column names or plain expressions.

One of the following:

"range" Causes the ranges of primary and secondary data to overlap com-
pletely.

"max" Causes the maxima of primary and secondary data to coincide.
"fit" Uses the coefficients of Im(primary ~ secondary) to make the axes fit.

"ccf” Uses the lag at which maximum cross-correlation occurs to then align the
data by truncation. The aligned data is then passed to the "fit" method.

"sortfit” Sorts the both primary and secondary independently before pass-
ing these on to the "fit"” method.

A logical(1): whether to remove missing values (TRUE) or propagate missing
values (FALSE). Applies to the method = "range"” and method = "max"” methods.

Arguments passed on to ggplot2: :sec_axis

transform A formula or function of a strictly monotonic transformation
name The name of the secondary axis
breaks One of:
* NULL for no breaks
* waiver () for the default breaks computed by the transformation object
* A numeric vector of positions
* A function that takes the limits as input and returns breaks as output
labels One of:
* NULL for no labels
* waiver () for the default labels computed by the transformation object
* A character vector giving labels (must be same length as breaks)
* A function that takes the breaks as input and returns labels as output

guide A position guide that will be used to render the axis on the plot. Usually
this is guide_axis().

The intent is to run this function before starting a plot. The output of the function is a secondary
axis wherein the trans argument of sec_axis() is populated by an appropriate transformation.
In addition, the output also contains a output$proj() function that helps transform the secondary

data.

Value

An AxisSecondary ggproto object with a proj method for projecting secondary data.

position_disjoint_ranges 49

Examples

Run the secondary axis helper
sec <- help_secondary(economics, primary = unemploy, secondary = psavert)

Making primary plot
p <- ggplot(economics, aes(date)) +
geom_line(aes(y = unemploy), colour = "blue")

For the secondary data, later we use the “proj”~ function from the helper
p <- p + geom_line(aes(y = sec$proj(psavert)), colour = "red")

We feed the scale the secondary axis
p + scale_y_continuous(sec.axis = sec)

Setup cross-correlated data
set.seed(42)
n <- 100
lag <- 20
dat <- cumsum(rnorm(n + lag))
df <- data.frame(
x = seq_len(n),
y1 = head(dat, n),
y2 = 10 + tail(dat, n) * 5 # offset and scale y2
)
Choosing the cross-correlation function method.
sec <- help_secondary(df, y1, y2, method = "ccf")

ggplot(df, aes(x)) +
geom_line(aes(y = y1), colour = "blue") +
geom_line(aes(y = sec$proj(y2)), colour = "red") +
scale_y_continuous(sec.axis = sec)

position_disjoint_ranges
Segregating overlapping ranges

Description

One-dimensional ranged data in the x-direction is segregated in the y-direction such that no overlap
in two-dimensional space occurs. This positioning works best when no relevant information is
plotted in the y-direction.

Usage

position_disjoint_ranges(extend = 1, stepsize = 1)

50 position_lineartrans

Arguments
extend a numeric of length 1 indicating how far a range should be extended in total
for calculating overlaps. Setting this argument to a positive number leaves some
space between ranges in the same bin.
stepsize a numeric of length 1 that determines how much space is added between bins
in the y-direction. A positive value grows the bins from bottom to top, while a
negative value grows the bins from top to bottom.
Details

An object is considered disjoint from a second object when the range between their xmin and xmax
coordinates don’t overlap. Objects that overlap are assigned to different bins in the y-direction,
whereby lower bins are filled first. This way, information in the x-direction is preserved and differ-
ent objects can be discerned.

Note that this positioning is only particularly useful when y-coordinates do not encode relevant in-
formation. Geoms that pair well with this positioning are geom_rect () and ggplot2: :geom_tile().

This positioning function was inspired by the disjointBins() function in the IRanges package,
but has been written such that it accepts any numeric input next to solely integer input.

Value

A PositionDisjointRanges object.

See Also

The disjointBins function the Bioconductor IRanges package.

Examples

Even though geom_tile() is parametrised by middle-x values, it is
internally converted to xmin, xmax, ymin, ymax parametrisation so the
positioning still works.

ggplot() +
geom_tile(aes(x = rnorm(200), y = 0),
width = 0.2, height = 0.9,
position = position_disjoint_ranges(extend = 0.1))

position_lineartrans Linearly transform coordinates

Description

Transforms coordinates in two dimensions in a linear manner for layers that have an x and y
parametrisation.

position_lineartrans 51

Usage

position_lineartrans(scale = c(1, 1), shear = c(9@, 0), angle = @, M = NULL)

Arguments
scale A numeric of length two describing relative units with which to multiply the x
and y coordinates respectively.
shear A numeric of length two giving relative units by which to shear the output.
The first number is for vertical shearing whereas the second is for horizontal
shearing.
angle A numeric noting an angle in degrees by which to rotate the input clockwise.
M A 2 x 2 real matrix: the transformation matrix for linear mapping. Overrides
other arguments if provided.
Details

Linear transformation matrices are 2 x 2 real matrices. The ’scale’, ’shear’ and ’rotation’
arguments are convenience arguments to construct a transformation matrix. These operations occur

in the order: scaling - shearing - rotating. To apply the transformations in another order, build a
custom M’ argument.

For some common transformations, you can find appropriate matrices for the M’ argument below.

Value

A PositionLinearTrans ggproto object.

Common transformations

Identity transformations: An identity transformation, or returning the original coordinates, can
be performed by using the following transformation matrix:

10|
| 01

or
M<-matrix(c(1, 0, 0, 1), 2)

Scaling: A scaling transformation multiplies the dimension of an object by some amount. An
example transformation matrix for scaling everything by a factor 2:

2 0 |
| 02

or

M<-matrix(c(2, 0, @, 2), 2)

52

position_lineartrans

Squeezing: Similar to scaling, squeezing multiplies the dimensions by some amount that is
unequal for the x and y coordinates. For example, squeezing y by half and expanding x by two:

| 2 0 |
| 0 0.5 |

or

M<-matrix(c(2, 0, 0, 0.5), 2)

Reflection: Mirroring the coordinates around one of the axes. Reflecting around the x-axis:

I 1 0 I
I 0 -1 I
or
M<-matrix(c(1, 0, 0, -1), 2)
Reflecting around the y-axis:
I -1 0 I
I 0 1 I

or

M <-matrix(c(-1, 0, 0, 1), 2)

Projection: For projecting the coordinates on one of the axes, while collapsing everything from
the other axis. Projecting onto the y-axis:

I 0 0 I
I 0 1 I
or
M<-matrix(c(o, 0, 0, 1), 2)
Projecting onto the x-axis:
I 1 0 I
I 0 0 I

or

M<-matrix(c(1, 0, @, 0), 2)

position_lineartrans 53

Shearing: Tilting the coordinates horizontally or vertically. Shearing vertically by 10\

I 1 0 |
I 0.1 1 |
or
M<-matrix(c(1, 0.1, 0, 1), 2)
Shearing horizontally by 200\
I 1 2 I
| 0 1 I

or
M<-matrix(c(1, 0, 2, 1), 2)

Rotation: A rotation performs a motion around a fixed point, typically the origin the coordinate
system. To rotate the coordinates by 90 degrees counter-clockwise:

I 0 -1 I
I 1 0 I
or
M<-matrix(c(o, 1, -1, @), 2)
For a rotation around any angle 6 :
| cost —sinf |
I sind cosf I

or

M<-matrix(c(cos(theta), sin(theta), -sin(theta), cos(theta)), 2)
with *theta’ defined in radians.

Examples

df <- data.frame(x = c(0, 1, 1, @),
y =c(o, 0, 1, 1))
ggplot(df, aes(x, y)) +
geom_polygon(position = position_lineartrans(angle = 30))

54 scale_facet

Custom transformation matrices

Rotation

theta <- -30 x pi / 180

rot <- matrix(c(cos(theta), sin(theta), -sin(theta), cos(theta)), 2)
Shear

shear <- matrix(c(1, 0, 1, 1), 2)

Shear and then rotate
M <- rot %x% shear
ggplot(df, aes(x, y)) +
geom_polygon(position = position_lineartrans(M = M))
Alternative shear and then rotate
ggplot(df, aes(x, y)) +
geom_polygon(position = position_lineartrans(shear = c(0, 1), angle = 30))

Rotate and then shear
M <- shear %*% rot
ggplot(df, aes(x, y)) +
geom_polygon(position = position_lineartrans(M = M))

scale_facet Position scales for individual panels in facets

Description

This function adds position scales (x and y) of individual panels. These can be used to fine-tune
limits, breaks and other scale parameters for individual panels, provided the facet allows free scales.

Usage
scale_x_facet(expr, ..., type = "continuous")
scale_y_facet(expr, ..., type = "continuous")
Arguments
expr An expression that, when evaluated in the facet’s layout data.frame, yields a
logical vector. See details.
Other arguments passed to the scale.
type A character (1) indicating the type of scale, such that scale_(x/y)_{type}
spells a scale function. Defaults to "continuous”.
Details

These scale functions work through the mechanism of the facetted_pos_scales() function, and
the same limitations apply: scale transformations are applied after stat transformations, and the
oob argument of scales is ignored.

scale_facet 55

For the expr argument, the expression will be evaluated in the context of the plot’s layout. This is
an internal data. frame structure that isn’t normally exposed, so it requires some extra knowledge.
For most facets, the layout describes the panels, with one panel per row. It typically has COL, ROW
and PANEL columns that keep track of what panel goes where in a grid of cells. In addition, it
contains the facetting variables provided to the facets or rows and cols arguments of the facets.
For example, if we have a plot facetted on the var variable with the levels A, B and C, as 1 row and
3 columns, we might target the second B panel with any of these expressions: var == "B"”, PANEL
== 2 or COL == 2. We can inspect the layout structure by using ggplot_build(p)$layout$layout,
wherein p is a plot.

When using multiple scale_(x/y)_facet(), the expr argument can target the same panels. In
such case, the scales added to the plot first overrule the scales that were added later.

Value

A scale_facet object that can be added to a plot.

See Also

The facetted_pos_scales() function.

Examples

ETS

A standard plot with continuous scales
p <- ggplot(mtcars, aes(disp, mpg)) +
geom_point() +

facet_wrap(~ cyl, scales = "free")

Adding a scale for a value for a facetting variable
p + scale_x_facet(cyl == 8, limits = c(200, 600))

Adding a scale by position in the layout
p + scale_x_facet(COL == 3, limits = c(200, 600))

Setting the default scale and making an exception for one panel
p + scale_y_continuous(limits = c(@, 40)) +
scale_y_facet(PANEL == 1, limits = c(10, 50))

Using multiple panel-specific scales
p + scale_y_facet(PANEL == 1, limits = c(10, 50)) +
scale_y_facet(cyl == 6, breaks = scales::breaks_width(0.5))

When multiple scales target the same panel, the scale added first gets
priority over scales added later.
p + scale_y_facet(COL == 2, limits = c(10, 40)) +

scale_y_facet(cyl %in% c(4, 6), breaks = scales::breaks_width(1))

A standard plot with discrete x scales

p <- ggplot(mtcars, aes(factor(cyl), mpg)) +
geom_boxplot() +
facet_wrap(~ vs, scales = "free")

56 scale_fill_multi

Expanding limits to show every level
p + scale_x_facet(vs == 1, limits = factor(c(4, 6, 8)), type = "discrete”)

Shrinking limits to hide a level
p + scale_x_facet(vs == 0, limits = factor(c(4, 6)), type = "discrete”)

scale_fill_multi Multiple gradient colour scales

Description
Maps multiple aesthetics to multiple colour fill gradient scales. It takes in listed arguments for each
aesthetic and disseminates these to ggplot2: :continuous_scale().

Usage

scale_fill_multi(

L

colours,

values = NULL,

na.value = "transparent”,
guide = "colourbar”,
aesthetics = "fill",
colors

scale_colour_multi(

L

colours,
values = NULL,
na.value = "transparent”,
guide = "colourbar”,
aesthetics = "colour”,
colors
)
Arguments
...,colours, values, na.value, guide, colors
listed arguments in scale_colour_gradientn() (e.g. colours = list(c("white",
"red"”), c("black”, "blue"))).
aesthetics a character vector with names of aesthetic mapping.
Details

This function should only be called after all layers that this function affects are added to the plot.

The list elements of the listed arguments are assumed to follow the aesthetics order, i.e. the nth
list element belongs to the nth aesthetic. When there are more list elements than n aesthetics, only

scale_listed 57

the first nth list elements are taken. When there are more aesthetics than list elements, the first
list element is used for the remaining aesthethics.

In contrast to other scale_*_continous-family functions, the guide argument is interpreted be-
fore adding it to the plot instead of at the time of plot building. This behaviour ensures that the
available_aes argument of the guides are set correctly, but may interfere with the ggplot2: :guides()
function.

Value

A nested list-like structure of the class MultiScale.

Examples

Setup dummy data

df <- rbind(data.frame(x
data.frame(x
data.frame(x

NA, w =1:3, z = NA),
1:3, w = NA, z = NA),
NA, w =NA, z = 1:3))

1
_ A

w w w
< <K <
1
w N =
< < <
1

ggplot(df, aes(x, y)) +
geom_raster(aes(fill1l v))
geom_raster(aes(fill2 = w))
geom_raster(aes(fill3 = z))
scale_fill_multi(aesthetics = c("fill1"”, "fill2", "fill3"),

colours = list(c("white”, "red"),
c("black”, "blue"),
c("grey50"”, "green")))

+ o+ o+

scale_listed Add a list of scales for non-standard aesthetics

Description

This function should only be called after all layers that the non-standard aesthetic scales affects
have been added to the plot.

Inside a layer, the non-standard aesthetic should be part of the call to aes mapping.

May return a warning that the plot is ignoring unknown aesthetics.

Usage

scale_listed(scalelist, replaces = NULL)

Arguments
scalelist A list wherein elements are the results of calls to a scale function with a non-
standard aesthetic set as the aesthetic argument.
replaces A character vector of the same length as- and parallel to- scalelist, indicat-

ing what standard aesthetic to replace with the non-standard aesthetic. Typically
"colour” or "fill".

58 scale_x_manual

Details

Distributes a list of non-standard aesthetics scales to the plot, substituting geom and scale settings
as necessary to display the non-standard aesthetics. Useful for mapping different geoms to different
scales for example.

Value

A list of which the elements are of the class MultiScale.

Examples

Annotation of heatmap
iriscor <- cor(t(iris[, 1:41))

df <- data.frame(
x = as.vector(row(iriscor)),
y = as.vector(col(iriscor)),
value = as.vector(iriscor)

)

annotation <- data.frame(
z = seq_len(nrow(iris)),
Species = iris$Species,
Leaves = ifelse(iris$Species == "setosa”, "Short", "Long")

)

ggplot(df, aes(x, y)) +
geom_raster(aes(fill = value)) +
geom_tile(data = annotation,
aes(x = z, y = -5, spec = Species), height = 5) +
geom_tile(data = annotation,
aes(y = z, x = -5, leav
scale_listed(
list(scale_fill_brewer(palette = "Set1", aesthetics = "spec"),
scale_fill_brewer(palette = "Dark2", aesthetics = "leav")),
replaces = c("fill"”, "fill")

Leaves), width = 5) +

)

scale_x_manual Manual position scales

Description

[Experimental]

scale_x_manual() and scale_y_manual() are hybrid discrete and continuous position scales for
the x and y aesthetics. These accept input like discrete scales, but may map these discrete values to
continuous values that needn’t be equally spaced.

scale_x_manual

59

Usage
scale_x_manual (values, c_limits = NULL, position = "bottom"”, ...)
scale_y_manual(values, c_limits = NULL, position = "left", ...)
Arguments
values A numeric vector with the same length as unique values. Alternatively, a func-
tion that accepts the limits (unique values) as determined from the data and
returns a numeric vector parallel to the input.
c_limits Either NULL (default) to accept the range of values as the continuous limits, or
a numeric(2) to set custom continuous limits.
position For position scales, The position of the axis. left or right for y axes, top or

bottom for x axes.
Arguments passed on to ggplot2: :discrete_scale
scale_name [Deprecated] The name of the scale that should be used for error
messages associated with this scale.
name The name of the scale. Used as the axis or legend title. If waiver(), the
default, the name of the scale is taken from the first mapping used for that
aesthetic. If NULL, the legend title will be omitted.
breaks One of:
* NULL for no breaks
e waiver() for the default breaks (the scale limits)
* A character vector of breaks
* A function that takes the limits as input and returns breaks as output.
Also accepts rlang lambda function notation.
labels One of:
* NULL for no labels
» waiver() for the default labels computed by the transformation object
* A character vector giving labels (must be same length as breaks)
* An expression vector (must be the same length as breaks). See ?plot-
math for details.
A function that takes the breaks as input and returns labels as output.
Also accepts rlang lambda function notation.
limits One of:
* NULL to use the default scale values
* A character vector that defines possible values of the scale and their
order
A function that accepts the existing (automatic) values and returns new
ones. Also accepts rlang lambda function notation.
expand For position scales, a vector of range expansion constants used to add
some padding around the data to ensure that they are placed some distance
away from the axes. Use the convenience function expansion() to gen-
erate the values for the expand argument. The defaults are to expand the
scale by 5% on each side for continuous variables, and by 0.6 units on each
side for discrete variables.

60 scale_x_manual

na.translate Unlike continuous scales, discrete scales can easily show miss-
ing values, and do so by default. If you want to remove missing values from
a discrete scale, specify na.translate = FALSE.

na.value If na.translate = TRUE, what aesthetic value should the missing
values be displayed as? Does not apply to position scales where NA is al-
ways placed at the far right.

drop Should unused factor levels be omitted from the scale? The default, TRUE,
uses the levels that appear in the data; FALSE includes the levels in the
factor. Please note that to display every level in a legend, the layer should
use show. legend = TRUE.

guide A function used to create a guide or its name. See guides() for more
information.

call The call used to construct the scale for reporting messages.
super The super class to use for the constructed scale

Details
Many thanks to Constantin Ahlmann-Eltze for discussion and suggesting the adoption of this func-
tionality in ggh4x.

Value

A <ScaleManualPosition> object that can be added to a plot.

Note
There currently is a known bug wherein a c_limits cannot be applied correctly when that range is
within the range of the discrete limits.

See Also

sep_discrete()

Examples

A boxplot with interactions
p <- ggplot(mpg, aes(interaction(year, cyl), displ)) +
geom_boxplot ()

H+

Manually setting positions
p + scale_x_manual(values = c(1, 2, 4, 6, 7, 9, 10))

H+

Using a function to separate grouped labels
p + scale_x_manual(values = sep_discrete())

H+

Expanding the continuous limits
p + scale_x_manual(values = sep_discrete(), c_limits = c(NA, 15))

sep_discrete 61

sep_discrete Separator for discrete grouped labels

Description

This is a function factory that provides a function to split grouped discrete labels into numerical

positions.
Usage
sep_discrete(sep = ".", inv = FALSE)
Arguments
sep A character (1) separator to use for splitting. May not contain regular expres-
sions.
inv A logical(1) whether to invert the layering of groups.
Value

A function that accepts character input and returns numeric output.

Examples

Here, 'bar.qux' belongs to the second group, so has +1 value
sep_discrete() (c("foo.bar”, "bar.bar"”, "bar.qux"))

Now, the values are grouped by the groups before the separator
sep_discrete(inv = TRUE) (c("foo.bar", "bar.bar”, "bar.qux"))

stat_difference Difference ribbon

Description

This makes a ribbon that is filled depending on whether the max is higher than min. This can be
useful for displaying differences between two series.

62 stat_difference

Usage

stat_difference(
mapping = NULL,

data = NULL,

geom = "ribbon",
position = "identity",
levels = C(“+", II_II),

na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data. frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom Use to override the default connection between geom_ribbon() and stat_difference().

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

* A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

 For more information and other ways to specify the position, see the layer
position documentation.

Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through

.. Unknown arguments that are not part of the 4 categories below are ignored.

* Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red” or linewidth
=3. The geom’s documentation has an Aesthetics section that lists the

stat_difference

levels

na.rm

orientation

show. legend

inherit.aes

Details

63

available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

* When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area”, outline.type = "both”). The
geom’s documentation lists which parameters it can accept.

* Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density”, adjust =@.5). The
stat’s documentation lists which parameters it can accept.

* The key_glyph argument of layer () may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

A character(2) indicating factor levels for the fill aesthetic for the cases
where (1) max > min and where (2) max < min.

If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be
given explicitly by setting orientation to either "x" or "y". See the Orienta-
tion section for more detail.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

The stat may reorder the group aesthetic to accommodate two different fills for the signs of differ-
ences. The stat takes care to interpolate a series whenever a crossover between max and min series
happens. This makes the ribbon not look stumpy at these crossovers.

Value

A Layer object that can be added to a plot.

Aesthetics

geom_ribbon() understands the following aesthetics (required aesthetics are in bold):

e xory
* ymin or xmin

¢ ymax or xmax

64 stat_funxy

e alpha

e colour

e fill

e group

e linetype

e linewidth

Learn more about setting these aesthetics in vignette("ggplot2-specs”).

Computed variables

sign A factor with the levels attribute set to the levels argument.

Note

When there is a run of more than two O-difference values, the inner values will be ignored.

Examples

set.seed(2021)
df <- data.frame(
x = 1:100,
y = cumsum(rnorm(100)),
z = cumsum(rnorm(100))

)

ggplot(df, aes(x = x)) +
stat_difference(aes(ymin = y, ymax = z), alpha = 0.3) +

geom_line(aes(y =y, colour = "min")) +
geom_line(aes(y = z, colour = "max"))
stat_funxy Apply function to position coordinates
Description

The function xy stat applies a function to the x- and y-coordinates of a layers positions by group.
The stat_centroid() and stat_midpoint() functions are convenience wrappers for calculat-
ing centroids and midpoints. stat_funxy() by default leaves the data as-is, but can be supplied
functions and arguments.

stat_funxy

Usage

stat_funxy(
mapping = NULL,

65

data = NULL,
geom = "point”,
position = "identity",
funx = force,
funy = force,
argx = list(),
argy = list(),
crop_other = TRUE,
show.legend = NA,
inherit.aes = TRUE
)
stat_centroid(
funx = mean,
funy = mean,
argx = list(na.rm = TRUE),
argy = list(na.rm = TRUE)
)
stat_midpoint(..., argx = list(na.rm = TRUE), argy = list(na.rm = TRUE))
Arguments
mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.
data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).
geom The geometric object to use to display the data for this layer. When using a

stat_x() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

* A Geom ggproto subclass, for example GeomPoint.

* A string naming the geom. To give the geom as a string, strip the function
name of the geom_ prefix. For example, to use geom_point(), give the

66

position

funx, funy
argx, argy
crop_other

show. legend

inherit.aes

stat_funxy

geom as "point”.
* For more information and other ways to specify the geom, see the layer
geom documentation.

A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

* A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

 For more information and other ways to specify the position, see the layer
position documentation.

Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through

.. Unknown arguments that are not part of the 4 categories below are ignored.

« Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red” or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

* When constructing a layer using a stat_x() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area”, outline.type = "both”). The
geom’s documentation lists which parameters it can accept.

* Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density”, adjust =0.5). The
stat’s documentation lists which parameters it can accept.

* The key_glyph argument of layer () may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

A function to call on the layer’s x and y positions respectively.

A named list containing arguments to the funx, and funy function calls.

A logical of length one; whether the other data should be fitted to the length
of x and y (default: TRUE). Useful to set to FALSE when funx or funy calculate
summaries of length one that need to be recycled.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

If FALSE, overrides the default aesthetics, rather than combining with them.

This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

stat_rle 67

Details
This statistic only makes a minimal attempt at ensuring that the results from calling both functions
are of equal length. Results of length 1 are recycled to match the longest length result.

Value

A StatFunxy ggproto object, that can be added to a plot.

Examples

p <- ggplot(iris, aes(Sepal.Width, Sepal.Length, colour = Species))

Labelling group midpoints
p + geom_point() +
stat_midpoint(aes(label = Species, group = Species),
geom = "text"”, colour = "black")

Drawing segments to centroids
p + geom_point() +
stat_centroid(aes(xend = Sepal.Width, yend = Sepal.lLength),
geom = "segment”, crop_other = FALSE)

Drawing intervals
ggplot(iris, aes(Sepal.Width, Sepal.Length, colour = Species)) +
geom_point() +
stat_funxy(geom = "path”,
funx = median, funy = quantile,
argy = list(probs = c(0.1, 0.9)))

stat_rle Run length encoding

Description

Run length encoding takes a vector of values and calculates the lengths of consecutive repeated

values.
Usage

stat_rle(
mapping = NULL,
data = NULL,
geom = "rect”,
position = "identity",
align = "none”,

na.rm = FALSE,

nyn

orientation = "x",

68

show. legend
inherit.aes

Arguments

mapping

data

geom

position

stat_rle

NA,
TRUE

Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

Use to override the default connection between geom_rect() and stat_rle().

A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

* A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

 For more information and other ways to specify the position, see the layer
position documentation.

Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through

.. Unknown arguments that are not part of the 4 categories below are ignored.

* Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red"” or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

* When constructing a layer using a stat_x() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom= "area"”, outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

* Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.

stat_rle

align

na.rm

orientation

show. legend

inherit.aes

Details

69

An example of this is geom_area(stat = "density”, adjust =0.5). The
stat’s documentation lists which parameters it can accept.

* The key_glyph argument of layer () may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

A character of length one that effect the computed start and end variables.
One of the following:

"none"” Take exact start and end x values.

"center"” Return start and end x values in between an end and the subsequent
start.

"start” Align start values with previous end values.
"end” Align end values with next start values.

If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be

given explicitly by setting orientation to either "x"” or "y". See the Orienta-
tion section for more detail.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

The data is first ordered on the x aesthetic before run lengths are calculated for the label aesthetic.
In contrast to base: : rle(), NAs are considered equivalent values, not different values.

Value

A ggplot2 layer

Aesthetics

stat_rle() understands the following aesthetics (required aesthetics are in bold)

e X
 label

* group

Computed variables

start The x values at the start of every run.

end The x values at the end of every run.

70 stat_rollingkernel

start_id The index where a run starts.
end_id The index where a run ends.
run_id The index of a run.
runlength The length of a run.

runvalue The value associated with a run.

Examples

df <- data.frame(

x = seq(@, 10, length.out = 100),

y = sin(seq(@, 10, length.out = 100)%*2)
)

Label every run of increasing values
ggplot(df) +
stat_rle(aes(x, label = diff(c(@, y)) > 0),
align = "end") +
geom_point(aes(x, y))

Label every run above some threshold
ggplot(df) +
stat_rle(aes(x, label =y > 0),
align = "center") +
geom_point(aes(x, y))

Categorising runs, more complicated usage
ggplot(df) +
stat_rle(aes(stage(x, after_stat = run_id),
after_stat(runlength),
label = cut(y, c(-1, -0.6, 0.6, 1)),
fill = after_stat(runvalue)),
geom = "col")

stat_rollingkernel Rolling Kernel

Description

A rolling kernel moves along one of the axes and assigns weights to datapoints depending on the dis-
tance to the kernel’s location. It then calculates a weighted average on the y-values of the datapoints,
creating a trendline. In contrast to (weighted) rolling averages, the interval between datapoints do
not need to be constant.

Usage

stat_rollingkernel(
mapping = NULL,
data = NULL,

stat_rollingkernel

71

geom = "line”,
position = "identity"”,
bw = "nrd”,

kernel = "gaussian”,

n = 256,

expand = 0.1,

na.rm = FALSE,
orientation = "x",
show.legend = NA,
inherit.aes = TRUE

Arguments

mapping

data

geom

position

Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

Use to override the default geom ("1ine").

A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

* A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

* For more information and other ways to specify the position, see the layer
position documentation.

Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through

.. Unknown arguments that are not part of the 4 categories below are ignored.

« Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red” or linewidth
=3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the

72

bw

kernel

expand

na.rm

orientation

show. legend

inherit.aes

stat_rollingkernel

params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

* When constructing a layer using a stat_x() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area”, outline.type = "both”). The
geom’s documentation lists which parameters it can accept.

* Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density”, adjust =@.5). The
stat’s documentation lists which parameters it can accept.

* The key_glyph argument of layer () may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

A bandwidth, which can be one of the following:

* A numeric of length one indicating a measure of kernel width, in data units.

* A rel object of length one constructed for setting a bandwidth relative to
the group data range. Can be constructed with the rel () function.

* A character of length one, naming one of the functions documented in
bw.nrd().
One of the following:
e A function that takes a vector of distances as first argument, a numeric
bandwidth as second argument and returns relative weights.
* A character of length one that can take one of the following values:

"gaussian” or "norm” A kernel that follows a normal distribution with 0O
mean and bandwidth as standard deviation.

"mean” or "unif” A kernel that follows a uniform distribution with bandwidthx

—0.5 and bandwidth x 0.5 as minimum and maximum. This is similar
to a simple, unweighted moving average.

"cauchy"” A kernel that follows a Cauchy distribution with 0 as location
and bandwidth as scale parameters. The Cauchy distribution has fatter
tails than the normal distribution.

An integer of length one: how many points to return per group.

A numeric of length one: how much to expand the range for which the rolling
kernel is calculated beyond the most extreme datapoints.

If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

A character of length one, either "x" (default) or "y", setting the axis along
which the rolling should occur.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

stat_theodensity 73

Value

A Layer ggproto object.

Aesthetics
stat_rollingkernel() understands the following aesthetics (required aesthetics are in bold)
° X
°y
e group

Computed variables

x A sequence of ordered x positions.
y The weighted value of the rolling kernel.
weight The sum of weight strengths at a position.

scaled The fraction of weight strengths at a position. This is the same as weight / sum(weight)
by group.

Examples

ggplot(mpg, aes(displ, hwy, colour = class)) +
geom_point() +
stat_rollingkernel()

The (scaled) weights can be used to emphasise data-dense areas
ggplot(mpg, aes(displ, hwy, colour = class)) +

geom_point() +

stat_rollingkernel (aes(alpha = after_stat(scaled)))

stat_theodensity Fitted theoretical density

Description

Estimates the parameters of a given distribution and evaluates the probability density function with
these parameters. This can be useful for comparing histograms or kernel density estimates against
a theoretical distribution.

Usage

stat_theodensity(
mapping = NULL,
data = NULL,
geom = "line",
position = "identity"”,

74

L

stat_theodensity

distri = "norm”,

n =512,

fix.arg = NULL,
start.arg = NULL,
na.rm = TRUE,

show. legend
inherit.aes

Arguments

mapping

data

geom

position

NA,
TRUE

Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data. frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

Use to override the default geom for stat_theodensity.

A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

* A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

 For more information and other ways to specify the position, see the layer
position documentation.

Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through

.. Unknown arguments that are not part of the 4 categories below are ignored.

* Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red"” or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

stat_theodensity 75

* When constructing a layer using a stat_x() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area”, outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

* Inversely, when constructing a layer using a geom_x() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density”, adjust =@.5). The
stat’s documentation lists which parameters it can accept.

* The key_glyph argument of layer () may also be passed on through

This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

distri A character of length 1 naming a distribution without prefix. See details.

n An integer of length 1 with the number of equally spaced points at which the
density function is evaluated. Ignored if distribution is discrete.

fix.arg An optional named list giving values of fixed parameters of the named distri-
bution. Parameters with fixed value are not estimated by maximum likelihood
procedures.

start.arg A named list giving initial values of parameters for the named distribution. This

argument may be omitted (default) for some distributions for which reasonable
starting values are computed.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Details

Valid distri arguments are the names of distributions for which there exists a density function.
The names should be given without a prefix (typically ’d’, ’r’, ’q’ and ’r’). For example: "norm”
for the normal distribution and "nbinom” for the negative binomial distribution. Take a look at
distributions() in the stats package for an overview.

There are a couple of distribution for which there exist no reasonable starting values, such as the
Student t-distribution and the F-distribution. In these cases, it would probably be wise to provide
reasonable starting values as a named list to the start.arg argument. When estimating a binomial
distribution, it would be best to supply the size to the fix.arg argument.

By default, the y values are such that the integral of the distribution is 1, which scales well with
the defaults of kernel density estimates. When comparing distributions with absolute count his-
tograms, a sensible choice for aesthetic mapping would be aes(y = stat(count) * binwidth),
wherein binwidth is matched with the bin width of the histogram.

For discrete distributions, the input data are expected to be integers, or doubles that can be divided
by 1 without remainders.

76 stat_theodensity

Parameters are estimated using the fitdistrplus::fitdist() function in the fitdistrplus pack-
age using maximum likelihood estimation. Hypergeometric and multinomial distributions from the
stats package are not supported.

Value

A Layer ggproto object.

Computed variables
density probability density

count density * number of observations - useful for comparing to histograms

scaled density scaled to a maximum of 1

See Also

stats::Distributions() fitdistrplus::fitdist() ggplot2::geom_density() ggplot2::geom_histogram()

Examples

A mixture of normal distributions where the standard deviation is
inverse gamma distributed resembles a cauchy distribution.

X <= rnorm(2000, 10, 1/rgamma(2000, 2, 0.5))

df <- data.frame(x = x)

ggplot(df, aes(x)) +
geom_histogram(binwidth = 0.1,
alpha = 0.3, position = "identity")

+

stat_theodensity(aes(y = stat(count) * @.1, colour = "Normal”),
distri = "norm”, geom = "line") +

stat_theodensity(aes(y = stat(count) * @.1, colour = "Cauchy"),
distri = "cauchy”, geom = "line") +

coord_cartesian(xlim = c(5, 15))

A negative binomial can be understood as a Poisson-gamma mixture
df <- data.frame(x = c(rpois(500, 25),
rpois(500, rgamma(500, 5, 0.2))),
cat = rep(c("Poisson”, "Poisson-gamma"), each = 500))

ggplot(df, aes(x)) +
geom_histogram(binwidth = 1, aes(fill = cat),
alpha = 0.3, position = "identity") +
stat_theodensity(aes(y = stat(count), colour = cat), distri
geom = "step”, position = position_nudge(x
stat_summary(aes(y = x, colour = cat, x = 1),
fun.data = function(x){data.frame(xintercept = mean(x))},
geom = "vline")

"nbinom”,
-0.5)) +

strip_nested 77

strip_nested Nested strips

Description

This strip style groups strips on the same layer that share a label. It is the default strip for facet_nested()
and facet_nested_wrap().

Usage
strip_nested(
clip = "inherit",
size = "constant”,

bleed = FALSE,
text_x = NULL,
text_y = NULL,
background_x = NULL,
background_y = NULL,
by_layer_x = FALSE,
by_layer_y = FALSE

)
Arguments
clip A character (1) that controls whether text labels are clipped to the background
boxes. Can be either "inherit"” (default), "on" or "off".
size A character (1) stating that the strip margins in different layers remain "constant”
or are "variable”.
bleed A logical(1) indicating whether merging of lower-layer variables is allowed

when the higher-layer variables are separate. See details.

text_x, text_y Alist() withelement_text() elements. See the details sectionin strip_themed().
background_x, background_y

Alist() withelement_rect() elements. See the details section in strip_themed().
by_layer_x, by_layer_y

A logical(1) that when TRUE, maps the different elements to different layers of

the strip. When FALSE, maps the different elements to individual strips, possibly

repeating the elements to match the number of strips through rep_len().

Details

The display order is always such that the outermost variable is placed the furthest away from the
panels. Strips are automatically grouped when they span a nested variable.

The bleed argument controls whether lower-layer strips are allowed to be merged when higher-
layer strips are different, i.e. they can bleed over hierarchies. Suppose the strip_vanilla()
behaviour would be the following for strips:

78

[_3_10.3_1[_4_1

Whereas bleed = TRUE would allow the following:
121

Value

A StripNested ggproto object that can be given as an argument to facets in ggh4x.

See Also

Other strips: strip_split(), strip_tag(), strip_themed(), strip_vanilla()

Examples

A standard plot
p <- ggplot(mpg, aes(displ, hwy)) +
geom_point()

Combine the strips
p + facet_wrap2(vars(cyl, drv), strip = strip_nested())

The facet_nested and facet_nested_wrap functions have nested strips
automatically
p + facet_nested_wrap(vars(cyl, drv))

Changing the bleed argument merges the "f" labels in the top-right
p + facet_wrap2(vars(cyl, drv), strip = strip_nested(bleed = TRUE))

strip_split

strip_split Split strips

Description

[Experimental]

This strip style allows a greater control over where a strip is placed relative to the panel. Different

facetting variables are allowed to be placed on different sides.

strip_split

Usage

strip_split(

79

position = c("top”, "left"),
clip = "inherit"”,

size = "constant”,

bleed = FALSE,

text_x = NULL,

text_y = NULL,

background_x
background_y
by_layer_x =
by_layer_y =

Arguments

position

clip
size

bleed

text_x, text_y

= NULL,
= NULL,
FALSE,
FALSE

A character vector stating where the strips of faceting variables should be
placed. Can be some of the following: "top”, "bottom”, "left"” or "right".
The length of the position argument must match the length of variables pro-
vided to the facets argument in wrap/manual layouts, or those provided to the
rows and cols arguments in the grid layout.

A character (1) that controls whether text labels are clipped to the background
boxes. Can be either "inherit"” (default), "on" or "off".

A character (1) stating that the strip margins in different layers remain "constant”
or are "variable”.

A logical (1) indicating whether merging of lower-layer variables is allowed
when the higher-layer variables are separate. See the details of strip_nested
for more info. Note that currently, strip_split() cannot recognise collisions
between strips, so changing to bleed = TRUE can have unexpected results.

A list() withelement_text() elements. See the details section in strip_themed().

background_x, background_y

A list() withelement_rect() elements. See the details section in strip_themed().

by_layer_x, by_layer_y

Details

A logical (1) that when TRUE, maps the different elements to different layers of
the strip. When FALSE, maps the different elements to individual strips, possibly
repeating the elements to match the number of strips through rep_len().

Using this style of strip completely overrules the strip.position and switch arguments.

Value

A StripSplit ggproto object that can be given as an argument to facets in ggh4x.

See Also

Other strips: strip_nested(), strip_tag(), strip_themed(), strip_vanilla()

80 strip_tag

Examples

H+

A standard plot
<- ggplot(mpg, aes(displ, hwy)) +
geom_point()

o

--- Wrap examples ------

Defaults to 1st (cyl) at top, 2nd (drv) on left
p + facet_wrap2(vars(cyl, drv), strip = strip_split())

Change cyl to left, drv to bottom
p + facet_wrap2(vars(cyl, drv), strip = strip_split(c("left”, "bottom")))

--- Grid examples -----

Display both strips levels on the left
p + facet_grid2(vars(drv), vars(cyl),
strip = strip_split(c("left”, "left")))

Separate the strips again
p + facet_grid2(vars(cyl, year),
strip = strip_split(c("bottom”, "left")))

Using a dummy variable as a title strip
p + facet_grid2(vars(cyl, "year", year),
strip = strip_split(c("bottom”, "left”, "left")))

strip_tag Strips as tags

Description

This strip style renders the strips as text with fitted boxes onto the panels of the plot. This is in
contrast to strips that match the panel size and are located outside the panels.

Usage
strip_tag(
clip = "inherit”,
Order = C(”X”, Hy")7

just = c(0, 1),

text_x = NULL,

text_y = element_text(angle = 0),
background_x = NULL,

background_y = NULL,

by_layer_x = FALSE,

by_layer_y = FALSE

strip_tag 81

Arguments
clip A character(1) that controls whether text labels are clipped to the background
boxes. Can be either "inherit"” (default), "on” or "off".
order Either c("x", "y") orc("y", "x"), setting the top-to-bottom order of horizon-
tal versus "vertical" labels in facets with a grid layout.
just A <numeric[2]> setting the horizontal and vertical justification of placing the

textbox.

text_x, text_y A list() with element_text() elements. See details.
background_x, background_y
A list() with element_rect() elements. See details.
by_layer_x, by_layer_y
A logical (1) that when TRUE, maps the different elements to different layers of

the strip. When FALSE, maps the different elements to individual strips, possibly
repeating the elements to match the number of strips through rep_len().

Value

A StripTag ggproto object that can be given as an argument to facets in ggh4x.

See Also

Other strips: strip_nested(), strip_split(), strip_themed(), strip_vanilla()

Examples

A standard plot
p <- ggplot(mpg, aes(displ, hwy)) +
geom_point()

Typical use
p + facet_wrap2(
~ class,
strip = strip_tag()

Adjusting justification
p + facet_wrap2(
~ class,
strip = strip_tag(just = c(1, 0))

p + facet_wrap2(
~ drv + year,
strip = strip_tag()

With a grid layout, you can control in which order the labels are drawn
p + facet_grid2(
"vertical” ~ "horizontal”,

82 strip_themed

strip = strip_tag(order = c("x", "y")) # default

)
p +facet_grid2(
"vertical” ~ "horizontal”,
strip = strip_tag(order = c("y", "x")) # invert order
)
strip_themed Strip with themed boxes and texts
Description

A style of strips with individually themed strips.

Usage
strip_themed(
clip = "inherit”,
size = "constant”,

text_x = NULL,
text_y = NULL,
background_x = NULL,
background_y = NULL,
by_layer_x = FALSE,
by_layer_y = FALSE

)
Arguments
clip A character (1) that controls whether text labels are clipped to the background
boxes. Can be either "inherit” (default), "on” or "of f".
size A character (1) stating that the strip margins in different layers remain "constant”

or are "variable”.

text_x, text_y A list() with element_text() elements. See details.
background_x, background_y
A list() with element_rect() elements. See details.
by_layer_x, by_layer_y
A logical(1) that when TRUE, maps the different elements to different layers of

the strip. When FALSE, maps the different elements to individual strips, possibly
repeating the elements to match the number of strips through rep_len().

Details

With respect to the text_% and background_x arguments, they can be a list with (a mix of) the
following objects:

strip_themed 83

* NULL indicates that the global plot theme applies.
* element_blank() omits drawing the background or text.

* An element class object inheriting from the element_text or element_rect classes.

For constructing homogeneous lists of elements, the elem_list_text() and elem_list_rect()
are provided for convenience.

Value

A StripThemed ggproto object that can be given as an argument to facets in ggh4x.

See Also

Other strips: strip_nested(), strip_split(), strip_tag(), strip_vanilla()

Examples

Some simple plot
p <- ggplot(mpg, aes(displ, hwy)) +
geom_point()

Set some theming options, we can use “element_blank()"

backgrounds <- list(element_blank(), element_rect(fill = "dodgerblue"))

Or we could use “NULL™ to use the global theme

texts <- list(element_text(colour = "red"”), NULL, element_text(face = "bold"))

Elements are repeated until the fit the number of facets
p + facet_wrap2(
vars(drv, year),
strip = strip_themed(
background_x = backgrounds,
text_x = texts

)

Except when applied to each layer instead of every strip
p + facet_wrap2(
vars(drv, year),
strip = strip_themed(
background_x = backgrounds,
text_x = texts,
by_layer_x = TRUE
)

To conveniently distribute arguments over a list of the same elements,
you can use the following wrappers:
p + facet_wrap2(
vars(drv, year),
strip = strip_themed(
text_x = elem_list_text(colour = c("blue”, "red")),
background_x = elem_list_rect(fill = c("white”, "grey80")),

84 strip_vanilla

by_layer_x = TRUE
)
)

strip_vanilla Default strips

Description

Strips with the style of vanilla ggplot2.

Usage
strip_vanilla(clip = "inherit”, size = "constant")
Arguments
clip A character(1) that controls whether text labels are clipped to the background
boxes. Can be either "inherit” (default), "on"” or "off".
size A character (1) stating that the strip margins in different layers remain "constant”
or are "variable”.
Value

A Strip ggproto object that can be used ggh4x facets.

See Also

Other strips: strip_nested(), strip_split(), strip_tag(), strip_themed()

Examples

Some dummy data with a long string
df <- data.frame(

short = "X",
long = "A very long string that takes up a lot of space”,
value = 1

~—

Simple plot
p <- ggplot(df, aes(value, value)) +
geom_point() +
theme(strip.text.y.right = element_text(angle = 0))

Short titles take up as much space as long titles
p + facet_grid2(

vars(short, long),

strip = strip_vanilla(size = "constant")

theme_extensions 85

Short titles take up less space
p + facet_grid2(
vars(short, long),

strip = strip_vanilla(size = "variable")
)
theme_extensions Theme extensions
Description

Some functions in ggh4x are using extensions to the theme system. These extended theme argument
are listed below, along with what elements they are expected to be, and in what function(s) they are
used.

Arguments

gghdx.facet.nestline
Anelement_line() used as the parent for the nest_line argument in facet_nested()
and facet_nested_wrap(). Inherits directly from the *1ine’ theme element.
gghdx.axis.nestline, ggh4x.axis.nestline.x, ggh4x.axis.nestline.y
An element_line() used as the line to separate different layers of labels in
guide_axis_nested(). Inherits from the axis.ticks’ theme element.
gghdx.axis.nesttext.x, ggh4x.axis.nesttext.y
An element_text() used to differentiate text higher in the hierarchy from the
axis labels directly next to the axis line in guide_axis_nested(). Inherits from
the axis.text.x’ and ’axis.text.y’ theme elements respectively.
gghdx.axis.ticks.length.minor
A rel() objectused to set the size of minor tick marks relative to the regular tick
marks. This is used in the guide_axis_minor() and guide_axis_logticks()
functions. Defaults to rel(2/3).
gghdx.axis.ticks.length.mini
A rel() object used to set the size of the smallest tick marks relative to reg-
ular tick marks. This is only used in the guide_axis_logticks() function.
Defaults to rel (1/3).

weave_factors Bind together factors

Description

Computes a new factor out of combinations of input factors.

Usage
weave_factors(..., drop = TRUE, sep = ".", replaceNA = TRUE)

86 weave_factors

Arguments
The vectors
drop A logical of length 1 which when TRUE will remove combinations of factors
not occurring in the input data.
sep A character of length 1 with a string to delimit the new level labels.
replaceNA A logical of length 1: replace NA values with empty strings?
Details
weave_factors() broadly resembles interaction(..., lex.order = TRUE), with a slightly al-
tered approach to non-factor inputs. In other words, this function orders the new levels such that
the levels of the first input variable in . .. is given priority over the second input, the second input

has priority over the third, etc.

This function treats non-factor inputs as if their levels were unique(as.character(x)), wherein
X represents an input.

Value

A factor representing combinations of input factors.

See Also

interaction()

Examples

f1 <- c("banana”, "apple”, "apple”, "kiwi")
f2 <- factor(c(1, 1:3), labels = c("house”, "cat", "dog"))

Notice the difference in level ordering between the following:
interaction(f1, f2, drop = TRUE, lex.order = TRUE)
interaction(f1, f2, drop = TRUE, lex.order = FALSE)
weave_factors(f1, f2)

The difference is in how characters are interpreted
The following are equivalent

interaction(f1, f2, drop = TRUE, lex.order = TRUE)
weave_factors(as.factor(f1), f2)

Index

+ datasets
ggh4x_extensions, 46

x facetting functions
facet_grid2, 11
facet_manual, 14
facet_nested, 17
facet_nested_wrap, 20
facet_wrap2, 23

* strips
strip_nested, 77
strip_split, 78
strip_tag, 80
strip_themed, 82
strip_vanilla, 84

aes(), 27, 30, 33, 36, 39, 43, 62, 65,68, 71, 74
alpha, 32, 45, 64
at_panel, 3

borders(), 29, 31, 34, 37, 40, 44, 63, 66, 69,
72,75
bw.nrd(), 72

center_limits, 4

colour, 32, 45, 64

coord_axes_inside, 5
coord_cartesian(), 5

coord_fixed(), 5

CoordAxesInside (ggh4x_extensions), 46

deprecated, 6
discrete scales, 58
distribute_args,7
distributions(), 75

elem_list_rect (distribute_args), 7
elem_list_rect(), 83
elem_list_text (distribute_args), 7
elem_list_text(), 83
element_line(), 85
element_part_rect, 9

87

element_rect(), 7, 8,77,79,81, 82
element_text(), 7, 8,77,79,81, 82,85
expansion(), 59

facet_grid2, 11, 16, 20, 23, 25
facet_grid2(), 20
facet_manual, /4, 14, 20, 23, 25
facet_nested, /4, 16, 17,23, 25
facet_nested(), 77, 85
facet_nested_wrap, /4, 16, 20, 20, 25
facet_nested_wrap(), 77, 85
facet_wrap2, 14, 16, 20, 23,23
facet_wrap2(), 22
FacetGrid2 (ggh4x_extensions), 46
FacetManual (ggh4x_extensions), 46
FacetNested (ggh4x_extensions), 46
FacetNestedWrap (ggh4x_extensions), 46
facetted_pos_scales, 10
facetted_pos_scales(), 54, 55
FacetWrap2 (ggh4x_extensions), 46
fill, 32, 64
fitdistrplus::fitdist(), 76
force_panelsizes, 26
fortify(), 27, 30, 33, 36, 39, 43, 62, 65, 68,
71,74

geom_box, 27

geom_outline_point, 29
geom_pointpath, 32
geom_polygonraster, 35
geom_raster(), 37
geom_rect(), 40, 41, 50
geom_rectmargin, 38
geom_text_aimed, 42

geom_tilemargin (geom_rectmargin), 38
GeomBox (ggh4x_extensions), 46
GeomPointPath (ggh4x_extensions), 46
GeomPointpath (ggh4x_extensions), 46
GeomPolygonRaster (ggh4x_extensions), 46
GeomRectMargin (ggh4x_extensions), 46

88

GeomTextAimed (ggh4x_extensions), 46
GeomTileMargin (ggh4x_extensions), 46
gghdx.facet.nestline, 19, 22
ggh4x_extensions, 46
gghdx_theme_elements
(theme_extensions), 85
ggplot(), 27, 30, 33, 36, 39, 43, 62, 65, 68,
71,74
ggplot2::continuous_scale(), 56
ggplot2::coord_polar(), 37
ggplot2::discrete_scale, 59
ggplot2::element_line(), 19, 22
ggplot2::facet_grid, 71
ggplot2::facet_grid(), 10, 20, 26, 27
ggplot2::facet_null(), 26, 27
ggplot2::facet_wrap, 13, 18
ggplot2::facet_wrap(), 10, 23, 27
ggplot2: :geom_density(), 76
ggplot2: :geom_histogram(), 76
ggplot2: :geom_rug(), 41
ggplot2::geom_tile(), 41, 50
ggplot2::guides(), 57
ggplot2::scale_x_continuous(), 1/
ggplot2::sec_axis, 48
ggproto, 46
ggsubset (deprecated), 6
grid::arrow(), 34
grid::unit, 29
grid::unit(), 20, 23, 27, 40
group, 32,45, 64
guide_axis(), 48
guide_axis_color (deprecated), 6
guide_axis_colour (deprecated), 6
guide_axis_logticks (deprecated), 6
guide_axis_logticks(), 85
guide_axis_manual (deprecated), 6
guide_axis_minor (deprecated), 6
guide_axis_minor(), 85
guide_axis_nested (deprecated), 6
guide_axis_nested(), 85
guide_axis_scalebar (deprecated), 6
guide_axis_truncated (deprecated), 6
guide_dendro (deprecated), 6
guide_stringlegend, 46
guides(), 60
GuideStringlegend (ggh4x_extensions), 46

help_secondary, 47

INDEX

interaction(), 86

key glyphs, 28, 31, 34, 37,40, 44, 63, 66, 69,
72,75

label_parsed(), 13, 16, 19, 22, 24

label_value(), 13, 16, 19, 22, 24

labeller(), 13, 16, 19,22, 24

labs(), 46

lambda, 59

layer geom, 66

layer position, 28, 31, 33, 36, 39, 43, 62,
66, 68,71,74

layer stat, 28, 30, 33, 36, 39, 43

layer(), 3, 28, 31, 33, 34, 36, 37, 39, 40, 43,
44, 62, 63, 66, 68, 69,71, 72,74, 75

layout(), 14

linetype, 64

linewidth, 64

position_disjoint_ranges, 49

position_lineartrans, 50

position_lineartrans(), 37

PositionDisjointRanges
(ggh4x_extensions), 46

PositionLinearTrans (ggh4x_extensions),
46

rel(), 85

scale_colour_gradientn(), 56

scale_colour_multi (scale_fill_multi),
56

scale_facet, 54

scale_fill_multi, 56

scale_listed, 57

scale_x_dendrogram (deprecated), 6

scale_x_facet (scale_facet), 54

scale_x_manual, 58

scale_y_dendrogram (deprecated), 6

scale_y_facet (scale_facet), 54

scale_y_manual (scale_x_manual), 58

sep_discrete, 61

sep_discrete(), 60

shape, 32

size, 32,45

stat_centroid (stat_funxy), 64

stat_difference, 61

stat_funxy, 64

INDEX

stat_midpoint (stat_funxy), 64
stat_rle, 67

stat_rollingkernel, 70
stat_theodensity, 73

StatDifference (ggh4x_extensions), 46
StatFunxy (ggh4x_extensions), 46
StatRle (ggh4x_extensions), 46
StatRollingkernel (ggh4x_extensions), 46
stats::Distributions(), 76
StatTheoDensity (ggh4x_extensions), 46
Strip (ggh4x_extensions), 46
strip_nested, 77, 79, 81, 83, 84
strip_nested(), 19, 20, 22, 23
strip_split, 78,78, 81, 83, 84
strip_tag, 78, 79, 80, 83, 84
strip_themed, 78, 79, 81, 82, 84
strip_themed(), 77, 79
strip_vanilla, 14,78, 79, 81, 83, 84
StripNested (ggh4x_extensions), 46
StripSplit (ggh4x_extensions), 46
StripThemed (ggh4x_extensions), 46

theme, 46
theme_extensions, 85

vars(), 12, 15,18, 21,24

waiver(), 46
weave_factors, 85

X, 32,45, 63
xend, 45
xmax, 63
xmin, 63

y, 32,45, 63
yend, 45
ymax, 63
ymin, 63

89

	at_panel
	center_limits
	coord_axes_inside
	deprecated
	distribute_args
	element_part_rect
	facetted_pos_scales
	facet_grid2
	facet_manual
	facet_nested
	facet_nested_wrap
	facet_wrap2
	force_panelsizes
	geom_box
	geom_outline_point
	geom_pointpath
	geom_polygonraster
	geom_rectmargin
	geom_text_aimed
	ggh4x_extensions
	guide_stringlegend
	help_secondary
	position_disjoint_ranges
	position_lineartrans
	scale_facet
	scale_fill_multi
	scale_listed
	scale_x_manual
	sep_discrete
	stat_difference
	stat_funxy
	stat_rle
	stat_rollingkernel
	stat_theodensity
	strip_nested
	strip_split
	strip_tag
	strip_themed
	strip_vanilla
	theme_extensions
	weave_factors
	Index

