## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", warning = FALSE, message = FALSE, # out.width = "100%", fig.width = 6, fig.height = 4, fig.align = "center" ) ## ----------------------------------------------------------------------------- # Paquetes necesarios y otras configuraciones library(ggcleveland) library(ggplot2) library(dplyr) theme_set(theme_bw() + theme(panel.spacing = unit(0, "lines"))) ## ----------------------------------------------------------------------------- data(futbol) # Quedarse con solo dos grupos futbol2 <- futbol %>% filter(longp %in% c("< 0.81 m", "0.81 a 0.90 m")) # Gráfico de cuantiles para dos grupos gg_quantiles(futbol2, dist, longp) # Más de dos grupos gg_quantiles(futbol, dist, longp, size = 0.4, color = "red", shape = 3) + labs(title = "Gráficos QQ de a pares", x = "Distancia (m)", y = "Distancia (m)") ## ----------------------------------------------------------------------------- futbol <- futbol %>% group_by(longp) %>% mutate(ajuste = mean(dist), res = dist - ajuste) gg_quantiles(futbol, res, longp, combined = TRUE) ## ----------------------------------------------------------------------------- # Dos grupos gg_tmd(futbol2, dist, longp) # Múltiples grupos gg_tmd(futbol, dist, longp, size = 0.5) ## ----------------------------------------------------------------------------- data(ozone) gg_tmd_paired(ozone, stamford, yonkers) ## ----------------------------------------------------------------------------- gg_rf(futbol, dist, ajuste, res, ylabel = "Distancia (m)") # Agregando las observaciones centradas por la media general gg_rf(futbol, dist, ajuste, res, cen_obs = TRUE, ylabel = "Distancia (m)") ## ----------------------------------------------------------------------------- gg_sl(futbol2, dist, longp, xlabel = "Mediana de distancia jittered (m)", jitterwidth = 1.5) + xlim(45, 68) ## ---- fig.height=2.5, fig.width=6.5------------------------------------------- gg_pt(futbol2, dist, taus = c(-1, -0.5, 0, 0.5), nrow = 1) ## ---- fig.height=3.5, fig.width=6.5------------------------------------------- # Para cada grupo por separado gg_pt(futbol2, dist, longp, taus = c(-1, -0.5, 0, 0.5)) ## ----------------------------------------------------------------------------- data(rubber) # Slicing con intervalos solapados gg_coplot(rubber, x = tensile.strength, y = abrasion.loss, faceting = hardness, number_bins = 6, overlap = 3/4, ylabel = "Pérdida de abrasión (g/hp-hour))", xlabel = "Resistencia a la tracción (kg/cm2)", facet_label = "Dureza (grados Shore)", loess_family = "symmetric", size = 2) # Slicing con intervalos sin solapamientos, con igual amplitud gg_coplot(rubber, x = tensile.strength, y = abrasion.loss, faceting = hardness, number_bins = 6, overlap = 0, ylabel = "Pérdida de abrasión (g/hp-hour))", xlabel = "Resistencia a la tracción (kg/cm2)", facet_label = "Dureza (grados Shore)", loess = FALSE, size = 2) # Slicing con intervalos sin solapamientos, con aprox. igual cantidad de datos gg_coplot(rubber, x = tensile.strength, y = abrasion.loss, faceting = hardness, number_bins = 6, overlap = 0, equal_length = F, ylabel = "Pérdida de abrasión (g/hp-hour))", xlabel = "Resistencia a la tracción (kg/cm2)", facet_label = "Dureza (grados Shore)", loess = FALSE, size = 2) ## ----------------------------------------------------------------------------- data(galaxy) # Slicing con los valores únicos de la variable de faceting gg_coplot(galaxy, x = posicion.radial, y = velocidad, faceting = angulo, number_bins = 7, loess_span = .5, loess_degree = 2, facet_labeller = function(x) paste0("Ángulo = ", x, "º"), facet_label = "Ángulo (grado)", facets_nrow = 2, intervals_height = 0.2, xlabel = "Posición radial (arcsec)", ylabel = "Velocidad (km/s)")